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ABSTRACT
Enterprise customers of cloud services are wary of outsourcing

sensitive user and business data due to inherent security and

privacy concerns. In this context, storing and computing directly

on encrypted data is an attractive solution, especially against

insider attacks. Homomorphic encryption, the keystone enabling

technology is unfortunately prohibitively expensive. In this pa-

per, we focus on finding k-Nearest Neighbours (k-NN) directly on

encrypted data, a basic data-mining and machine learning algo-

rithm. The goal is to compute the nearest neighbours to a given

query, and present exact results to the clients, without the cloud

learning anything about the data, query, results, or the access and

search patterns. We describe a novel protocol in the two-party

cloud setting, using an underlying somewhat homomorphic en-

cryption scheme. In comparison to the state-of-the-art protocol

in this setting, we provide asymptotically faster performance,

without sacrificing any security guarantees. We implemented

our protocol to demonstrate that it is efficient and practical on

large and relevant real-world datasets and study how it scales

well across different parameters on simulated data.

1 INTRODUCTION
Finding k-Nearest Neighbours (k-NN) is viewed as one of the

simplest data mining algorithms for discovering patterns. It is

non-parametric, making no assumptions about underlying data

distributions. It is also a lazy learning technique, where no at-

tempt is made to generalize the data until a query is presented.

The goal of a k-NN algorithm for a given query is to find its k

“nearest" neighbours according to a suitable measure of nearness

or distance. It has applications in finding candidate patterns for

image segmentation, location-based search, and in the classifica-

tion of symptoms and diagnosis over medical records, to name a

few. These patterns may be subsequently used as inputs for more

sophisticated learning algorithms.

In the context of cloud computing services, client data records

stored on clouds are increasingly confidential in nature, from

customer transactions, order histories, credit card numbers and

other personally identifiable information (PII). Algorithms, and
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especially algorithmic parameters, e.g., in recommendation sys-

tems, are also proprietary and sensitive. Inadvertent or unautho-

rised disclosure of data or computation can have serious legal or

business consequences. In order to protect the confidentiality of

sensitive information, clients can store encrypted data in data

centres. However, it is not cost effective to import back all the

data to the client, decrypt and perform computations, as this

negates the advantages of moving to the cloud platform in the

first place.

The Secure k-NN problem for encrypted data has been a topic

of active research [13, 14, 34, 39–41]. The goal is to compute k-
NN over encrypted data stored in the cloud, given a query, with

the requirement that the cloud provider does not get any infor-

mation about the plaintext values in the database, the query, the

results, the access patterns during query evaluation, and search

patterns. The technology to work effectively on encrypted data is

provided by a class of encryption schemes called homomorphic

encryption (HE), which allow one to compute arbitrary functions

on encrypted data and produce encrypted results. Clients, who

have the secret keys can decrypt and use these results safely,

without revealing the data or results to the servers. Fully HE [16]

schemes are expensive and impractical for now [12]. Existing

solutions for Secure k-NN, therefore, work in one of two models:

the centralised (private) or the two-party (public with multiple

servers) cloud model. These solutions rely on a combination of

partially or somewhat homomorphic schemes (PHE or (S)HE) for

computation [14, 28, 39] of simpler mathematical functions, such

as order preserving encryption, homomorphic addition, com-

putation of limited degree polynomials, etc., which are faster

to compute. These choices impose different tradeoffs on com-

putation and communication overheads, and provide different

security guarantees, making this a rich field for new research.

We present a new protocol in the two-party honest-but-

curious cloud model for computing k-NN on encrypted data,

which is asymptotically faster than the current state-of-the-art

protocol [14], without compromising on strong security guaran-

tees. We use LFHE (leveled fully homomorphic encryption) [9],

and compute squared Euclidean distances directly on encrypted

data. In order to compute the ranking among the distances, we

transform the distances suitably to preserve their order and of-

fload the comparison to a federated public cloud, who has secret

keys. Since this cloud has access only to transformed results of

computations performed on plaintext data, we show that in spite
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of this knowledge, this honest-but-curious cloud does not learn

anything useful about the original database, the results, or the

query.

We implement our protocols and run experiments on two real-

world datasets from the UCI machine learning repository
1
: the

cervical cancer (risk factors) dataset, and the default of credit card

clients dataset. Both datasets have a large number of dimensions

(32 and 23 respectively). Our implementation shows that we are

able to find k-NN very efficiently: 166 s on the cancer data and

373 s for the credit card dataset for our secure version for an

8-NN query, making our implementation practical for real-world

applications. This trend is also echoed in the simulation results

on synthetic datasets, to study the sensitivity of our protocol to

various parameter choices empirically.

The rest of the paper is organized as follows: In Section 2 we

present background information about our adversary and cloud

models as well as a brief tutorial on homomorphic encryption.

In Section 3 we present our protocol in detail, followed by a

security analysis in Section 4. We describe our implementation

and experiments in Section 5, relevant related work in Section 6,

and conclude with future work in Section 7.

2 BACKGROUND
In this section, we present our two-party cloud architecture and

describe our adversary model and trust assumptions. We also

specify the Secure k-NN problem in terms of what functions

need to be computed on encrypted data, and briefly introduce

homomorphic encryption, with the goal of making this paper

self-contained.

2.1 Cloud Architecture
The security implications of outsourcing data or computation

to cloud servers need to be studied carefully. There are many

deployment choices, including private clouds, public clouds and

hybrid clouds. For enterprises that place a high value on data

confidentiality and computational integrity, outsourcing data and

computation may not be a justifiable risk. Private cloud solutions

address this need, with services being accessible only within

enterprise intranets, with limited benefits of cloud computing

such as on-demand scaling and load balancing, as well as added

initial infrastructure and set-up costs to new services. At the

other end of the spectrum are the public clouds, where large

third-party owned server farms and data centres host client data

and computation services for hire. Two concerns stand out here:

insider attacks, where employees within the public cloud enter-

prise can observe and infer trade secrets, and side channels, e.g.,
inadvertent or indirect information leaks when data belonging

to different companies who may be competitors share the same

bare metal. Analysis of side channels is outside the scope of this

paper. A third model, the hybrid cloud model adopts a best of

both worlds where depending on the sensitivity of the data and

computation, enterprises may choose to offload only a part of

their services on public clouds.

Our Secure k-NN solution is specifically targeted at public

clouds. In particular, we work in what is called the two-party fed-

erated cloud setting, with two non-colluding public cloud servers,

which is introduced in Twin Clouds [11] and subsequently used

by the current state-of-the-art secure k-NN solution [14]. Feder-

ated clouds are an example of what are called interclouds [20], a

collection of global stand-alone clouds. Interclouds allow better

1
http://archive.ics.uci.edu/ml/

load balancing and allocation of resources and help in address-

ing specific scenarios, e.g., services that are region-specific and

require the data to be stored in a particular geography. Coordi-

nation of services across the intercloud can be centralized, or

peer-to-peer as in the case of federated clouds. A detailed survey

of the taxonomy of intercloud architectures is presented in [20].

2.2 Trust Assumptions
With federated clouds, as with public clouds, the trust model

is of an honest-but-curious or the semi-honest adversary, who

does not tamper directly with the computation or data. However,

the adversary is free to observe inputs and outputs, as well as

side-effects of computation and other behavioural characteristics

on the cloud networks and servers. This type of adversary is

different from the passive observer or the malicious adversarial

model traditionally considered in the past, as the adversary is

trusted to perform the computation correctly, but in addition has

access to the internal state of the service, which includes client

data. Such an adversary can observe the state of memory, and

network traffic, or study operating systems behaviour in response

to client queries. The choice of this particular type of adversary

is justified, as data owners have to relinquish this control to the

cloud service providers. While these exposures can be limited and

controlled by legal contracts and liabilities, the threat of a curious

insider can never be ruled out. This is where computing directly

over encrypted data fills the gap. The goal is that even though we

operate in the honest-but-curious adversary model, a malicious

insider cannot obtain meaningful information from the data or

the computation by observation. Further, we want to prevent

the adversary from learning database access patterns, such as

the set of (encrypted) result tuples returned corresponding to a

particular input query, as well as the search patterns of queries,

which may reveal information such as how many times the same

query was issued.

Given an honest-but-curious adversary, the task of computing

the k-nearest neighbours (k-NN) of a given query using a public

cloud server, with the objective of achieving the above security

goals in the cloud environment is difficult. One of the most attrac-

tive solutions is to use homomorphic encryption(HE). FHE (fully

homomorphic encryption) [16] schemes allow the computation

of arbitrary functions on encrypted data. Using FHE, data owners

can offload their encrypted data to the public cloud, keeping all

private or symmetric keys secret. When a client sends a query,

the query is also encrypted using the same secret key and sent

over to the cloud server. All computation on the cloud server is

done on encrypted data and the resulting encrypted result is sent

back to the clients, without compromising data confidentiality

or the integrity of computation, even in the honest-but-curious

adversary setting. Note that in this model, however, the actual

algorithm, which is the sequence of computational steps on the

data, is known to the insider, and is considered public. Care must

be taken to design the algorithm to prevent leakage of search

patterns and access patterns. Knowledge of the algorithm should

not reveal anything about the data, query or results. Such FHE

schemes however come at a significant operational cost and are

not currently practical. For example, the state-of-the-art homo-

morphic sorting algorithm [12], takes 2 minutes to just sort 64

data items (32 bit), whereas as we show in our paper in Section 5,

we are able to compute k-NN securely, with k = 2 for 30000

real-world data points (each point having 23 dimensions) in the

same time.
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To address performance issues of FHE, somewhat and par-

tial HE ((S)HE and PHE) schemes have been proposed, which

allow a restricted set of operations or sequences of operations

on encrypted data, and are therefore more efficient. Examples in-

clude Paillier encryption [27] (which allow encrypted additions),

LFHE [9], and BGN [8] (which allow computing restricted depth

functions on encrypted data). While using simpler and more ef-

ficient schemes with restricted functionality, only a part of the

computation is performed directly on the encrypted data. When

more complex calculations are called for, these have to be done

on plaintext values of intermediate results. To do this, another

cloud provider is incorporated in the protocol. This cloud ser-

vice provider is also assumed to be honest-but-curious and has

access to secret keys which will allow it to decrypt the result of

partial computations. Using intermediate plaintext values, more

complicated operations are performed on these partial results,

re-encrypted and sent back to the original cloud. The two clouds

do not collude, the assumption is justified as these are public

servers governed by legal contracts, and may even be business

rivals. Colluding with each other will affect their reputation. This

setting is called the federated cloud model as explained earlier.

The challenge now is to show that knowledge of such inter-

mediate results does not leak information about the original data,

query, and results as well as the access and search patterns. In

this context, the state-of-the-art algorithm designed by Yousef et

al. [14], shows that it is possible to design a secure k-NN scheme,

where some of the secrets are given to one of the cloud servers,

but both cloud servers do not learn anything about the original

data. Our work also takes advantage of this model but explores a

novel construction using a (S)HE scheme, and a more efficient

protocol, allowing for asymptotically more efficient implementa-

tions for real-world scenarios.

2.3 Encrypted Computation
To findk-Nearest Neighbours, the distance between a given query
point and all the other points in the database needs to be com-

puted (in some appropriate dimension and measure). For com-

puting Euclidean distance say in a two-dimensional space i.e.,

between two points (x1,y1) and (x2,y2) we need to compute√
(x2 − x1)2 + (y2 − y1)2). In the interest of efficiency of compu-

tation, we can avoid the square root operation and work with

squared Euclidean distances. This computation requires subtrac-

tion, squaring and addition operations in that order. After we

compute the squared Euclidean distances in the cloud, we need to

find the k minimum values. This requires us to order encrypted

values.

Order Preserving Encryption (OPE), first proposed in [7] is

also emerging as an important area of new research. Using OPE,

it is possible for an observer to compute the order between two

ciphertexts without having to decrypt them. Any OPE solution

therefore necessarily leaks the original plaintext order among the

encrypted ciphertexts [2], even if it does not reveal the value of

the plaintexts themselves. OPE solutions by themselves are not

sufficient for our problem, since our definition of Secure k-NN
does not allow the adversary to learn anything about the original

points or the query, and points have to be in plaintext for the

server to order them after computing the distances. In [40], it

is shown that solving Secure k -NN in the single cloud model

securely implies that a secure OPE solution exists in this context,

one which does not leak any information, including the very

order, which is leaked by definition, and this is not possible.

(S)HE schemes on the other hand offer more functionality (rather

than simple OPE) on encrypted data, and can be used cleverly to

build a secure k-NN scheme.

2.4 Homomorphic Encryption and the LFHE
scheme

We now give a brief description of the salient features of HE

schemes and highlight the features of the leveled FHE (LFHE) [9]

scheme we used in our implementation. HE allows direct compu-

tations to be performed on encrypted values, giving an encrypted

result, which when decrypted gives the same plaintext results as

if the same computations were performed on the plaintext values.

An FHE scheme allows the computation of arbitrary functions

on encrypted data.

A public key FHE scheme is an ensemble of four polynomial

time algorithms:

• (sk,pk ) ← KeyGen($), the generation of a random public

key and corresponding secret key pair.

• c ← Encpk (m), the encryption of the a messagem with

the public key pk to produce a ciphertext c .
• m ← Decsk (c ), the decryption of the ciphertext with

secret key sk to produce the same plaintextm.

• c
′

← Evalpk (ϕ, c1, · · · , cn ) where ϕ is an arbitrary func-

tion in the message space, c1, · · · , cn are encryptions of

inputsm1, · · · ,mn to function ϕ. The result c
′

is the en-

cryption ofm
′

= ϕ (m1, · · · ,mn ), the encrypted output of

application of the function on the plaintext inputs.

A partial homomorphic encryption scheme PHE is an HE scheme

with a pre-defined function ϕ
′

, a restriction on the arbitrary func-

tion allowed in FHE. This restriction can be one function, such as

addition or a sequence of functions in order, leading to a some-

what homomorphic encryption scheme ((S)HE) such as BGN, or

a restriction on the kind of function (degree of the polynomial it

can evaluate), for performance reasons. We assume that PHE and

(S)HE satisfy the standard notion of security, whether it is against

chosen plaintext attacks, which guarantee that ciphertexts output

by the chosen HE scheme are indistinguishable from random,

even to an adversary with access to an encryption oracle.

The (S)HE scheme we use in this paper is the Levelled

FHE (LFHE) scheme implemented in HELib [17]. This LFHE

scheme is based on the Brakerski-Gentry-Vaikuntanathan (BGV)

scheme[10], and includes optimizations to make homomorphic

evaluation runs faster, focusing mostly on the effective use of

the Smart-Vercauteren [33] ciphertext packing techniques and

the Gentry-Halevi-Smart [18] optimizations, with support for

bootstrapping. The scheme is based on the ring learning with

errors (RLWE) and the LWE problem, which have 2
λ
security

against known attacks. In addition to the KeyGen, Enc, and Dec
functions, picking a level in the implementation L picks a depth

L arithmetic circuit in Eval, with the computation quasilinear in

the security parameter λ, lower levels corresponding to lower

overheads. Further details of the LFHE scheme are presented in

Appendix A.

3 SECURE k-NN
In this Section, we now describe our new Secure k-NN protocol

in the non-colluding two-party setting described in Section 2.

Section 3.1 presents the entities involved and Section 3.2 lays

down the notation. Section 3.3 gives protocol details. The security

guarantees of our protocol are discussed in detail in Section 4
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and the performance characteristics are explored in detail in

Section 5.

3.1 Entities

Figure 1: Entities and Relationships

The main entities in our protocol are shown in Figure: 1.

• Data owner : The data owner is a trusted entity, the le-

gal owner of the plaintext database, who outsources the

storage of the encrypted data to Party A for k-NN com-

putation, i.e., the plaintext database is not revealed to the

party A. Once the data is outsourced, the data owner can

be offline.

• Party A : Party A implements the storage and computa-

tion on an encrypted database. It receives encrypted query

inputs and responds with k encrypted database points that

represent the k-NN of the query point. It does not have

access to any secret keys and works only on the encrypted

data. Party A is assumed to be an honest-but-curious ad-

versary, who will not tamper with the normal execution

of the protocol, but has access to the internal state of its

implementation, and could attempt to infer additional in-

formation about the characteristics of the plaintext data,

query, results, or access and search patterns.

• Party B : Party B has access to the secret keys used to

encrypt a given database, and does not have access to

the encrypted database or query directly. Instead, it only

has access to (partial) results of computations done on

the encrypted data. Similar to Party A, Party B is honest-

but-curious and does not tamper with the computation.

However, it can use any information provided to infer

characteristics about the plaintext database and query.

A Secure k-NN solution will show that this information

cannot be learned by Party B even if it has the secret key.

• Clients : These are users who are authorised by the data

owner to interface with Party A and ask k-NN queries

on the outsourced database. Clients have access to keys

which allow them to send encrypted queries and decrypt

the corresponding responses.

As the name suggests, in the non-colluding two party setting,

Party A and Party B do not collude to expose the plaintext data-

base to each other.

3.2 Notation
Our database P consists of n points p1, p2 . . .pn . Each point is

d-dimensional. The query Q is also a d-dimensional point.

• D(pi , Q) represents the squared Euclidean distance be-

tween pi and Q.

• (S)HE: is a somewhat homomorphic encryption scheme

which allows computation of this distance measure in the

encrypted domain itself. For the distance measure used

in this paper i.e. Euclidean Distance, we use the LFHE

scheme [9]. Depending on the level chosen, e.g., with level

2, we can compute other measures such as Manhattan

distance etc.

3.3 Setup
Figure 2 shows the entities, the communication and the compu-

tation phases in our main protocol. The Setup phase is executed

once at the time of transferring the encrypted data to Party A.

Let (sk,pk ) ← KeyGen($) be the secret-key and public-key re-

spectively for the the chosen (S)HE.

• Party A receives the public key pk from the data owner,

as shown in label 1 in Figure 2.

• Party A also receives the encrypted database P ′ from the

data owner, where the magnitude of each dimension d of

each pointpi is encrypted under (S)HE using Encpk . These
d encrypted values together constitute the d dimensional

encrypted data points p
′

i .

• Party B receives both sk and pk , as shown in label 2 in

Figure 2.

• Clients receive both sk and pk , as shown in label 3 in

Figure 2.

The inputs to our Secure k-NN protocol are the n encrypted

points in P ′ and an encrypted d-dimensional query point Q ′ ←
Encpk (Q ), of the plaintext query pointQ computed by the client

as shown in label 4 in Figure 2.

The output of the protocol, returned by Party A to the client,

is the set of k encrypted points ⟨p
′

i1,p
′

i2, · · · ,p
′

ik ⟩, which are the

encrypted k nearest neighbours to query Q in database P .

3.4 Secure k-NN Protocol
We describe our Secure k-NN protocol, which involves only one

round of communication between the two parties, alternating

between computations performed at Party A and Party B. At

Party A, the computations are performed on encrypted data, and

we show how no information is revealed to a curious insider apart

from the protocol parameters, which are inputs to the algorithm

itself. Party B has the secret key, but only sees values that are

obtained by applying some function derived from the points in

the database. We present the security guarantees of our protocol

in detail in Section 4.

Compute Distances: In the first phase of our protocol after

Setup at Party A, as shown in label 5 in Figure 2, we are given

the encrypted database P ′, and encrypted query Q ′. For each

d-dimensional point p
′

i ∈ P
′
, i.e., the for all the n points in the

encrypted database, we find the squared Euclidean distance be-

tween the given point and the query using our (S)HE with Evalpk
as shown in Steps 2–4 in Algorithm 1. Each EDi is the encrypted

value of the (square of the) distance between the given query and

the i-th database point. In Step 5, we pick a polynomialm(x ) of
the form a0 + a1 · x + a2 · x

2 + · · · + ap · x
p
for some random

p ∈ N, where the coefficients a0, · · · ,ap are picked uniformly

at random within the range of the values of the (S)HE domain.

For example, in our prototype implementation presented in this

paper, we use positive random values picked from the range of

points in [1, 232 − 1]. We evaluate this monotonically increasing
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Figure 2: Secure k-NN Protocol

1 Compute Distances: Party A

Data: P ′, Q ′

Result: D
′

i , the Di in random permuted order

1 begin
2 for Each p

′

i ∈ P
′ do

3 EDi ← FindEncryptedDistance(p
′

i ,Q
′

)

4 FindEncryptedDistance uses Evalpk to compute∑d
i=1 (p

′

i −Q
′

i )
2

5 Pickm a monotonically increasing polynomial with

random coefficients

6 for i ← 1 to n do
7 Di ← EvalPoly(m,EDi )

8 EvalPoly uses Evalpk to evaluatem with EDi

9 Pick permutation Π over i points

10 Send D
′

i ← Π(Di ) to Party B

polynomial transformation on each encrypted database point

using EvalPoly to obtain the Di s in Steps 6–8. Finally, we pick

a permutation Π uniformly at random over the n(n − 1)/2 points

Di s asD
′

i ← Π(Di ), in Steps 9–10 and send the distances to Party
B out of order, as shown in label 6 in Figure 2.

Find Neighbours: In the second phase of our protocol at Party

B, as shown in label 7 in Figure 2, the transformed points D
′

i are

received in random permuted order. We now form two vectors

(arrays) of size k : NN and NNindex . In Steps 2–5 in Algorithm 2,

we initialize NN [i] to the first k points by decrypting the D
′

i s

(since we have the secret key sk), and store the corresponding

index values (1, · · · ,k ) in NNindex as shown. For the remain-

ing k − n points, in steps 7–10, we first find the point with the

maximum distance in NN and its correspondingmaxindex as

2 Find Neighbours: Party B

Data: D
′

i , the Di in random permuted order

Result: B = Bi1, · · · ,Bik

1 begin
2 NNindex[i]← 0

3 for i ← 1 to k do
4 NN [i]← Decsk (D

′

i )

5 NNindex[i] = i

6 for i ← k + 1 to n do
7 max ← NN [1],maxindex ← 1;

8 for j ← 2 to k do
9 if NN [j] > max then

10 max ← NN [j];maxindex ← j

11 if (d ← Decsk (D
′

i )) < max then
12 NN [maxindex] = d

13 NNindex[maxindex] = i

14 B ← ∅

15 for j ← 1 to k do
16 for i ← 1 to n do
17 if i = NNindex[j] then
18 B

j
i ← Encpk (1)

19 else
20 B

j
i ← Encpk (0)

21 B ← B ∪ B j

22 Send B to Party A

shown. Next, in Steps 11–13, for the new point in the ith po-

sition, we decrypt the value D
′

i and check if it is smaller than

themax distance we have seen so far. If it is, then we replace
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the maximum value in NN with this and update the index value

appropriately. At the end of this outer loop, the array NN will

contain the k smallest values and the corresponding NNindex
will track the index of these points. It is easy to see that the points

corresponding to these permuted indices will be the k nearest

neighbours for the query point in the original database, however,

we need to transfer this information to Party A without revealing

either the permuted indices or these values directly.

To do this, we construct the set B of k row vectors B j , where
each B j is a n-vector. For each permuted index value in NNIndex ,

we populate the array B j as follows: for the position i in B
j
i at the

NNIndex[j] value, i.e., i = NNindex[j] we store an encryption

of the value 1 (Party B also has the public key pk), and in the

remaining n − 1 i-positions we store an encryption of the value

0 as shown in Steps 15–21. This new vector B j is added to the

set B. We repeat this k times until all indices in NNIndex have

been processed. At the end of this phase, as shown in label 8

in Figure 2, we send the k row vectors B to Party A (Step 22 in

Algorithm 2).

3 Return kNN: Party A

Data: B ← B1, · · · ,Bk

Result: p
′

i1,p
′

i2, · · · ,p
′

ik
1 begin
2 Receive set of k n−dimensional vectors B

3 for j ← 1 to k do
4 T j ← (Π(P

′

))·B j

5 p
′

i j ← Enc(0)
6 for l ← 1 to n do
7 p

′

i j ← p
′

i j +T
j
l

8 Return p
′

i1,p
′

i2, · · · ,p
′

ik

Return kNN: In the next phase of our protocol, Party A receives

k n-dimensional row vectors (Algorithm 3 Step 2). As shown in

label 9 of Figure 2, and Step 4 of the algorithm, we first apply

the permutation Π selected by Party A in Algorithm 1 to the

encrypted database points P
′

. Applying the permutation Π on the

points corrects the order of the 0s and 1s in B j that was derived
from the permuted sums in Party B. Next, we compute the scalar

dot product (pointwise multiplication) between this permuted

row vector with each of our B j s, giving us an n-dimensional

vector T j
. After this multiplication, the original point that is

one of the k-NNs, i.e., p
′

i j , will remain (in encrypted form) in

T j
, all other entries will become (encrypted) zeros. We sum the

n elements of each of the T j
row vectors as shown in Steps 5–

7. The k vector sums are the encrypted k-NNs, i.e., the points

p
′

i1,p
′

i2, · · · ,p
′

ik , which can now be returned as the final result in

Step 8 of algorithm and label 10 in Figure 2. Clients can decrypt

these p
′

i j s using sk to obtain the plaintext points that correspond

to the k nearest neighbours as shown in label 9 in Figure 2.

There are two main novel ideas in our protocol:

• The use ofm, a monotonically increasing polynomial with

uniformly random coefficients, which effectively masks

the database values to Party B.

• The construction of vectors B
j
i along with the uniformly

random permutation Π, which prevents Party A from

learning the query results, as well as the access pattern

and query search pattern.

The communication and computation overheads in our pro-

tocol are as follows. Party A computes O (n) encrypted values,

and sends one set of n values to Party B. Party B computes n
decryptions andO (nk ) encryptions and returnsO (nk ) encrypted
values to Party A. In the last phase Party A performs O (nkd )
operations on the ciphertexts.

3.5 Comparison of Performance and
Efficiency with Yousef et al.

We present an algorithmic comparison of the efficiency of our

protocol with that of Yousef et al. [14], the current state-of-the-art

scheme for Secure k-NN in the two-party model. Both schemes

involve a pair of non-colluding parties, one of which is in pos-

session of the secret key of the somewhat homomorphic encryp-

tion scheme underlying the respective protocol. The first major

advantage of our protocol is the reduced number of round com-

munications - one, as compared to k for Yousef et al., where k is

the number of nearest neighbours requested by the client. Thus,

the cost of round communication in their protocol depends on

the query, while in our protocol it is constant. Additionally, the

construction of Yousef et al. performs bit-level decomposition

operations on the encrypted data, which are costly and require

specific capabilities which only certain (S)HE schemes can afford

(e.g. Yousef et al. use the Paillier cryptosystem-based (S)HE). On

the other hand, our protocol only exploits the basic capabilities

that any (S)HE scheme can afford. In other words, our protocol

uses the (S)HE scheme as a black-box, which can be easily instan-

tiated using known (S)HE schemes such as LFHE (leveled fully

homomorphic encryption) with optimized implementations. The

comparison in terms of computational overheads is presented in

Table 1 for computing k-NN overn data points, each of dimension

d such that each dimension takes l bit values andm is a degree

D polynomial in our solution.

4 SECURITY GUARANTEES
In this section, we discuss the security of our protocol in detail.

We begin with the assumptions. In our secure k-NN protocol,

Party A and Party B are assumed to be honest-but-curious, as

described earlier. Party A will follow the protocol steps correctly,

but we cannot rule out insider attacks. As discussed earlier, we

do not address side channels in this paper. We also assume Party

A and Party B do not collude. Party B additionally is trusted with

the secret key of the (S)HE scheme. Party B again is honest-but-

curious, and anything that Party B has or can compute is also

assumed to be exposed to an insider. Informally, our protocol is

secure in the following sense: even if this key is compromised

and the data values exposed to an insider in Party B, the original

database, query, and results are still secret to both Party A and B.

For emphasis, we recall that Party B and Party A do not collude,

and Party A does not have the decryption keys.

We present our security arguments focusing on the views

of the two untrusted parties – Party A and Party B, under the

assumption that they aremutually non-colliding. All other parties

(clients and database owners) are trusted.

4.1 Leakage Profile for Party A
We explicitly enumerate the leakage to Party A at different phases

of the overall protocol. Observe that Party A is involved in Com-
pute Distances and Return kNN, we focus on the leakage to

Party A during each of these:
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Table 1: Computational overheads

Yousef et al Our Secure k-NN protocol
Number of Homomorphic operations O (n(2kl + d )) O (n(k + d + D))

Number of encryptions O (nkl ) O (nk )

Number of decryptions (Party B) O (n(kl + d )) O (n)

Number of round communications O (k ) 1

Communication overhead per round O (nl + d ) bits O (nl ) bits

• Compute Distances: In this phase, Party A computes the

set of encrypted distances EDi between each encrypted

data point p
′

i and the encrypted query point Q ′ (Steps
3–4). Each of these computations is performed using the

FindEncryptedDistance function, which in turn uses

the homomorphic evaluation function Eval of the (S)HE
scheme. Hence, the CPA security guarantees of the un-

derlying (S)HE ensures that none of these computations

reveal any information about the underlying data points

or the plaintext distances to Party A. Subsequently, Party

A homomorphically evaluates a randomly chosen polyno-

mialm on each EDi using the EvalPoly function to obtain

the corresponding encrypted output Di . Again, since all

polynomial evaluations are on encrypted data, any non-

negligible leakage to Party A from these computations

amounts to a violation of the CPA security of the (S)HE

scheme.

• Return kNN: This phase is an oblivious transfer of the

knowledge of the k-nearest data points to Party A. Specifi-
cally, we argue that Party A does not learn which k points

in the encrypted database correspond to the output set of

points p′i1, · · · ,p
′
ik . The first observation that we use is

that the set ofk n-dimensional vectorsB1, · · · ,Bk received

by Party A contain encryptions of 0 and 1. As already

mentioned, the CPA security guarantees of the underlying

(S)HE ensures that Party A cannot distinguish between

these 0 and 1 entries. Hence the vectors themselves do not

reveal to Party A their correspondence to the respective

points in the database. The inner product computations in

Steps 4–7 are again performed homomorphically and leak

no information to Party A. Finally, observe that multiply-

ing an encrypted point by an encryption of 1 essentially

results in a randomized re-encryption of the same point.

Since, Party A has no knowledge of which entry in the

vectors B1, · · · ,Bk corresponds to 1, the output points

p′i1, · · · ,p
′
ik cannot be traced back to the originally en-

crypted points in the database. Once again, any violation

of the above guarantee amounts to a violation of the CPA

security of the (S)HE scheme.

The aforementioned leakage profile for Party A leads to the fol-

lowing security guarantee with respect to Party A:

Theorem 4.1. Secure k-NNGuarantee: Party A: Our secure
k-nearest neighbour protocol leaks no information to Party A except
the number of nearest neighbours k returned by the protocol. In
particular, Party A gains no knowledge of the access pattern, that
is, the set of points in the database corresponding to the k-nearest
neighbour points returned by the protocol, and does not learn the
query pattern, which reveals if two queries were the same.

4.2 Leakage Profile for Party B
In this section, we explicitly enumerate the leakage to Party B

in the Find Neighbours phase of the protocol. Party B receives

the set D
′

i of encrypted polynomial evaluation outputsm(EDi )
in random permuted order. Note that since we have picked a

secure pseudorandom permutation, which is computationally

difficult to invert, implying that the exact identity of points as-

sociated with any given difference value is hidden from Party

B. Since the polynomialm is order preserving, Party B can sort

the decrypted polynomial outputs. We now examine the pos-

sibility of any leakage to Party B from the resulting system of

ordered equations. Let d
′′

1
< d

′′

2
< · · · < d

′′

n be the ordered set

of plaintext distances, and m(d
′′

1
) < m(d

′′

2
) < · · · < m(d

′′

n ) be
the ordered set of polynomial outputs obtained by Party B upon

decryption. As mentioned earlier, the polynomialm(x ) is of the
form a0 + a1 · x + a2 · x

2 + · · · + ap · x
p
for some random p ∈ N.

Party B can formulate the following system of equations:

m(d
′′

1
) = a0 + a1 · d

′′

1
+ a2 · (d

′′

1
)2 + · · · + an · (d

′′

1
)p

m(d
′′

2
) = a0 + a1 · d

′′

2
+ a2 · (d

′′

2
)2 + · · · + an · (d

′′

2
)p

...

m(d
′′

n ) = a0 + a1 · d
′′

n + a2 · (d
′′

n )
2 + · · · + an · (d

′′

n )
p

where only the left-hand side of each equation is known to Party

B. Without loss of generality, we may assume that Party B can

guess with high probability the degree p of the polynomial cho-

sen by Party A, as well as the range of values (say [0, 2N ]) that

each plaintext distance d
′′

i can take. This is a particularly rele-

vant assumption in the context of real-world datasets, where the

adversary may possess some apriori knowledge of the range of

Euclidean distances between the data points. In addition, since

homomorphic polynomial evaluation in the encrypted domain is

a costly operation, the degree p can only take a small range of val-

ues, which Party B can also accurately guess in a small number of

trials. However, we prove that even if Party B has full knowledge

of the aforementioned parameters, it cannot recover the original

data points within a feasible amount of computation time. Ob-

serve that the system of equations has exactly n+p + 1 unknown
variables from Party B’s point of view, while the number of equa-

tions is only n. Hence, Party B must correctly guess the p + 1

smallest distances d
′′

1
,d
′′

2
, · · · ,d

′′

p+1 to recover the polynomial

coefficients. The average number of possible values that these

distances can take is

(
2
N

p+1

)
, which is approximately the same as

2
N ·(p+1)

for 2
N >> (p + 1). In other words, the probability that

Party B successfully recovers the polynomial coefficients, and sub-

sequently the plaintext distances, is approximately 1/2N ·(p+1) ,

which is close to negligible. For example, for N = 16 and p = 9,

the probability that Party B is able to recover the plaintext dis-

tances is approximately 2
−160

, which is close to negligible for a

security level of 160 bits. Thus even when the range of plaintext

distances and the degree of the polynomial chosen by Party A

are reasonably small and known apriori to Party B, the informa-

tion leakage is negligible. Also note that Party A refreshes the

polynomial for each query point, implying that Party B gains no
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additional information across the queries. Finally, even if Party B

is able to recover the plaintext distances in some extreme cases

(e.g., when the plaintext distance values follow some specific

pattern), it still does not directly reveal the plaintext data points

to Party B, as the query point is also unknown.

The only possible leakage to Party B in this round is the

presence of such points in the database that are equidistant from

the query point Q . This is leaked from the presence of identical

values in the set of values m(d
′′

1
),m(d

′′

2
), · · · ,m(d

′′

n ). However,
since the order of the values is randomly permuted by Party A,

Party B cannot map these values back to the original index of

the data points in the database.

The aforementioned leakage profile for Party B leads to the fol-

lowing security guarantee with respect to Party B:

Theorem 4.2. Secure k-NN Guarantee: Party B: Our secure
k-nearest neighbour protocol leaks no information to Party B except
the number of nearest neighbours k to be returned by the protocol
and the number of equidistant points in the database with respect
to a given query point Q .

4.3 Comparison of Security Guarantees with
Yousef et al.

We conclude the discussion on the security of our k-NN protocol

with a comparison of our security guarantees with those afforded

by the current state-of-the-art scheme proposed by Yousef et

al. [14]. Both schemes involve a pair of non-colluding parties,

one of which is in possession of the secret key of the somewhat

homomorphic encryption scheme underlying the respective pro-

tocol. In both schemes, one of the parties (Party A in our case),

encounters only encrypted data and consequently, learns nothing

about the data access pattern or search pattern from the protocol.

In Yousef et al.’s protocol, one of the parties (equivalent to Party

B) learns the distance between the query point and the global

nearest neighbour at each stage of the protocol. Moreover, the

presence of an irreversible permutation implies that this leakage

cannot be mapped back to an actual point in the database. This

distance value is not leaked by our protocol.

In our protocol, Party B learns the presence of pairwise equidis-

tant points in the database with respect to a given query point.

That is, whether there are two or more points that are equidistant

is revealed to Party B, not the value of the distances unlike in

Yousef et al. Moreover, the pairwise distances in our protocol are

randomly permuted, which ensures that these leakages cannot

be mapped back to identify the corresponding point pairs in the

actual database. In both protocols, in spite of the knowledge of

some distance values, or the knowledge of the number of equidis-

tant points, the original database, query, results or access and

search patterns cannot be deduced.

In the next section, we describe our reference implementation

and show how it is asymptotically faster than the state-of-the-

art algorithm and present its performance characteristics on

simulated and real-world data sets.

5 IMPLEMENTATION AND EXPERIMENTS
In this section, we present our implementation details and record

the experiments carried out to test the performance of the pro-

posed protocol. Our experimental setup consists of four machines,

representing the data owner, Party A, Party B and client. The

configuration of machines representing Party A and Party B are:

4 core 2.8 GHz processors, 16 GB RAM running Ubuntu 16.04

Figure 3: Running time for real world cancer data set, 858
points with 32 dimensions

Figure 4: Running time for real world credit card data set,
30000 points with 23 dimensions

LTS. The configuration of machines representing Data Owner

and Client are: 4 core 2.8 GHz processors, 8 GB RAM running

Ubuntu 16.04 LTS.

We used the HELib [17] library, with LFHE as the underlying

encryption mechanism. This library is written in C++ and we

implemented our protocols also in C++. In our implementation,

we set p = 1099511627689, a large prime between 2
40

and 2
87
,

the maximum depth to 10 and the security parameter to 128, i.e.,

offering 2
128

bits of security.

5.1 Real world data
Our first set of results is on real-world data from the UCI Machine

learning repository [24]. We focus on two datasets: Cervical

cancer (Risk Factors) and Default of credit card clients. Our goal

is to test how our Secure k-NN algorithm performs when we

attempt to find reports that cluster near a chosen query report.

The cervical cancer dataset contains 858 data points each having

32 dimensions, representing demographic information, habits,

and historic medical records of 858 patients. The default of credit

card clients dataset contains 30000 data points each having 23

dimensions including sensitive information such as the amount

of given credit, gender, age, education, marital status etc. We pre-

processed these datasets so that they contain only non-negative

integer values. Both these datasets have PII information and are

good candidates for encrypted analytics. Again we emphasize

that our goal in this study is not to comment on the predictive

accuracy of k-NN by itself as a suitable data mining algorithm

for these datasets.
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Figure 5: Running time when number of dimensions = 2
and k = 5

Figure 3 shows the measured running time of our protocol

when we vary k from 2 to 20 on the cancer data set. As shown in

the figure, we can compute 2-NN for all the points in less than a

minute (45 s), 8-NN in 2 minutes and 45 seconds and 16-NN in 5

minutes and 28 seconds. The function grows linearly with k .
Figure 4 shows the measured running time of our protocol

when we vary k from 2 to 20 for the credit card clients data. As

shown in the figure, we can compute 2-NN in less than 2 minutes

and 20-NN in 14 minutes and 20 seconds, with the function

growing linearly in k . In each of these experiments, we generate

a random data point to serve as the query point. The experiment

is then repeated with multiple such query points and the average

time taken to execute a query is recorded. From the figures, it is

clear that our protocol scales linearly with k .
Both these experiments show that our implementation over-

heads are very competitive, making a case for real-world appli-

cation of our algorithms to perform simple pattern matching

on sensitive data. Other applications where this technique can

be directly applied include spatial databases and location-based

search (for example a taxi-for-hire application), where the query

looks for points within a small set of records that are already

filtered.

Note that in our protocol, the two parties A and B communicate

with each other directly, without going back to the client. The

communication cost between the parties, i.e., sending the mono-

tonically increasing function of squared Euclidean distances, is

independent of the number of dimensions in the original dataset,

i.e., only one value is sent for each pair of points (regardless of

the value of d). Response from Party B is also independent of the

dimension of the data. The computational overhead of calculating

the squared Euclidean distances on Party A depends naturally

on the dimensions, which is unavoidable.

5.2 Simulation
There are three varying parameters in our protocol, a) number of

data points n b) the number of dimensions d and c) k the number

of nearest neighbours. By generating synthetic data we are able

to keep two parameters fixed and check the effect of the third

parameter on running time of the query. Our simulation-data

generator uses a uniform random distribution to generate the

data.

Figure 5 shows how the running time varies when the number

of data points are increased, keeping the number of dimensions

d and k constant (5 in this case). From this figure, we can clearly

Figure 6: Running time when number of data points =
200000 and k = 2

Figure 7: Running time when number of data points =
200000 and dimensions = 2

see that the running time of our protocol ranges from 23 seconds

up to 3 minutes, and grows linearly with the size of the dataset

n, which ranges from 20000 to 200000 points.

Figures 6 shows how the running time varies when the number

of dimensions in the data is increased, from 1 to 10, keeping the

number of data points n as 200000 and k = 2 as constant. The

running time ranges from 2 minutes and 17 seconds to less than

9 minutes for 10 dimensions. The figure clearly shows that our

protocol scales linearly with the number of dimensions.

Figures 7 shows how the running time varies when k is in-

creased from 1 to 20 keeping the number of data points as 200000

and number of dimensions d = 2. The running time ranges from

less than 2 minutes to around 8 minutes as shown. The figure

clearly shows that the running time scales linearly with k .
From the above experiments, it is clear that the running time

of our protocol is linear in k , n and d . Note that our protocol

requires only one round of communication between Party A

and Party B. In comparison, Yousef et al., requires at least O (k )
rounds of communication to compute the secure k-NN, with
each round sending O (nb) points where n is the database size

and b the bit size of every element. Additionally, more rounds are

required to compute the squared Euclidean distances and secure

bit decomposition, which are used subsequently to compute k-
NN.

For a similar machine configuration
2
, for 2000 points and 6

dimensions, with k = 25 our protocol runs in 1 minute and 37

seconds, whereas Yousef et al., report a running time of 55 min-

utes and 39 seconds. We emphasize that while this comparison is

2
6 cores, 3.07 GHz processor and 12GB RAM running Ubuntu 10.04 LTS
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done on different machines, the trend observed is explained by

our efficient one-round communication and the simplified com-

putations on Parties A and B, without compromising security

guarantees.

6 RELATEDWORK
Finding k- Nearest Neighbours is a fundamental operation in

many data mining and machine learning algorithms. In this sec-

tion, we present an overview of the techniques developed for

secure k-nearest neighbour problem (SkNN). SkNN is a specific

use case of the much broader problem of secure processing over

outsourced encrypted data. This area has been well studied and

many techniques have been proposed. Some of the techniques are

generic, i.e. they are able to support a wide variety of queries over

the encrypted data, while others enable a particular operation,

such as k-NN, over the encrypted data. The existing work can

be categorized into various buckets depending on the underly-

ing mechanism used, including privacy preserving data mining,

garbled circuit implementations of secure k-NN, secure multi-

party computation (SMC), private information retrieval (PIR)

schemes, secure hardware-based techniques and other solutions

that directly implement secure k-NN protocols.

The first three solutions, privacy-preserving data mining, gar-

bled circuits, and SMC, cannot be compared directly with our

work, as the goals, assumptions and models are different as dis-

cussed next. In privacy-preserving data mining [3] [15] [23]

[25] [35] privacy is achieved by transforming the data using

anonymization models such as k-anonymity, data perturbation

i.e adding noise to the data, suppressing some tuples, etc. The

transformed data preserves the ability to answer the required

query within an accepted error limit. The drawback of these tech-

niques is that they lead to information loss. Typically a superset

of the results are returned and the client has to process the query

results further. These techniques outsource the transformed data

to the server in plaintext, which leaks information as well.

Songhori et al[34] propose to use Yao’s garbled circuit protocol

for secure k-NN computation. In their setting, Alice has a query

pointQ and Bob has the dataset S . They want to jointly compute

the k-NN of Q in S such that Bob does not learn anything about

Q and Alice does not learn anything about S except k-NN. This
solution is not geared to outsourcing as Bob has the data in

plaintext.

Secure multiparty computation (SMC) techniques enable mul-

tiple parties to securely evaluate a function of their private inputs

without revealing the inputs of one party to the others. SMC has

been leveraged to compute SkNN by various solutions [32] [31]

[37]. They partition the data and give to multiple parties, which

then compute k-NN as an SMC. Again, this is fundamentally

different from our work because the parties can view the data in

plaintext.

Providing secure database-as-a-service has been investigated

by CryptDB[30] and Monomi [36]. They use property preserving

encryption such as OPE [2][7][6] to handle a portion of the

query processing directly on encrypted data stored at the cloud

efficiently. The portion of query which cannot be processed by

these property preserving encryption schemes is executed at the

client side after decryption of data returned by cloud. Monomi

[36] shows that such solutions can provide good performance

if they are tuned properly for the query workload, though for

an arbitrary query the performance can deteriorate significantly.

Also, it needs a full-fledged database engine at the client side

which is not always possible, e.g., on mobile devices.

Secure Hardware based techniques, including Cipherbase and

others[1] [26] [4] [5] assume the availability of a secure co-

processor at the cloud server. These co-processors are specially

built such that no outside entity can read the data stored inside

it (tamper-proof hardware). The computations performed inside

the co-processor are also isolated from the outside world. Data

owners upload the keys to the co-processor in a secure manner.

The logic for processing, for example, k-NN, is also installed

on the co-processor. For query processing, the encrypted data

and encrypted query point are sent to the co-processor, which

decrypts the data using the keys stored on it and runs the in-

stalled logic on the decrypted data returning the final answer

in encrypted form to the client. Such techniques give strong

security guarantees. However, the co-processors are resource

constrained and are less powerful than the regular processors

with limited memory available to them. Also, the deployment

and maintenance of such co-processors is not straight forward,

as some operations have to be performed by the clients, e.g., key

refresh, requiring the client to maintain the hardware.

Using PIR (Private Information retrieval) for secure k-NN has

been studied in [19] [29]. PIR allows users to retrieve an object

Xi from a set X = Xi , Xi , . . .Xn stored at the server without

revealing i to server. Again, PIR schemes work on plaintext data

on the server and guarantee that a user
′
s query point will not be

revealed, different from our setting.

Wong et al[39] propose a new encryption scheme called ASPE

(Asymmetric Scalar Product Preserving Encryption), to compare

the distance between a query point and compute the distances

required for k-NN. Hu et al[21] propose a secure k-NN method

based on provable secure homomorphic encryption. However,

the setting used by them is different from us in that the client

has the ciphertext while the server has the capability to decrypt.

Both solutions are vulnerable to Chosen Plaintext Attacks [40].

Yao et al[40] establish a relationship between the SkNN prob-

lem and the order preserving encryption (OPE) problem. They

show that SkNN is at least as hard as OPE in a single cloud setting.

They propose a solution based on Voronoi diagrams, in which

the server returns a superset of results for the k-NN. On the other

hand, we return the exact result of k-NN to the client in the two

party federated cloud setting.

Sunoh et al[13] provide a solution for secure k-NN which uses

mOPE(mutable Order Preserving Encryption). They propose two

methods, one based on Voronoi diagrams, which returns the exact

k-NNs but is expensive when k > 1, and another method based

on triangulation, which is more efficient but gives exact results

for only k = 1. For k > 1 it gives false positives which have to

be filtered out by the client. Their solution also requires round

communication between the server and client to first reduce the

potential candidates and to find the k-NN. No security proofs are

provided. Also, this solution has an expensive database update

procedure which requires changing of encrypted data.

In his seminal work, Gentry [16] proposed a construction

for a fully homomorphic encryption scheme (FHE). FHE allows

computation of any function directly on encrypted data and a

solution for computing k-NN can be developed using this. As

discussed earlier, the computational cost of FHE is very high for

real world applications.

Yousef et al[14] describe the current state-of-the-art protocol

for SkNN in the two party federated cloud model. They use Pail-

lier encryption [27] as the underlying cryptographic tool. Paillier
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encryption is additive homomorphic. Using this property they

develop protocols which compute k-NN securely in the federated

cloud model. Their solution provides very strong security guaran-

tees and is able to hide the data access pattern as well. However,

this security comes at the cost of performance, taking minutes to

perform queries that we can execute in seconds and milliseconds.

We are able to improve upon the performance characteristics as

shown in Section 5, while maintaining strong security guarantees,

making it more suitable for real-world deployments.

Other recent related work includes Lei et.al. [22], a SkNN

scheme for 2-D data points using LSH (location sensitive hash-

ing). They first construct the secure index for the data and then

outsource the secure index and encrypted data to the cloud. Since

the scheme uses LSH data structures, their results contain false

positives. Also related to computing on encrypted data, though

not kNN, is Seabed [28], where the authors use an additively sym-

metric homomorphic encryption scheme to compute large-scale

aggregations of data in an enterprise setting and prevent against

frequency attacks.

7 CONCLUSIONS
This paper describes a new protocol for efficient secure k- Near-
est Neighbours on encrypted data. We use LFHE, a somewhat

homomorphic encryption scheme as our basic building block,

in the two party federated cloud model. Our adversary model

captures insider attacks under the honest-but-curious assump-

tion. Our protocol is fast compared to the state of the art, without

compromising on security guarantees. Our implementations are

fast and scalable, and our experiments on real-world data show

how basic data mining on encrypted data can be practical. In

the future, we plan to extend our work to other data mining

algorithms, including k-Means and Apriori.
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A THE LFHE SYSTEM
The general encryption of BGV scheme that can be instantiated

to both LWE and RLWE. We will describe RLWE which used

by HELib. The RLWE-based public key encryption scheme as

follows. Most of the description and equations are taken from[9]

[38].

In general, homomorphic encryption scheme is a tuple

(HE.KeyGen, HE.Enc, HE.Dec, HE.Eval) of probabilistic polyno-

mial time algorithms. In BGV, the message space of the scheme

will always be some ring RM and our computational model will

be arithmetic circuits over this ring (i.e. addition and multiplica-

tion gates).

(1) HE.KeyGen takes the security parameter (and possibly

other parameters of the scheme) and produces a secret

key sk and a public key pk.
(2) HE.Enc takes the public key pk a message m and produces

a ciphertext c, which is the encryption of m.

(3) HE.Dec takes the secret key sk and a ciphertext c and

produces a message m.

(4) HE.Eval takes the public key pk, an arithmetic circuit f
over RM , and ciphertexts c1, ..., cl where l is the number

of inputs to f, and outputs a ciphertext cf .

Given the security parameter λ and an additional parameter µ,
first choose a µ-bit modulus q. Where q an odd positive modulus

q = q(λ). For RLWE scheme, chose the degree d = d (λ, µ ), a
"noise" distribution χ = χ (λ, µ ) , let the "dimension" n = [3 logq].
Let Rq = Zq[x]/( f (x )) with f (x ) a polynomial of degree d.

f (x ) = xd + 1 and d = d (λ) is a power of 2. To get the secret key,
first draw s’ uniformly from χ . The secret key is then

s = (1, s’) ∈ R2q

To get the public key, first generate vectors A’←− Rnq , e ← χn ,

then set b = −A’s’ + 2e . Set public key A = (b |A’) ∈ Rn×2q . Note

that A.s = 2e .
Supposem ∈ 0, 1 Is the bit we wanting to encrypt. To encrypt,

we do the following:

(1) Select a random r ∈ Rn
2
and expand the message m =

(m, 0) ∈ Rnq .

(2) Output =m +AT r ∈ Rnq .

According to RLWEd,q, χ where χ is a uniform distribution over

Rq , we can use this scheme a polynomial number of times with

negligible probability that an adversary can guess s.
To decrypt, do the following:

(1) Compute b ′ = [⟨c,s⟩]q
(2) Outputm = [b ′]2
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