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ABSTRACT
Modern persistent Key/Value stores are designed to meet the de-
mand for high transactional throughput and high data-ingestion
rates. Still, they rely on backwards-compatible storage stack and
abstractions to ease space management, foster seamless prolifera-
tion and system integration. Their dependence on the traditional
I/O stack has negative impact on performance, causes unaccept-
ably high write-amplification, and limits the storage longevity.

In the present paper we present NoFTL-KV, an approach that
results in a lean I/O stack, integrating physical storage manage-
ment natively in the Key/Value store. NoFTL-KV eliminates back-
wards compatibility, allowing the Key/Value store to directly con-
sume the characteristics of modern storage technologies. NoFTL-
KV is implemented under RocksDB. The performance evaluation
under LinkBench shows that NoFTL-KV improves transactional
throughput by 33%, while response times improve up to 2.3x.
Furthermore, NoFTL-KV reduces write-amplification 19x and
improves storage longevity by imately the same factor.

1 INTRODUCTION
Over the last decade, various specialized DBMSs have been in-
tensively investigated to meet the demand of new workloads,
applications or data models. Persistent Key/Value stores (KV-
stores) are specialized for high-throughput and predominantly
update-intensive, OLTP-style workloads.

KV-stores exhibit a characteristic lightweight architecture, sim-
plifying the deployment and integration process for large in-
frastructures and lowering maintenance demand in production.
Scalability is intrinsically supported in terms of partitioning and
distribution schemes, making KV-stores an excellent choice for
current data-center architectures. The simplicity of their interface
(with put and get) as well as data model matches wide range of
modern insert and update intensive applications running high-
throughput OLTP-style workloads. Last but not least, the abil-
ity to serve as DB-Engines in traditional and modern NoSQL
databases (e.g. MyRocks[13] or MongoRocks), allows for the in-
tegration as meta stores into applications and distributed file
systems (e.g. Ceph[10]), or serve as a backend for OLTP services.
∗Produces the permission block, and copyright information

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Persistent KV-stores leverage the properties of modern hard-
ware due to the lean architecture, interface and flexibility, yet
native hardware support is rare. The majority of such KV-stores
rely on backwards-compatible storage, to ease administration and
foster proliferation. Furthermore, the use of file systems simpli-
fies space management, support for various storage architectures
and the embedding in existing data center environments. The un-
derlying assumptions are that: (1) files and file-based I/O are the ap-
propriate storage abstractions, and (2) use of standard/compatibility
interfaces (and abstractions) on each individual layer of the I/O
stack does not harm performance.

The traditional I/O stack was developed with the characteris-
tics of HDDs in mind, with the block-device interface, block I/O
operations and files as abstractions. New storage technologies
such as Non-Volatile Memories or Flash exhibit very different
characteristics. However, to utilize them, persistent KV-stores
require multiple layers of backwards compatibility, having a neg-
ative impact on performance and longevity. (1) Hardware re-
sources are not fully exploited because of the hardware-oblivious
abstractions. (2) DBMS access patterns result in suboptimal physi-
cal I/O patterns due to the presence of multiple abstraction layers
along the critical I/O path. (3) KV-store information about the
current workload cannot be used for better physical data place-
ment. (4) Functionality along this critical I/O path is redundant.
Significant write-amplification and suboptimal performance are
the inevitable consequences.
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Figure 1:Write-Amplification along a traditional I/O stack
in contrast to NoFTL-KV.
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To verify the above claims we perform an experiment under
RocksDB running LinkBench and measure the end-to-end write-
amplification along a backwards-compatible, file-system based
stack. The results (Fig. 2a) indicate a 19x physical write volume
increase, lower performance and longevity.

In this paper we present NoFTL-KV (Fig. 1), an approach that
avoids backwards compatibility and targets the above disadvan-
tages by controlling the underlying physical storage directly.
NoFTL-KV integrates physical storage (Flash) management na-
tively in the KV-store. Subsequently, it opens up ways for work-
load adaptability within the storage layer and new abstractions
for native storage.
The main contributions of this paper are:
(1) The extension of the concept of native storage management

(NoFTL) to persistent KV-stores. We show that by coherently
integrating address mapping, data placement, GC and free
space management into the KV-store, storage characteristics,
on-device parallelism and wear-leveling are addressed.

(2) NoFTL-KV is implemented under RocksDB.
(3) The performance evaluation under LinkBench[1] shows that

NoFTL-KV improves the transactional throughput by 33%,
while the response times improve up to 2.3x. Furthermore,
NoFTL-KV improves physical storage management. In terms
of write efficiency, NoFTL-KV performs 87% less physical
page writes (including maintenance I/O and GC). Moreover,
NoFTL-KV performs 19x less erases, improving the endurance
by approximately the same factor.
The rest of the paper is structured as follows. NoFTL-KV and

the integration into RocksDB are described in Section 3. Experi-
mental results are discussed in Section 4. We conclude in Section
5.

2 RELATEDWORK
Modern workloads (Social Media, Big Data or IoT) not only have
become write-intensive and require high sequential throughput,
but also demand low latencies [16]. Read- andWrite-Amplification
are major performance factors [16].

These can either be approached by utilising compression to de-
crease I/O in general [5] or by aligning better with the character-
istics of modern storage devices. The latter is addressed in terms
of either new data structures [3, 4, 19], or new software interfaces
[2] as well as Flash interface extensions [9, 12, 14]. However, nei-
ther of those takes the issues with the cooked stack into account.
[6] and [7] present a full integration of native storage support
within traditional DBMS. A few lightweight KV-stores address
the concept of direct native storage integration [8, 15, 17, 18] by
moving the entire KV-store onto the device. Yet, physical storage
management is only partially addressed.

With NoFTL-KV we address the deep integration of native
storage management to tackle all issues regarding the traditional
cooked stack while avoiding to overload the device controller
with database functionality and maintaining a mature KV-store.

3 NOFTL-KV: NATIVE STORAGE KV-STORE
We investigate the concept of native storage management and
NoFTL under persistent KV-stores to address and evaluate the
above mentioned claims. RocksDB exhibits an append-only I/O
pattern for various write-intensive workloads, because of its
LSM-Tree-based persistent storage. LSM-trees perform regular
compactions to remove old records, to ensure optimal tree struc-
ture and to perform hot-cold-separation. Compactions reorganize

levels of the LSM-Tree, removing updated or deleted KV-Pairs, at
regular intervals or given a certain threshold. As a consequence,
frequently changing data is placed in the upper levels of the
LSM-Tree, while the lower levels contain the cold data.

Under NoFTL-KV we pursue coherent integration of Flash
management into existing modules of the KV-store as shown
in Fig. 3. Firstly, NoFTL-KV has direct control over hardware
resources through a native storage interface (NSI). NSI allows the
DBMS to operate with I/O operations, in granularity and with
addressing schemes supported by the the underlying storage
technology. Furthermore, NSI eliminates the need to support
backwards compatibility. Secondly, we revisit hardware-oblivious
abstractions and propose using physical storage abstractions
such as Regions to: (a) reduce read/write amplification along the
I/O path, (b) utilize available I/O parallelism more efficiently,
(c) provide better hot-cold data separation to (d) improve space
management and (e) increase longevity.

Moreover, unnecessary DBMS data transfers can be reduced by
pushing tasks down to the storage device. For instance, parts of
garbage collection and compaction can be planned by the NoFTL-
KV storage manager for certain Regions, but are executed onto
the device to reduce I/O contention and data transfers. Likewise,
queries, i.e scans, can be pushed down and executed on the stor-
age device. Especially in combination with Regions, such queries
can profit by the involved address mapping and level of on-device-
parallelism. Also worth to mention is that processors on such
storage devices usually exhibits the characteristics of common
co-processor (ASIC or FPGA). These are perfectly aligned to the
characteristics of modern storage technology (Flash, NVM) e.g.
in respect to parallelism.
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Figure 3: NoFTL-KV: Design of a deep integration of the
NoFTL concept within an entire KV-store for native stor-
age management

By integrating address mapping into the storage manager
of the KV-store, the latter gets control over the physical data
placement on Flash. Hence, the KV-store can utilize available
information about data semantics, statistics and the access pat-
tern (e.g., desired level of I/O parallelism) to perform efficient
placement. Individual levels of the LSM-Tree can be physically
separated on different chips to improve I/O throughput and par-
allelism since I/O-heavy compaction jobs do not block the entire
device. Consequently, new storage abstractions can be defined
besides files.
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NoFTL-KV RocksDB Speedup
Mean StDev Mean StDev

GC Calls 1 3 4769 2434
GC Page Write 0 0 1932263 737453

Block Erase 1127 3564 21389 7792 18.98x

(b) Number of logical page writes of the DB’s compaction and physical
page writes of the device over 10 request phases demonstrates write-
amplification and inconsistent logical to physical page write ratio.
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(c) Throughput: The average number of executed operations over the last
7 request phases demonstrates that NoFTL-KV outperforms RocksDB
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(d) Response Time (the lower the better): Average operation latencies and
std. dev. are better and more stable under NoFTL-KV vs. RocksDB

Figure 2: Results of the experimental evaluation of NoFTL-KV using LinkBench

We introduce Regions as physical storage abstractions span-
ning multiple chips/dies (i.e. parallel unit of the storage device).
They can be effectively optimized for different access patterns (se-
quential, random, append) of various KV-store components (e.g.
Levels of LSM-Tree and Log Manager). Regions allow for flexible
physical storage management as the parameters of hot-cold data
separation, garbage collection etc. are part of the definition. The
level of supported I/O parallelism per Region can be defined in
terms of the number of chips/dies it spans or whether these run
in pseudo SLC, MLC or TLC Flash mode. Region definitions are
not static, but can evolve over time to reflect properties of the
workload.
CREATE REGION rgBlockMapping (

MAX_CHIPS=4, MAX_CHANNELS=4,..., ADDR_MAPPING=BLOCK,
NAND_MODE=MLC, ...);

CREATE TABLESPACE MyRocks.tblBlock (
REGION=rgBlockMapping, UNIFORM EXTENT SIZE 128K );

CREATE TABLE MyRocks.nodetable(...)
TABLESPACE MyRocks.tblBlock;

Furthermore, the functional redundancy along the cooked I/O
stack is reduced. While, the file-system and the FTL distort the
append-based access pattern and amplify the read/write data
volume, NoFTL-KV simplifies the critical I/O path, exhibits a
physically sequential I/O pattern, and offers better physical stor-
age management. Consequently, write-amplification is signifi-
cantly reduced. Similarly, the integration of the garbage collec-
tion within the compaction process of the LSM-Tree, allows for

elimination of the time and resource-expensive merges common
for traditional FTL-based SSDs. As a result, the KV-store is able
to trigger the GC only when necessary and under the current
workload. Higher longevity through less block erases and better
throughput are the consequence.

4 EXPERIMENTAL EVALUATION
Testbed. Our testbed comprises a server equipped with an Intel
Xeon E5-1620 v3 3.50 GHz CPU-core, 32GB RAM and an Intel
DC 3600 SSD under Ubuntu 12.04 LTS, kernel 3.13.0.

The Flash storage device for the NoFTL-KV data is emulated
by our real-time Flash Simulator[6], which is running as a kernel
module. Configured with common latencies for reads, writes, and
erases of current SLC NAND Flash it is able to simulate a mod-
ern enterprise SSD with either block- or char-device interfaces.
For the block device, FASTer[11] is utilised as FTL with an over-
provisioning area of 14%. In our setup, the simulator consumes
24 GB of memory to emulate an SSD of the same capacity with
256 pages (4KB) on 24576 blocks. The level of parallelism (emu-
lated NAND chips/dies) is limited by the number of hardware
threads. For our experiments we configured NoFTL-KV to only
store RocksDB LSM-Tree files on the emulated device and the
remaining files on the Intel DC 3600 formatted with an ext4 file
system.
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LinkBench. The experimental evaluation is performed using
LinkBench[1], which is an OLTP-style workload on large up-
datable graphs. Under LinkBench the working data set size is
an order of magnitude larger than the database buffer. The re-
quest phase of LinkBench comprises common graph queries like
adding, getting, counting, deleting, updating nodes or edges on
the graph. The experimental dataset is a graph of 15M nodes (ini-
tial), amounting to 15GB raw data. The number of requests and
duration vary depending on the experiment. The baseline utilises
the same configuration (ext3, 4KB blocksize, active journal) for
MyRocks with RocksDB, hereinafter referred to as RocksDB.

Write-Amplification. Tomeasure write amplification, hooks
are placed in the storage engine of RocksDB (DB), the file system
(FS), and the Flash emulator (FTL), i.e., in all layers along the
I/O path. The number of requests is limited to 1M per thread
with sufficient time (10h) to be executed completely. This ensures
that, at the end, both variants have executed the same number of
operations. The results (Fig. 2a) for NoFTL-KV and the baseline
RocksDB represent average values of multiple runs.

Not surprisingly, the significant write amplification of the
cooked stack becomes evident. The 26 GB of raw data, bulk-
loaded during the load phase, swells up by more than 14 times to
383 GB. On top of that, the file system adds about 225 GB and
the FTL increases this again by 132 GB. During the request phase,
the disadvantages of the cooked I/O stack become even more
visible. The average write-amplification here is more than 19x.
This creates enormous I/O overhead, which is clearly reflected
by the metrics to follow.

Throughput. The mean number of executed operations and
their errors for every operation type is shown in Fig. 2c. NoFTL-
KV outperforms RocksDB in every type of query. This is because
of the smaller data volume to be written, and the better utilisation
of available Flash parallelism. The workload of LinkBench has a
high write-intensity over the complete duration. Consequently,
the throughput increases about 31% accross all operation types.
The performance stability across different runs, indicated by the
error bars increases by an order of magnitude.

Response Time. To investigate the impact on response time
for common operations, we perform further experiments with
1M requests per thread. Fig. 2d shows the average duration, while
the error bars indicate the standard deviation.

One can clearly see that the latency is lower under NoFTL-KV.
Especially reading operations like GetNode(), GetLinksList(), and
MultigetLink() perform significantly better. This is even more
relevant, since about 22% of these could not be served by data-
base buffer (cache miss rate) and are read from the persistent
device. On the other hand, inserting and updating operations
like AddNode(), AddLink(), and UpdateLink() complete directly
after pushing the data into an in-memory buffer and the WAL.
This buffer is persistet only after a compaction, which is not
taken into account for the operation latency. This explains the
similar performance for both RocksDB and NoFTL-KV. The only
exception is UpdateNode(), which might result in multiple gets
that are slower with the traditional I/O stack.

Erases and Longevity. Write-amplification on Flash devices
inevitably leads to more physical Flash erases, which has negative
impact on device longevity. Table 2b captures the GC activity
in terms of physical page writes and block erases during the
benchmark runs of the previous experiment.

RocksDB performs almost 19 times the physical block erases
than NoFTL-KV, which is primarily due to (i) the journal of the
file system, which doubles Flash page writes, and (ii) FASTer’s

hybrid address mapping scheme. It is worth noting that the erase
overhead of FASTer would also be present in other FTLs, which
utilize hybrid address translation (common for current SSDs).
As soon as the so-called log block area of the device runs out
of space, the GC kicks in and merges the updated data with
the corresponding Flash blocks in the data block area. Each of
those merges requires multiple page migrations (on-device write
amplification), and one or two erase operations (partial or full
merges). NoFTL-KV is configured to use BLM, which matches the
append-only LSM-Tree based storage management of RocksDB.

5 CONCLUSION
In the present paper we propose NoFTL-KV, an approach that re-
sults in a lean I/O stack, integrating physical storage management
natively in the Key/Value store. NoFTL-KV eliminates backwards
compatibility, allowing the Key/Value store to directly exploit
the characteristics of modern storage technologies. NoFTL-KV
is implemented under RocksDB and evaluated using LinkBench.
The transactional throughput improves by 33%, while response
times improve up to 2.3x. Furthermore, NoFTL-KV reduces write-
amplification 19x and improves endurance. In addition, our cur-
rent integration on the file-based LSM-Tree can be further im-
proved by a deeper integration into the KV-store’s data structure
in future work to gain additional performance improvements.

REFERENCES
[1] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark

Callaghan. LinkBench: A Database Benchmark Based on the Facebook Social
Graph. In Proc. SIGMOD 2013.

[2] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet. LightNVM: The Linux
Open-Channel SSD Subsystem. In Proc. FAST 2017.

[3] Niv Dayan, Philippe Bonnet, and Stratos Idreos. GeckoFTL: Scalable Flash
Translation Techniques For Very Large Flash Devices. In Proc. SIGMOD 2016.

[4] Biplob Debnath, Sudipta Sengupta, and Jin Li. SkimpyStash: RAM Space
Skimpy Key-value Store on Flash-based Storage. In Proc. SIGMOD 2011.

[5] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony
Savor, and Michael Strum. Optimizing Space Amplification in RocksDB. In
Proc. CIDR 2017.

[6] Sergej Hardock, Ilia Petrov, Robert Gottstein, and Alejandro Buchmann.
NoFTL: Database Systems on FTL-less Flash Storage. In Proc. VLDB 2013.

[7] Sergey Hardock, Ilia Petrov, Robert Gottstein, and Alejandro P. Buchmann.
NoFTL for Real: Databases on Real Native Flash Storage. In Proc EDBT 2015.

[8] Y. Jin, H. W. Tseng, Y. Papakonstantinou, and S. Swanson. KAML: A Flexible,
High-Performance Key-Value SSD. In In Proc. HPCA 2017.

[9] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-Hwan Oh, and Changwoo
Min. X-FTL: Transactional FTL for SQLite Databases. In Proc. SIGMOD 2013.

[10] Dong-Yun Lee, Kisik Jeong, Sang-Hoon Han, Jin-Soo Kim, Joo-Young Hwang,
and Sangyeun Cho. Understanding Write Behaviors of Storage Backends in
Ceph Object Store. In Proc. MSST 2017.

[11] S. P. Lim, S. W. Lee, and B. Moon. FASTer FTL for Enterprise-Class Flash
Memory SSDs. In Proc. SNAPI 2010.

[12] Leonardo Marmol, Swaminathan Sundararaman, Nisha Talagala, and Raju
Rangaswami. NVMKV: A Scalable, Lightweight, FTL-aware Key-value Store.
In Proc. ATC 2015.

[13] Yoshinori Matsunobu. InnoDB to MyRocks Migration in Main MySQL Data-
base at Facebook. In Proc. SREcon 2017.

[14] Gihwan Oh, Chiyoung Seo, Ravi Mayuram, Yang-Suk Kee, and Sang-Won Lee.
SHARE Interface in Flash Storage for Relational and NoSQL Databases. In
Proc. SIGMOD 2016.

[15] Samsung. http://www.samsung.com/semiconductor/global/file/insight/2017/
08/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf

[16] Russell Sears and Raghu Ramakrishnan. bLSM: A General Purpose Log Struc-
tured Merge Tree. In Proc. SIGMOD 2012.

[17] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker,
Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. Willow: A User-
Programmable SSD. Proc. OSDI 2014.

[18] Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu, Jamey Hicks, and Arvind.
Bluecache: A Scalable Distributed Flash-based Key-value Store. In Proc. VLDB
2016.

[19] Jiacheng Zhang, Jiwu Shu, and Youyou Lu. ParaFS: A Log-structured File
System to Exploit the Internal Parallelism of Flash Devices. In Proc. ATC 2016.

460


	NoFTL-KV: TacklingWrite-Amplification on KV-Stores with Native Storage ManagementTobias Vincon, Sergej Hardock, Christian Riegger, Julian Oppermann, Andreas Koch, Ilia Petrov

