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ABSTRACT
We introduce a novel interactive framework to handle both
instance-level and temporal smoothness constraints for cluster-
ing large temporal data. It consists of a constrained clustering
algorithm which optimizes the clustering quality, constraint vio-
lation and the historical cost between consecutive data snapshots.
At the center of our framework is a simple yet effective active
learning technique for iteratively selecting the most informative
pairs of objects to query users about, and updating the clustering
with new constraints. Those constraints are then propagated
inside each snapshot and between snapshots via constraint in-
heritance and propagation to further enhance the results. Experi-
ments show better or comparable clustering results than existing
techniques as well as high scalability for large datasets.

1 INTRODUCTION
In semi-supervised clustering, domain knowledge is typically
encoded in the form of instance-level must-link and cannot-link
constraints [8]. Such constraints specify that two objects must
be placed in the same clusters or not. Constraints have been
successfully applied to improve clustering quality in real-world
applications, e.g., identifying people from surveillance cameras
[8] and aiding robot navigation [7]. However, current research
on constrained clustering still suffers from several issues.

Most existing approaches assume that we have a set of con-
straints beforehand, and an algorithm will use this set to produce
clusters [2, 7]. Davidson et al. show that the clustering quality
varies significantly using different equi-size sets of constraints [5].
Moreover, annotating constraints requires human intervention,
an expensive and time consuming task that should be minimized
as much as possible given the same expected clustering quality.
Therefore, how to choose a good and compact set of constraints
rather than randomly selecting them from the data has been the
focus of many research efforts, e.g., [1, 11, 14].

Many approaches employ different active learning schemes to
select themostmeaningful pairs of objects and then query experts
for constraint annotation [1, 11]. By allowing the algorithms to
choose constraints themselves, we can avoid insignificant ones,
and expect to have high quality and compact constraint sets com-
pared to randomized constraint selection. These constraints are
then used as input for constrained clustering algorithms to oper-
ate. However, if users are not satisfied with the results, they are
asked to provide another constraint set and start the clustering
again, which is obviously time consuming and expensive.

Other algorithms follow a feedback schema which does not
require a full set of constraints in the beginning [4]. They iter-
atively produce clusters with their available constraints, show
results to users, and get feedback in the form of new constraints.
By iteratively refining clusters according to user feedback, the
acquired results fit users’ expectations better [4]. Constraints
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are also easier to select with an underlying cluster structure as a
guideline, thus reducing the overall number of constraints and
human annotation effort for the same quality level. However, ex-
ploring the whole data space for finding meaningful constraints
is also a non-trivial task for users.

To reduce human effort, several methods incorporate active
learning into the feedback process, e.g., [10, 11, 14]. At each
iteration, the algorithm automatically chooses pairs of objects and
queries users for their feedback in terms ofmust-link and cannot-
link constraints instead of leaving the whole clustering results
for users to examine. Though these active feedback techniques
are proven to be very useful in real-world tasks such as document
clustering [10], they suffer from very high runtime since they
have to repeatedly perform clustering as well as exploring all
O(n2) pairs of objects to generate queries to users.

In this paper, we develop an efficient framework to cope with
the above problems following the iterative active learning ap-
proach as in [10, 14]. However, instead of examining all pairs of
objects, our technique, called Border, selects a small set of objects
around cluster borders and queries users about the most uncer-
tain pairs of objects. We also introduce a constraint inheritance
approach based on the notion of µ-nearest neighbors for infer-
ring additional constraints, thus further boosting performance.
Finally, we revisit our approach in the context of evolutionary
clustering. Evolutionary clustering aims to produce high qual-
ity clusters while ensuring that the clustering does not change
dramatically between consecutive timestamps. We propose to for-
mulate a temporal smoothness constraint and add a time-fading
factor to our constraint propagation.

This paper’s contributions are: (i) a new algorithm CVQE+
that extends CVQE [7] with weighted must-link and cannot-link
constraints, (ii) a new algorithm, Border, that relies on active
clustering and constraint inheritance to choose a small number
of objects to solicit user feedback for, (iii) an evolutionary cluster-
ing framework which incorporates instance-level and temporal
smoothness constraints, and (iv) experiments with 6 datasets that
show the superiority of our algorithms over state-of-the-art ones.

2 PROBLEM FORMULATION
Let D = {(d, t)} be a set of of |D | vectors d ∈ Rp observed
at time t . Let S = {(Ss ,Ds , tss , tes )} be a set of preselected |S |
data snapshots. Each Ss starts at time tss , ends at time tes and
contains a set of objects Ds = {(d, t) ∈ D | tss ≤ t < tes }. Two
snapshots Ss and Ss+1 may overlap but must satisfy the time
order, i.e., tss ≤ tss+1 and tes ≤ tes+1. For each snapshot Ss ,
letMLs = {(x ,y,wxy )} be a set of must-link constraints related
to x ,y ∈ Ds with a degree of belief of wxy ∈ [0, 1]. Similarly,
let CLs = {(x ,y,wxy )} be a set of cannot-link constraints of Ss .
Initially,MLs and CLs can be empty.

In this paper, we focus on the problem of grouping objects in
all snapshots into clusters. Our goals are (1) reduce the number
of constraints thus reducing the constraint annotation costs (2)
make the algorithm scale well with large datasets and (3) smooth
the gap between clustering results of two consecutive snapshots,
i.e., ensure temporal smoothness.
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Figure 1: Our active temporal clustering framework

3 OUR PROPOSED FRAMEWORK
Figure 1 illustrates our frameworkwhich relies on two algorithms,
Border and CVQE+. Our framework starts with a small (or empty)
set of constraints in each snapshot. Then, it iteratively produces
clustering results and receives refined constraints from users
in the next iterations. This process is akin to feedback-driven
algorithms for enhancing clustering quality and reducing human
annotation effort [4]. However, instead of passively waiting for
user feedback as in [4], our algorithm, Border, actively examines
the current cluster structure, selects β pairs of objects whose
labels are the least certain, and asks users for their feedback in
terms of instance-level constraints. Examining all possible pairs
of objects to select queries is time consuming due the quadratic
number of candidates. To ensure scalability, Border limits its
selection to a small set of most promising objects. When there
are new constraints, instead of reclustering from scratch as in
[10, 14], our algorithm, CVQE+, incrementally updates the cluster
structures. We also aim to ensure a smooth transition between
consecutive clusterings [3]. We additionally introduce two novel
concepts: (1) the constraint inheritance scheme for automatically
inferring more constraints inside each snapshot and (2) the con-
straint propagation scheme for propagating constraints between
different snapshots. These schemes help significantly reduce the
number of constraints for acquiring a desired level of clustering
quality. To the best of our knowledge, Border is the first frame-
work that combines active learning, instance-level and temporal
smoothness constraints.
The new algorithm CVQE+. For each snapshot Ss , we use con-
strained kMeans for grouping objects. Any existing techniques
such as MPCK-Means [2], CVQE [7] or LCVQE [13] can be used.
Here we introduce CVQE+, an extension of CVQE [7] to cope
with weighted constraints, to do the task. LetC = {Ci } be a set of
clusters. The cost of Ci is defined as its vector quantization cost
VQEi and the constraint violation costsMLi and CLi as follows.
Note that, ourMLi cost is symmetric compared to [7].

CostCi = CostVQEi +CostMLi +CostCLi (1)

CostVQEi =
∑
x ∈Ci

(ci − x)2,

CostMLi =
∑

(a,b)∈MLi∧vl (a,b)

wi j (ci − cπ (a,b,i))
2

CostCLi =
∑

(a,b)∈CLi∧vl (a,b)

wi j (ci − cφ(i))
2

where, vl(a,b) is true for (a,b) that violates must-link or cannot
link constraints, ci is the center of cluster Ci , π (a,b, i) returns
the center of clusters of a or b (not including clusterCi ), and φ(i)
returns the nearest cluster center of Ci . Note that, CostMLi is
symmetric compared to [7]. Taking the derivative of CostCi , the

new center of Ci is updated as:

ci =

∑
x∈Ci

x +
∑

(a,b)∈MLi∧v l (a,b)

wi jCπ (a,b,i ) +
∑

(a,b)∈CLi∧v l (a,b)

wi jCφ (i )

|Ci | +
∑

(a,b)∈MLi∧v l (a,b)

wi j +
∑

(a,b)∈CLi∧v l (a,b)

wi j

(2)
For each constraint (a,b), CVQE+ assigns objects to clusters by

examining all k2 cluster combinations for a and b like CVQE. The
major difference is that when we calculate the violation cost, we
consider all constraints starting and ending at a and b instead of
only the constraint (a,b) as in CVQE [6] or LCVQE [6], which is
very sensitive to the cost change when some constraints share the
same objects (changing these objects affects all their constraints).
Thus, this scheme is expected to improve the clustering quality
of CVQE+ compared to CVQE and LCVQE.
Active learning with Border. To avoid examining all pairs of
objects, Border chooses a subset ofm =min(O(

√
n),M) objects lo-

cated at the boundary of the clusters as themain targets since they
are the most uncertain ones, whereM is a predefined constant.
For each object a in cluster Ci , the border score of a is defined
as bor (a) = (a−ci )2

(a−cφ (i ))
2(1+ml (a))(1+cl (a)) , whereml(a) and cl(a) are

the sums of weights of must and cannot-link constraints of a.
Here, we favor objects that have fewer constraints for increasing
constraint diversity. This also fits well with our constraint inher-
itance scheme. For each cluster Ci , we selectm |Ci |/n top objects
based on their border score distribution in Ci . This can be done
by building a histogram with O(

√
|Ci |) bins (a well-known rule

of thumb for the optimal histogram bin). Then, objects are taken
sequentially from the outermost bins.

For each selected object a, we estimate the uncertainty of a
as sco(a) = ent(µnn(a)) + vl (ml (a))+vl (cl (a))

ml (a)+cl (a)+1 , where ent(µnn(a))
is the entropy of class labels of µ nearest neighbors of a and
vl(ml(a)) and vl(cl(a)) are the sums of violated must-link and
cannot-link constraints of a. A high score(a) means that a is in
high uncertain areas with different mixed class labels and a high
number of constraint violations.

We dividem2 = O(n) pairs of selected objects into two sets:
the set of inside cluster pairs X and between cluster pairs Y ,
i.e., for all (x ,y) ∈ X : label(x) = label(y) and for all (x ,y) ∈

Y : label(x) , label(y). For a pair (x ,y) ∈ X , it is sorted by
val(x ,y) =

(x−y)2(1+sco(x ))(1+sco(y))
(1+ml (x )+cl (x ))(1+ml (y)+cl (y)) . For (x ,y) ∈ Y ,val(x ,y) =

(x−y)2(1+ml (x )+cl (x ))(1+ml (y)+cl (y))
(1+sco(x ))(1+sco(y)) . The larger val is, the more

likely x and y belong to different clusters and vice versa. We
choose top β/2 non-overlapped largest val pairs of X and top
β/2 non-overlapped smallest pairs of Y in order to maximize the
changes in clustering results (inside and between clusters).

We show β pairs to users to ask for the constraint type and
add their feedback to the constraints set and update clusters until
the total number of queries exceeds a predefined budget δ .
Constraint inheritance in Border. For further reducing the
number of queries to users, the general idea is to infer new con-
straints automatically based on annotated ones. Our inheritance
scheme is based on the concept of µ nearest neighbors below.

Let h be the distance between an object p and its µ nearest
neighbors. The influence of p on its neighbor x is formulated by
a triangular kernel function ϕh (p,x) centered at p as in Figure 2.
Given a constraint (p,q,wpq ), for all a ∈ µnn(p) and b ∈ µnn(q),
we add (a,b,wab ) to the constraints set, wherewab is defined as:

wab = wpqϕh (p,a)ϕh (q,b) (3)
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Figure 2: (A) Constraint inheritance from (p,q) to (a,b). (B)
The effect of the object b on its neighbors

The general intuition is that the label of an object a tends to
be consistent with its closest neighbors (which is commonly
used in classification). This scheme is expected to increase the
clustering quality, especially when combined with the active
learning approach described above.
Updating clusters. For incrementally updating clusters, we only
need to take the old cluster centers and update them following
Equation 1 with the updated constraints set.
Temporal smoothness. The general idea of temporal smooth-
ness [3] is that clusters not only have high quality in each snap-
shot but also do not changemuch between sequential time frames.
We re-define the cost of cluster Ci of snapshot Ss in Equation 1
as follows:

TCostVQEi = (1 − α)CostVQEi + αHist(Ci , Ss−1) (4)

where Hist(Ci , Ss−1) is the historical cost of cluster Ci between
two snapshots Ss and Ss−1 and α is a regulation factor to balance
the current clustering quality and the historical cost. We define
the historical cost as follows:

Hist(Ci , Ss−1) = (ci −ψ (Ci , Ss−1))
2 (5)

where ψ (Ci , Ss−1) returns the closest cluster center to Ci in
snapshot Ss−1. Taking the derivation of (4) as in (1), we have
Ci =

(1−α )A+αψ (Ci ,Ss−1)
(1−α )B+α , where A and B are respectively the

numerator and the denominator given in Equation 1.
Constraint propagation. Whenever we have a new constraint
(x ,y,wxy ) in snapshot Ss , we propagate it to snapshots Ss ′ where
s ′ > s if x ,y ∈ S ′. The intuition is that if x andy are linked (either
by must or cannot-link) in Ss , they are more likely to be linked
in Ss ′ . Thus we add the constraint (x ,y,w ′

xy ) to Ss ′ where:

w ′
xy = wxy

tes − tss ′

tes ′ − tss
(6)

where (tes − tss ′)/(tes ′ − tss ) is a time fading factor. This scheme
helps to increase the clustering quality by putting more con-
straints into the clustering algorithm like the inheritance scheme.
Complexity analysis. Let n be the number of objects. Both
CVQE+ and Border have linear time complexity to O(n).

4 EXPERIMENTS
Experiments are conducted on a workstation with 4.0Ghz CPU
and 32GB RAM using Java. We use 6 datasets Iris, Ecoli, Seeds,
Libras, Optdigits and Wdbc acquired from the UCI archives1. The
numbers of clusters k are acquired from the ground truths. We
use Normalized Mutual Information (NMI) [12] for assessing the
clustering quality. All results are averaged over 10 runs.
Performance of CVQE+. Figure 3 shows comparisons among
CVQE+ and existing techniques including kMeans, MPCK-Means
[2], CVQE [7] and LCVQE [13]. CVQE+ consistently outperforms
or acquires comparable results to CVQE and others, especially
when the number of constraints is large. This can be explained
1http://archive.ics.uci.edu/ml/
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Figure 3: Performance of CVQE+ compared to others
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Figure 4: Comparison among different active learning
techniques

by the way CVQE+ assigns objects to clusters. Compared to its
predecessor algorithm CVQE or LCVQE, it deals well with con-
straint overlap (constraints that share the same objects), which
increases with the number of constraints.
Active constraint selection. Unless otherwise stated, the bud-
get limitation δ is set to 200, the query size β = 10 and the neigh-
borhood size µ = 4. Figure 4 shows comparisons between Border,
NPU [14], Huang [14] (a modified version of [10] for working
with non-document data), Min-max [11], Explorer-Consolidate
[1], and a randomized method (Huang and Consolidate are re-
moved from Figure 4 for readability). Border acquires better re-
sults than others on Libras, Wdbc and Optidigits, comparable
results on Iris and Ecoli. For the Seeds dataset, it is outperformed
by NPU. The difference is because Border tends to strengthen
existing clusters by fortifying both the cluster borders and inter
connectivity for groups of objects rather than connecting a single
object to existing components like others. However, Border has
some parameters to set such as the query size β . Tuning these pa-
rameters is a difficult problem that requires deeper investigation.

For runtimes, we create five synthetics datasets of sizes 2000 to
10000 consisting of 5 Gaussian clusters and measure the time for
acquiring 100 constraints. Border is orders of magnitude faster
than others in selecting pairs to query. For 1000 objects, it take
Border 0.1 seconds while NPU and Min-max need 439.4 and
3.0 seconds. For 10000 objects, Border, NPU and Min-max con-
sumes 0.18, 5216.3 and 18.2 seconds, respectively. Additionally,
the higher the number of objects and constraints, the higher the
runtime differences. We omit the plots due to space limitations.
Cluster update. Figure 5 shows the NMI and the number of
iterations of our algorithm for the Ecoli dataset. The NMI scores
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Figure 5: Update vs. fully reclustering for the Ecoli dataset
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are comparable, while it takes fewer iterations for our algorithm
to converge in its update mode.
Temporal clustering. Figure 6 shows the active temporal clus-
tering results for three snapshots of the Optdigits dataset (we set
α = 0.5). As we see, our active learning scheme can help boost
clustering quality inside each snapshot compared to the original
kMeans or a randomized constraint selection method. With the
constraint propagation scheme (Border-Propagation), the cluster-
ing results are further boosted compared to Border. Since we only
consider forward propagation, the clustering result in Snapshot
3 will be more affected than Snapshot 2 and Snapshot 1. We can
easily extend the algorithm for the backward propagation case.

5 RELATEDWORK
Constraint clustering. There are many proposed constrained
clustering algorithms such as MPC-kMeans [2], CVQE [7] and
LCVQE [13]. These techniques optimize an objective function
consisting of the clustering quality and the constraint violation
cost like our algorithm CVQE+. CVQE+ is an extension of CVQE
[7], where we extend the cost model to deal with weighted con-
straints, make the must-link violation cost symmetric and change
the way each constraint is assigned to clusters by considering all
of its related constraints. This makes cluster assignment more
stable, thus enhancing the clustering quality. Interested readers
are referred to [6] for a comprehensive survey on constrained
clustering methods.
Active learning. Most existing techniques employ active learn-
ing for acquiring a desired constraints set before or during cluster-
ing. In [1], the authors introduce the Explorer-Consolidating algo-
rithm to select constraints by exploiting the connected-components
of must-link ones. Min-max [11] extends the Consolidation phase
of [1] by querying most uncertain objects rather than randomly
selecting them. These techniques produce constraints sets be-
fore clustering. Thus, they cannot exploit the cluster labels for
further enhancing performance. Huang et al. [10] introduce a
framework that iteratively generates constraints and updates
clustering results until a query budget is reached. However, it is
limited to a probabilistic document clustering algorithm. NPU
[14] also uses connected-components of must-link constraints
as a guideline for finding most uncertain objects. Constraints
are then collected by querying these objects again existing con-
nected components like the Consolidate phase of [1]. Though
more effective than pre-selection ones, these techniques typically
have a quadratic runtime which makes them infeasible to cope

with large datasets like Border. Moreover, Border relies on border
objects around clusters to build constraints rather than must-link
graphs [1, 14]. The inheritance approach is closely related to the
constraint propagation in the multi-view clustering algorithm
[9] for transferring constraints among different views. The major
difference is that we use the µ-nearest neighbors rather than the
ϵ-neighborhoods which is limited to Gaussian clusters and can
lead to an excessive number of constraints.
Temporal clustering. Temporal smoothness has been intro-
duced in the evolution framework [3] for making clustering re-
sults stable w.r.t. the time.We significantly extend this framework
by incorporating instance-level constraints, active query selec-
tions and constraint propagation for further improving clustering
quality while minimizing constraint annotation effort.

6 CONCLUSION
We introduce a scalable novel framework which incorporates
an iterative active learning scheme, instance-level and tempo-
ral smoothness constraints for coping with large temporal data.
Experiments show that our constrained clustering algorithm,
CVQE+, performs better than existing techniques such as CVQE
[7], LCVQE [13] and MPC-kMeans [1]. By exploring border ob-
jects and propagating constraints via nearest neighbors, our ac-
tive learning algorithm, Border, results in good clustering results
with much smaller constraint sets compared to other methods
such as NPU [14] and Min-max [11]. Moreover, it is orders of
magnitude faster making it possible to cope with large datasets.
Finally, we revisit our approach in the context of evolutionary
clustering adding a temporal smoothness constraint and a time-
fading factor to our constraint propagation among different data
snapshots. Our future work aims at providing more expressive
support for user feedback. We are currently using our frame-
work to track group evolution of our patient data with sleeping
disorder symptoms.
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