
GEDetector: Early Detection of Gathering Events Based on
Cluster Containment Join in Trajectory Streams
Bin Zhao

School of Computer Science and

Technology

Nanjing Normal University, China

zhaobin@njnu.edu.cn

Genlin Ji
∗

School of Computer Science and

Technology

Nanjing Normal University, China

glji@njnu.edu.cn

Yu Yang

School of Computer Science and

Technology

Nanjing Normal University, China

162202020@njnu.edu.cn

Zhaoyuan Yu

Key Laboratory of Virtual

Geographic Environment Ministry

of Education

Nanjing Normal University, China

yuzhaoyuan@njnu.edu.cn

Xintao Liu

Department of Land Surveying and

Geo-Informatics

The Hong Kong Polytechnic

University, Hong Kong

xintao.liu@polyu.edu.hk

Ningfang Mi

Electrical and Computer

Engineering Department

Northeastern University, Boston,

MA USA

ningfang@ece.neu.edu

ABSTRACT
Existing trajectory patterns, such as flock, convoy, swarm, and

gathering, are to detect moving clusters staying or travelling to-

gether for a certain time period. But these patterns model group

movement behaviors after moving objects’ gathering together.

This may result in loosing golden opportunities to detect emer-

gency incidents earlier, such as traffic congestion and serious

stampedes. In this work, we propose a novel group pattern, called

converging, which can model converging behaviors of moving

objects. As a proof-of-concept, we implemented a visual ana-

lytic system GEDetector based on trajectory streams to detect

gathering events as early as possible. A user-friendly interface

is designed to help users gain insights into gathering events

from spatial and temporal aspects. Finally, we demonstrate the

effectiveness and efficiency of our system by using a real world

dataset.

1 INTRODUCTION
The existing group patternminingmethods, such as flock [1], con-

voy [2], swarm [3], travelling companion [4], and gathering [5],

are to discover a group of objects that stay or travel together for

a certain time period [6]. Analysis tasks based on group patterns

can be used for enormous applications, including transportation

optimization, public security, advertisement delivery, travel rec-

ommendation, and animal movement study and so on [7]. In this

work, we develop a visual analytic system GEDetector to detect

gathering events in trajectory streams.

Previous studies on group patterns are unsuitable for detecting

gathering events despite of wide applications of group patterns.

It is worth pointing out that, most of group patterns can capture

group movement behaviors only after moving objects gather to-

gether. For example, convoys require that each group of objects

travel together during the whole pattern lifetime. Gatherings

also require that all participators stay together at the most times-

tamps in the pattern lifetime. However, in real life, people are

more interesting in modelling and identifying group converg-

ing behaviors before the gathering events actually happen, since

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

this helps to proactively report and handle the coming public

incidents, such as traffic congestion and serious stampedes.

However, the efficient discovery of convergings in trajectory

streams is a challenging task due to two main reasons: (1) the

existing group patterns cannot capture intuitively converging

behaviors of gathering events; (2) the discovery of convergings

may face huge search space and incur high cost. In this work,

we propose a novel group pattern, called converging, which can

model the converging behaviors of moving objects and detect

gathering events in trajectory streams. Furthermore, we propose

a converging pattern mining method based on cluster contain-

ment join (CCJ), which utilizes a signature quad-tree based index,

called SQTI, to organize clusters hierarchically and spatially. The

SQTI based mining algorithm enables us to rapidly reduce search

space and efficiently identify interesting and useful converging

patterns.

In this demo, we present a novel Gathering Event Detection

system, named GEDetector, which is designed to achieve an

early detection of gathering events through mining converging

patterns in trajectory streams. The GEDetector has been deployed

on a virtual machine of Alibaba Cloud, which can be accessed at

http://103.242.175.191: 5456/gedetector.

2 PROBLEM FORMULATION
The identifying characteristic of a gathering event is a converging,
which is a group of moving objects gathering from different direc-

tions for at least kt timestamps. It is easy to see that, converging

patterns focus on the earlier stages of gathering events compared

to other existing patterns. To accurately model converging be-

haviors, we introduce participators, which are used to indicate

the objects appearing in at least kp consecutive clusters of this

converging, and require that a converging should contain at least

km participators.

Now we use Fig. 1 as an example to illustrate the converg-

ing pattern, and let kt = 2, kp = 2, km = 4, in which there

are six moving objects joining a gathering event from different

directions and forming one cluster. Additionally, there are two

clusters (i.e., c1 & c2) that are gathered at t2 and later join the

cluster c3 at t3. Such set containment between two clusters is

called cluster containment relation, denoted by ⊆c . Thus, we have

c1 ⊆c c3 & c2 ⊆c c3 in Fig. 1(a). By joining these two cluster

containment relations, we can construct a containment tree to

model converging behaviors of moving objects, as shown in Fig.

Demonstration

 

 

Series ISSN: 2367-2005 670 10.5441/002/edbt.2018.81

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.81


1(b). To realistically model converging behaviors, a converging

requires to have enough participators who appear in the most

snapshot clusters during the event lifetime. As shown in Fig. 1(c),

the group of participators ⟨o1,o2,o3,o4,o5⟩ satisfies the above
requirements because they appear in two clusters (i.e., c1 & c2) at
time t2 and t3. But, the group excludes o6, since o6 only appears

in one snapshot cluster, which is less than the given threshold

kp = 2.

c1 c2

c3
o6

o2

o5
o4

o3

c3:{o1,o2,o3,o4,o5,o6}

c1:{o1,o2} c2:{o3,o4,o5}

(a) gathered event

set containment

(b) cluster containment tree 

m
ov

in
g 

ob
je

ct

t1
t2
t3

{o1,o2,o3,o4,o5}

{o1,o2} {o3,o4,o5}

(c) converging 

o1

Figure 1: Example of a converging

3 FRAMEWORK OF GEDETECTOR
Fig. 2 shows the framework of GEDetector, which consists of

three major modules: (1) snapshot cluster discovery (SCD):
we perform density-based clustering on the moving objects to

discover a set of snapshot clusters at each timestamp; (2) clus-
ter containment join (CCJ): we perform a cluster containment

join on any two snapshot cluster sets at consecutive timestamps,

and return a collection of cluster containment relations; and (3)

converging detection (CD): we construct cluster containment

trees through joining all cluster containment relations, and fur-

ther derive the qualifying results from the candidates of cluster

containment trees according to the aforementioned requirements

of converging concepts.

The detection procedure of GEDetector is as follows. The

initial input of GEDetector is a trajectory data stream that is

periodically collected at timestamp ti . When the latest batch of

trajectory data is appended to the trajectory database, GEDetector

will trigger the detection process in an incremental manner, as

shown in Fig. 2. At ti , the snapshot clusters are first discovered
from the new trajectory data by clustering algorithms. Then, the

CCJ is performed between the snapshot cluster sets of ti−1 and
ti . Correspondingly, the new convergings may be generated, and

some existing convergings may be also updated. The procedures

of the first two modules (i.e., SCD & CCJ) can be repeated until

no new trajectory data is given. Finally, the qualified converging

patterns are derived by the third module (CD).

The efficient discovery of convergings in trajectory streams is

a challenging task. First, it is hard to discover all moving objects

attending a gathering event in the same way as many state-of-

the-art trajectory clustering methods since they do not stay close

together most of the time. Second, to achieve early detection,

converging algorithms need to detect gathering events in an

incremental manner. Third, identifying cluster containment rela-

tions between any consecutive timestamps may face huge search

space and hence incur high cost. Fourth, the system has to ensure

the effectiveness of mining converging patterns from trajectory

streams.

To tackle these issues, the GEDetector employs a general

framework for effective and efficient discovery of convergings.

Specially, To boost the performance of CCJ, which is a fundamen-

tal part of mining converging patterns, we develop a signature

quad-tree based index, called SQTI, to organize clusters hier-

archically and spatially, and correspondingly propose an SQTI

based CCJ (SQTCCJ) approximate algorithm, which enables us

to rapidly filter unqualified candidates and efficiently identify

matches by considering cluster containment relationship and spa-

tial proximity simultaneously. In addition, to facilitate evaluating

set containment, we approximate the sets of moving objects by

means of a signature technique, and use a bloom filter method

[8] to generate signatures in this work.

The SQTCCJ consists of two phases: (1) SQTI construction;

and (2) SQTI probing and verification. Firstly, we construct an

SQTI structure to organize all candidate clusters. Then, SQTCCJ

performs a cluster query on SQTI for each query cluster to obtain

all cluster containment matches.

SQTI Construction. An SQTI is constructed in the following

manner. We start with a set of candidate clusters, and insert rep-

resentative points of these clusters into a spatial region according

to their positions. Then we partition the whole spatial region by

recursively subdividing it into four square quadrant cells (i.e., NE,

NW, SE, and SW), until the number of points in it meets a certain

threshold, ρ. Otherwise, the quadrant cell continues splitting into
four small ones. The tree structure of SQTI follows the above spa-

tial decomposition. Although the SQTI is organized in the same

way as the traditional quad-tree, the difference is that each node

is assigned a signature consisting ofm bits, which represents a

set of moving objects of all clusters in the corresponding cell. In

the next phase, we will utilize signature comparisons to support

membership query.

Example 1. We use the data in Fig. 3(a)(b) to illustrate the
construction of SQTI. Based on these clusters, we build an SQTI for
searching clusters, and its nodes are organized as Fig. 3(c)(d) shows.

SQTI Probing and Verification. The search process based

on SQTI works in a top-down manner instead of in a recur-

sive manner. And its goal is to find the nearest quadrant cell to

the query point. Specifically, when a query cluster q comes, the

search starts at the root node and utilize the query signature

and its coordinates to probe the index structure. When it visits a

internal node p with signature p.siд, we need to check it to see

if q.siд ∨ p.siд = p.siд. If yes, it immediately performs a four-

way comparison operation at the node, and then chooses the

subtree where the centroid of its corresponding MBR is nearest

to the query point. Otherwise, it visits the sibling nodes. When

it reaches a leaf node, we need to verify all clusters to check if

there exists a super-cluster in the leaf node. If yes, we can obtain

a cluster containment match; otherwise, we get a mismatch.

Example 2. Continuing with Example 1 , we illustrate how
to perform the query process based on SQTI. For a given query

671



t
i

t
i-1

t
i

t
m

... t
1

Next Timestamp

Closed
Patterns

New
Patterns

Trajectory Stream

Cluster Containment Join
( CCJ )

Snapshot Cluster Discovery
( SCD )

Converging Detection
( CD )

...

cluster
containment

tree set

Figure 2: Framework of GEDetector

node in SQTI signature

v1: {c1 , c2 , c3 , c4 , c5  } 11111111

v2: {c1 , c2 , c5 } 01111110

v3: {c3 , c4 } 11110001

00001100v4: {c5 }

v5: {c1 , c2 } 01111110

11110001v6: {c3 , c4 }

v7: {c1 , c2 } 01111110

other nodes 00000000

v1

v2 v3

v4 v5 v6
v7

(a)

(c)

(b)

candidate cluster signature

c1: {o1 , o2 , o3 } 01110000

c2: {o4 , o5 , o6 } 00001110

c3: {o7 , o8 } 10000001

c4: {o9 , o10 , o11 } 01110000

00001100c5: {o12 , o13 }

q

c1 c2

c5

c3

c4

O

(d)

Figure 3: Illustration of SQTI construction

q = {o1,o2} with the signature 01100000, the search starts at the
root node v1. Then it need to check the nodes v2 and v3 to see if
the query signature is contained. Unfortunately, both v2 and v3
satisfy the above condition. In this case, the search algorithm in the
traditional tree will suffer from a backtracking problem incurred
by a recursive paradigm. But, the search in SQTCCJ can avoid this
since it only takes the nearest quadrant cell to the query position. As
a consequence, the search chooses the sub-tree rooted at the nodev2.
It reaches the leaf node v7 along the path v1v2v5v7 after signature
comparisons. At the leaf node, we still need to verify all clusters in
it because of false positive. Finally, we can obtain a match q ⊆c c1.

4 DEMONSTRATION
4.1 Demo Interface
In the demo of GEDetector, we provide a monitoring map in-

terface for users to visualize and monitor gathering events dy-

namically. A screenshot of the demo is shown in Fig. 4. This

demo interface allows users to investigate gathering events from

various views, including spatial view, temporal view, and detail

view. The map on the upper left pane of the GUI visualizes the

discovered gathering events using map markers, which represent

the location points of all gathering events. The bar chart on the

bottom left pane of the GUI represents the basic characteristics

Figure 4: Screenshot of main interface

Figure 5: Visualization of a taxi gathering event at Shang-
hai Pudong international airport

of gathering events, such as scale, start time, durability, and point

of interest (POI) type. When the user clicks on any map marker,

the interface switches to the display mode of the corresponding

gathering event. The user can obtain more detailed information

of the gathering event, including the routes of all participators,

direction statistics of all routes (represented by a wind rose di-

agram), the event timeline, and other properties. As shown in

Fig. 5 and 6, our system has detected a typical gathering event at

Shanghai Pudong international airport, where a large number of

taxis converge together for waiting guests.

In summary, the GEDetection system can allow users to inter-

actively monitor and visualize gathering behaviours in various

ways, and also help users gain insights of the identified gathering

events from both spatial and temporal aspects.

672



Figure 6: Satpic of a cabstand at Shanghai Pudong interna-
tional airport

5 PERFORMANCE OF GEDETECTOR
To evaluate the performance of our system, we conduct all exper-

iments based on a real trajectory dataset, namely Shanghai taxi

cab traces (BigTaxi), which is sourced from the one generated by

13,000 taxis of Shanghai in a period of 30 days (from April 1st to

April 30th in 2015). In this section, we investigate the efficiency of

the SQTCCJ algorithm, which is the essential part of our system.

The SQTCCJ algorithm may generate approximate results due

to missing some cluster containment matches, only when a result

cluster does not share the same cell with the query. Therefore,

we use an accuracy rate metric, which is the fraction of matches

obtained by SQTCCJ over the total amount of those of NLCCJ,

to evaluate the result of SQTCCJ algorithm. In Fig. 7(a), we show

accuracy rates of SQTCCJ. We can find that SQTCCJ can find

almost all candidate clusters when the parameter ρ is greater

than 20.

Next, in Fig. 7(b)(c), we show another nice property of SQTCCJ,

namely insensitivity to key parameters including the signature

lengthm and the number threshold ρ. In addition, we note that we
can tackle the problem of CCJ using set containment joinmethods

if we treat a cluster as a set. Thus, we compare our algorithm

with TT-Join [9], which is the state-of-the-art method evaluating

set containment join. As we can see from Fig. 7(d), SQTCCJ

significantly outperforms TT-Join especially as the dataset size

increases.

6 ACKNOWLEDGEMENTS
This study was supported by the National Natural Science Foun-

dation of China under grant numbers 41471371, 41571379, and

the PAPD program.

REFERENCES
[1] Patrick Laube and Stephan Imfeld. Analyzing relative motion within groups

of trackable moving point objects. In Geographic Information Science, Second
International Conference, GIScience 2002, Boulder, CO, USA, September 25-28,
2002, Proceedings, pages 132–144, 2002.

[2] Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian S. Jensen, and

Heng Tao Shen. Discovery of Convoys in Trajectory Databases. Proc. VLDB
Endow., 1(1):1068–1080, August 2008.

[3] Zhenhui Li, Bolin Ding, Jiawei Han, and Roland Kays. Swarm: Mining Re-

laxed Temporal Moving Object Clusters. Proc. VLDB Endow., 3(1-2):723–734,
September 2010.

[4] L. A. Tang, Y. Zheng, J. Yuan, J. Han, A. Leung, C. C. Hung, and W. C. Peng. On

Discovery of Traveling Companions from Streaming Trajectories. In 2012 IEEE
28th International Conference on Data Engineering (ICDE), pages 186–197, April
2012.

[5] K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang. On discovery of gathering patterns

from trajectories. In 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 242–253, April 2013.

1 0 2 0 3 0 4 0 5 0 6 0 7 00 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0

( a )

Ac
cu

rac
y R

ate
 (%

)

ρ

 S Q T C C J

2 4 6 8 1 0 1 2 1 40

1 0

2 0

3 0

4 0

5 0

( b )

run
tim

e (
s)

m  ( K )

 S Q T C C J

1 0 2 0 3 0 4 0 5 0 6 0 7 0
0

1 0

2 0

3 0

4 0

5 0

ρ
( c )

run
tim

e (
s)

 S Q T C C J

1 . 0 1 . 4 1 . 8 2 . 2 2 . 60

1 0

2 0

3 0

4 0

5 0

( d )

run
tim

e (
s)

N u m b e r  o f  T r a j e c t o r i e s  ( K )

 S Q T C C J
 T T - J o i n

Figure 7: Performance of SQTCCJ

[6] Qi Fan, Dongxiang Zhang, HuayuWu, and Kian-Lee Tan. AGeneral and Parallel

Platform for Mining Co-movement Patterns over Large-scale Trajectories. Proc.
VLDB Endow., 10(4):313–324, November 2016.

[7] Yu Zheng. Trajectory Data Mining: An Overview. ACM Transactions on
Intelligent Systems and Technology, 6(3):1–41, May 2015.

[8] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13(7):422–426, 1970.

[9] Jianye Yang, Wenjie Zhang, Shiyu Yang, Ying Zhang, and Xuemin Lin. Tt-join:

Efficient set containment join. In 33rd IEEE International Conference on Data
Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, pages 509–520,
2017.

673


	GEDetector: Early Detection of Gathering Events Based on Cluster Containment Join in Trajectory StreamsBin Zhao, Genlin Ji, Yu Yang, Zhaoyuan Yu, Xintao Liu, Ningfang Mi

