
Sequenced RouteQuery with Semantic Hierarchy

Yuya Sasaki
†
, Yoshiharu Ishikawa

‡
, Yasuhiro Fujiwara

§†
, Makoto Onizuka

†

†Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

‡Graduate School of Information Science, Nagoya University, Nagoya, Japan

§NTT Software Innovation Center, Tokyo, Japan

sasaki@ist.osaka-u.ac.jp,ishikawa@i.nagoya-u.ac.jp,fujiwara.yasuhiro@lab.ntt.co.jp,onizuka@ist.osaka-u.ac.jp

ABSTRACT
The trip planning query searches for preferred routes starting

from a given point through multiple Point-of-Interests (PoI) that

match user requirements. Although previous studies have in-

vestigated trip planning queries, they lack flexibility for finding

routes because all of them output routes that strictly match user

requirements. We study trip planning queries that output multi-

ple routes in a flexible manner. We propose a new type of query

called skyline sequenced route (SkySR) query, which searches for

all preferred sequenced routes to users by extending the shortest

route search with the semantic similarity of PoIs in the route.

Flexibility is achieved by the semantic hierarchy of the PoI cat-

egory. We propose an efficient algorithm for the SkySR query,

bulk SkySR algorithm that simultaneously searches for sequenced

routes and prunes unnecessary routes effectively. Experimental

evaluations show that the proposed approach significantly out-

performs the existing approaches in terms of response time (up

to four orders of magnitude). Moreover, we develop a prototype

service that uses the SkySR query, and conduct a user test to

evaluate its usefulness.

1 INTRODUCTION
Recently, technological advances in various devices, such as smart

phones and automobile navigation systems, have allowed users

to obtain real-time location information easily. This has triggered

the development of location-based services such as Foursquare,

which exploit rich location information to improve service qual-

ity. The users of the location-based services often want to find

short routes that pass through multiple Points-of-Interest (PoIs);

consequently, developing trip planning queries that can find the

shortest routes that passes through user-specified categories has

attracted considerable attention [4, 10]. If multiple PoI categories,

e.g., restaurant and shopping mall, are in an ordered list (i.e., a cat-
egory sequence), the trip planning query searches for a sequenced
route that passes PoIs that match the user-specified categories in

order.

Example 1.1. Figure 1 shows a road networkwith the following
PoIs: “Asian restaurant”, “Italian restaurant”, “Gift shop”, “Hobby

shop”, and “Arts&Entertainment (A&E)”. Assume that a user

wants to go to an Asian restaurant, an A&E place, and a gift

shop in this order from start point vq . The sequenced route

query outputs route R1 because it is the shortest route from vq
that satisfied the user requirements ⟨Asian restaurant, A&E, gift

shop⟩.

Existing approaches find the shortest route based on the user

query. However, such approaches may find an unexpectedly long

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

A

I

G

A

I

G

H

H

A

I

G

HG

R3

R2

R1 I

p1

p2
p5

p3 p4 p6

p7

p8p9

p10

p11

p12

p13

vq

User-location

Food

Shop & Service

Arts & Entertainment

Asian Restaurant

Italian Restaurant

Gift Shop

Hobby Shop

vq

Figure 1: An example of a road network with PoIs

Japanese

BakeryItalianAsian
Gift
shop

Hobby
shop

Food Shop & Service

Clothing
store

Men's
store

Sushi

Figure 2: Examples of category trees in Foursquare

route because the found PoIs may be distant from the start point.

A major problem with the existing approaches is that they only

output routes that perfectlymatch the given categories [5, 14, 16].

To overcome this problem, we introduce flexible similarity match-

ing based on PoI category classification to find shorter routes in

a flexible manner. In the real-world, category classification often

forms a semantic hierarchy, which we refer to as a category tree.
For example, in Foursquare

1
, the “Food” category tree includes

“Asian restaurant,” “Italian restaurant,” and “Bakery” as subcat-

egories, and the “Shop &Service” category includes “Gift shop,”

“Hobby shop,” and “Clothing store” as subcategories (Figure 2).

We employ this semantic hierarchy to evaluate routes in terms of

two aspects, i.e., route length and the semantic similarity between

the categories of the PoIs in the route and those specified in the

user query. As a result, we can find effective sequenced routes

that semantically match the user requirement based on the se-

mantic hierarchy. For example, in Figure 1, route R2 satisfies the
user requirement because it semantically matches the category

sequence because Italian and Asian restaurants are in the same

category tree. However, this approach may find a significantly

large number of sequenced routes because the number of PoIs

that flexibly match the given categories increases significantly.

To reduce the number of routes to be output, we employ the

skyline concept [2], i.e., we restrict ourselves to searching for

the routes that are not worse than any other routes in terms of

their scores (i.e., numerical values to evaluate the routes). Based

on this concept, we propose the skyline sequenced route (SkySR)
query, which applies the skyline concept to the route length and

semantic similarity (i.e., we consider route length and semantic

similarity as route scores). Given a start point and a sequence

1
https://developer.foursquare.com/categorytree

Series ISSN: 2367-2005 37 10.5441/002/edbt.2018.05

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.05

Table 1: Example routes in New York city

Approach Distance Sequenced route

Existing

3239 meters Cupcake Shop→ Art Museum→ Jazz Club

(e.g., [16])

Proposed

3239 meters Cupcake Shop→ Art Museum→ Jazz Club

1858 meters Dessert Shop→ Art Museum→ Jazz Club

1392 meters Dessert Shop→Museum→ Jazz Club

823 meters Dessert Shop→Museum→Music Venue

of PoI categories, a SkySR query searches for sequenced routes

that are no worse than any other routes in terms of length and

semantic similarity.

Example 1.2. Table 1 shows real-world examples of sequenced

routes in New York city where a user plans to go to a cupcake

shop, an art museum, and then a jazz club in this order. The

existing approaches output a single route that matches the user’s

requirement perfectly. The proposed approach can output three

additional routes that are shorter than the route found by the

existing approach. Note that the additional routes also satisfy the

user query semantically. The user can select a preferred route

among all the four routes depending on how far he/she does not

want to walk or their available time.

The SkySR query can provide effective trip plans; however,

it incurs significant computational cost because a large num-

ber of routes can match the user requirement. Therefore, the

SkySR query requires an efficient algorithm. The challenge is to

search for SkySRs efficiently by reducing the search space with-

out sacrificing the exactness of the result. We propose bulk SkySR
algorithm (BSSR for short) that finds exact SkySRs efficiently.

Recall that a feature of SkySRs is that their scores are no worse

than those of other sequenced routes. BSSR exploits the branch-

and-bound algorithm [9], which effectively prunes unnecessary

routes based on the upper and lower bounds of route scores. In

addition, to improve efficiency more, we employ four techniques

to optimize BSSR. (1) First, we initially find sequenced routes

to calculate the upper bound. (2) We tighten the upper bound

by arranging the priority queue and (3) tighten the lower bound

by introducing minimum distances. (4) we keep intermediate

results for later processing, which refer to as on-the-fly caching.
Our approach significantly outperforms existing approaches in

terms of response time (up to four orders of magnitude) with-

out increasing memory usage or sacrificing the exactness of the

result.

The main contributions of this paper are as follows.

• We introduce a semantic hierarchy to the route search

query, which allows us to search for routes flexibly.

• We propose the skyline sequenced route (SkySR) query,
which finds all preferred routes related to a specified cate-

gory sequence with a semantic hierarchy (Section 4).

• We propose an exact and efficient algorithm and its op-

timization techniques to process SkySR queries (Section

5).

• We discuss variations and extensions of the SkySR query.

The SkySR query can be applied to various user require-

ments and environments (Section 6).

• We demonstrate that the proposed approach works well in

terms of response time and memory usage by performing

extensive experiments. (Section 7).

• We develop a prototype service that employs the SkySR

query and conduct a user test to evaluate usefulness of

the SkySR query. (Section 8).

The remainder of this paper is organized as follows. Section 2

introduces related work. Section 3 describes the problem formu-

lation, and Section 4 defines the SkySR query. Section 5 presents

the proposed algorithm. In Section 6, we discuss variations and

extensions of the SkySR query. Sections 7 and 8 present experi-

ment and user test results, respectively, and Section 9 concludes

the paper.

2 RELATEDWORK
First, we review trip planning query studies related to the SkySR

query. Then, we review some studies related to the skyline op-

erator. To the best of our knowledge, no study has considered

a skyline sequenced route; thus, our problem cannot be solved

efficiently using existing approaches.

Trip planning: We categorize trip planning queries in Table

2. Note that all existing trip planning queries only output routes

that perfectly match the user-specified category sequences. More-

over, since most trip planning queries assume Euclidean distance,

they cannot find SkySRs, in which road network distance is as-

sumed. Dai et al. [4] proposed a personalized sequenced route

and assumed that PoIs have ratings as well as categories and that

users assign weighting factors as preferences. Although this per-

sonalized sequenced route considers route lengths and ratings, it

only outputs the route that perfectly matches the given categories

and has the best score based on lengths, ratings, and preferences.

Only the optimal sequenced route (OSR) is applicable to find

SkySRs without modification because the OSR and SkySR are

based on the same settings (except for scoring). Sharifzadeh et al.

[16] proposed two algorithms to find OSRs in road networks: the

Dijkstra-based solution and the Progressive Neighbor Exploration
(PNE) approach. The main difference between these algorithms is

that the Dijkstra-based solution employs the Dijkstra algorithm

to search for PoIs and the PNE approach employs the nearest

neighbor search. It has been reported that these algorithms are

comparable in terms of performance [16]. Thus, we consider both

algorithms to verify the performance of the proposed approach.

Skyline: The skyline operator was proposed previously [2].

Few studies have considered the skyline concept for route searches.

Recently, the skyline route (or skyline path) has received consid-

erable attention [1, 6, 8, 13, 17, 18, 20]. A skyline route assumes

that edges on road networks are associated with multiple costs,

such as distance, travel time, and tolls. Here, the objective is to

find skyline routes from a start point to a destination considering

these multiple costs. However, since we specify a category se-

quence rather than a destination, we cannot apply conventional

algorithms to find SkySRs. The continuous skyline query in road

networks (e.g., [7]) searches for the skyline PoIs for a moving

object considering both the PoI category and the distances to the

moving object. Because continuous skyline queries search for a

single PoI category, these solutions are not applicable to SkySR

queries, which obtain routes that pass through multiple PoIs.

3 PRELIMINARIES
Table 3 summarizes the notations used in this paper. We assume

a connected graph G = (V ∪ P,E), where V, P, and E ⊆ (V ∪
P) × (V ∪ P) represent the sets of vertices, PoI vertices, and

edges, respectively. This graph corresponds to a road network

that contains PoIs. The numbers of vertices, PoI vertices, and

edges are denoted |V|, |P|, and |E|, respectively. PoI vertex p ∈ P
is associated with category c ∈ C, where C is the set of categories.

We denote the category of PoI vertex p as cp , and assume that

38

Table 2: Types of trip planning queries.

Type Distance metrics Order Destination Result Scores

SkySR (proposed) Network Total Yes or No Exact Length and semantic

Optimal sequenced route (OSR) [16] Euclidean or Network Total Yes or No Exact Length

Sequenced route [5, 14] Network Total Yes Exact Length

Personalized sequenced route [4] Euclidean Total No Approximate Length and rating

Trip planning [10] Euclidean or Network Non Yes Approximate Length

Multi rule partial sequenced route [3] Euclidean Partial No Approximate Length

Multi rule partial sequenced route [11] Euclidean Partial No Exact Length

Multi-type nearest neighbor [12] Euclidean Non No Exact Length

Table 3: Notations

Symbol Meaning

V Set of vertices

P Set of PoI vertices

E Set of edges

p PoI vertex

C Set of categories

c Category

t Category tree

cp Category of PoI vertex p
tc Category tree of c
Pc Set of PoI vertices associated with c
Pt Set of PoI vertices associated with t
S Category sequence (sequence of categories)

R Route (sequence of PoI vertices)

SR Sequential PoI categories in R
l (R) Length score of R
s (R) Semantic score of R
R Set of routes

E (R) Set of super-routes of R
S Minimal set of sequenced routes

Sq Category sequence specified by user

vq Start point specified by user

each PoI is associated with a single category. Each category is

associated with category tree t , and we denote the category tree

of category c as tc . We denote the set of PoI vertices associated

with c and the set of PoI vertices associated with the category

tree t as Pc and Pt , respectively. If a PoI vertex is associated

with category c , it is also associated with all ancestor categories

of c in tc . Each edge e (ui ,uj) in E is associated with a weight

w (ui ,uj) (≥ 0). The weight can represent either travel duration

or distance. Next, we define several terms required to introduce

the skyline sequenced route (SkySR).

Definition 3.1. (Category sequence) A category sequence S =
⟨cS [1], cS [2], . . . , cS [|S|]⟩ is a sequence of categories, where |S|
is the size of S. cS [i] ∈ C denotes the i-th category in S. A super-
category sequence of S is a category sequence where each i-th
category is either cS [i] or an ancestor of cS [i] (1 ≤ i ≤ |S|) in the

category tree.

Definition 3.2. (Route) A route R = ⟨pR [1], . . . ,pR [|R|]⟩ is a
sequence of PoI vertices in a road network, where pR [i] ∈ P and
|R| denote the i-th PoI vertex in R and the size of R, respectively.
SR denotes the category sequence of R (i.e., ⟨cpR [1], . . . , cpR [|R |]⟩).
In addition, we define a super-route of R as an extended route

of R, such as ⟨R,pi ,pj , . . .⟩. In other words, a super-route of R is

obtained by adding a sequence of PoI vertices to the end of R. R
and E (R) denote a set of routes and a set of super-routes of R,
respectively. Moreover, given a route R = ⟨pR [1], . . . ,pR [|R|]⟩
and a PoI vertex p, we define R ⊕ p = ⟨pR [1], . . . ,pR [|R|],p⟩.

Definition 3.3. (Category similarity) Given two categories

c and c ′, the similarity sim(c, c ′) ∈ [0, 1] is calculated by an

arbitrary function such as the Wu and Palmer similarity or path

length [15, 19]. We assume the following relations in the similar-

ity.

• c is irrelevant to c ′ if both exist in different category trees;

thus, we obtain sim(c, c ′) = 0.

• c semantically matches c ′ if c and c ′ are in the same cate-

gory tree; thus, we obtain 0 < sim(c, c ′) ≤ 1.

• c perfectly matches c ′ if c and c ′ are the same; thus, we

obtain sim(c, c ′) = 1.

Note that a semantic match subsumes a perfect match.

We define a sequenced route using the above definitions. The
difference between our definition of sequenced route and the

previous definition [16] is that we consider category similarity.

Definition 3.4. (Sequenced route) Given category sequence

S = ⟨cS [1], . . . , cS [|S|]⟩, R = ⟨pR [1], . . . ,pR [|R|]⟩ is a sequenced
route of category sequence S if and only if it satisfies (i) |R| = |S|,
(ii) cS [i] semantically matches cpR [i] for all i such that 1 ≤ i ≤ |S|,
and (iii) all PoI vertices in R differ each other.

Definition 3.5. (Route scores) Given category sequence S and
vertex v as a start point, we define two scores for route R: length
score l (R) ∈ [0, inf] and semantic score s (R) ∈ [0, 1]. We define

the length score l (R) as follows:

l (R) = D (v,pR [1]) + Σ |R |−1i=1 D (pR [i],pR [i + 1]), (1)

where D (ui ,uj) denotes the smallest weight sum of the edges

on the routes between vertices (or PoIs) ui and uj . The semantic

score s (R) is calculated by an aggregation function f as follows:

s (R) = f (h1,h2, . . . ,h |R |), (2)

where hi denotes sim(cS [i], cpR [i]). We assume that, if all hi = 1,

s (R) = 0, i.e., if all PoI vertices in a route perfectly match the

categories, the semantic score of the given route is 0. We also

assume that s(R) is the possible minimum semantic score of R
when it is a sequenced route. Without loss of generality, preferred

routes have small length and semantic score.

4 THE SKYLINE SEQUENCED ROUTE
QUERY

Here, we define the SkySR query. Intuitively, a SkySR is a po-

tential route that may be the best route related to the user’s

requirement. A potential route is a route that is not dominated
by any other routes; the notion of dominance is used in the sky-
line operator [2]. We define dominance for sequenced routes and

SkySR query in the following.

Definition 4.1. (Dominance) Let R be the set of all sequenced

routes starting from point v for category sequence S. For two
sequenced routes R,R′ ∈ R, we say that R dominates R′ if we
have (i) l (R) < l (R′) and s (R) ≤ s (R′) or (ii) s (R) < s (R′) and
l (R)≤ l (R′). If two sequenced routes have the same length and

39

semantic scores, the routes are equivalent in the dominance, and

a set of sequenced routes isminimal if it has no equivalent routes.

Definition 4.2. (SkySR query)Given vertexvq as a start point

and category sequence Sq , a skyline sequenced route is a se-

quenced route not dominated by other routes. Let R be the set of

all sequenced routes from start point vq for category sequence

Sq , and let S be a minimal set of the sequenced routes. The

SkySR query returns S that includes sequenced routes such that

all R ∈ S are SkySRs and all R′ ∈ R \ S are dominated by or

equivalent to some of R ∈ S.

An naive solution to find SkySRs is to first enumerate SkySR

candidates by iteratively executing OSR queries for any super-

category sequences of Sq and then check the dominance among

the routes. The number of super-category sequences of Sq in-

creases exponentially as the depth of the category in the category

tree and the size of Sq increase. Thus, although OSR algorithms

can find a sequenced route efficiently, we must repeat many

searches. As a result, the naive solution needs significantly high

computational cost to find SkySRs.

5 PROPOSED ALGORITHM
In this section, we present the proposed approach, which we

refer to as the bulk SkySR algorithm (BSSR), that finds SkySRs ef-
ficiently. Section 5.1 presents the BSSR design policy, and Section

5.2 explains the BSSR procedure. In Section 5.3, we propose opti-

mization techniques for BSSR. We also theoretically analyze its

performance in Section 5.4. Finally, we show a running example

of BSSR in Section 5.5. In Section 5, we assume undirected graphs

in which each PoI vertex is associated with only one category

and that users give sequences of single PoI categories. However,

in a real application, the graphs would be directed graphs, each

PoI vertex would be associated with multiple categories, and

users may specify complex categories. Section 6 describes how

we handle the above conditions.

5.1 Design Policy
Our idea to improve efficiency is to find sequenced routes simul-

taneously (i.e., by searching sequenced routes in bulk) in order to

reduce the search space. We have two choice as the basis for our

approach; Dijkstra-based or nearest neighbor-based approaches

[16]. We use the Dijkstra-based approach as the basis of our al-

gorithm. Recall that a SkySR query has two scores for a route,

i.e., length and semantic scores. To find all SkySRs, we must find

routes that have small category scores even if the routes have

large length scores. However, PoIs that are included in the routes

with small category scores could be distant from the start point.

Although the nearest neighbor-based approach finds the closest

PoIs, it cannot efficiently find such PoIs. On the other hand, the

Dijkstra-based approach searches for all PoI vertices that match

a PoI category. Therefore, the Dijkstra-based approach is more

suitable for the SkySR query than the nearest neighbor-based

approach.

Although our approach finds sequenced routes simultane-

ously, it entails a large number of executions of the Dijkstra

algorithm. This is because, since the number of PoI candidates

increases, a large number of possible routes increases. The search

space does not become small effectively. To effectively reduce

the search space, we exploit the branch-and-bound algorithm,

which uses the upper and lower bounds of a branch of the search

space to solve an optimization problem effectively. With BSSR,
each branch corresponds to each route. For the upper and lower

bounds, we compute the bounds during finding the set of SkySRs.

Specifically, we compute the upper bound of a route from the al-

ready found sequenced routes, and we compute the lower bound

from the current searched route (i.e., not a sequenced route yet).

With the upper and lower bounds, we can safely prune unneces-

sary routes to improve efficiency.

To further increase efficiency, we propose optimization tech-

niques for BSSR. In order to exploit the branch-and-bound algo-

rithm, it is necessary to initialize the upper bound. Thus, we first

search for a sequenced route to initialize the upper bound. How-

ever, it may take high computational cost to find a sequenced

route. Therefore, we propose a nearest neighbor-based initial
search method (NNinit) that finds sequenced routes efficiently by

greedily finding PoI vertices. In addition, to effectively update

the upper bound, we assign a priority to each route and use the

priority queue to efficiently find routes that are likely to give an

effective upper bound. To compute the lower bound, we compute

the possible minimum distance and add it to the length score of a

route to safely prune unnecessary routes. Moreover, to avoid ex-

ecuting the Dijkstra algorithm iteratively from the same vertices,

we materialize search results of the Dijkstra algorithm and reuse

them to search the PoI vertices. By using BSSRwith optimization

techniques, we can perform the SkySR query efficiently.

5.2 Bulk SkySR algorithm
Bulk SkySR algorithm (BSSR) finds all SkySRs by finding simul-

taneously sequenced routes with checking dominance on de-

mand. The naive solution must execute OSR queries for all super-

category sequences of Sq one by one because it only searches

for the PoIs that perfectly match the given category. In contrast,

BSSR searches for all PoIs that semantically match the given

category.

The basic process of BSSR is simple as shown in Algorithm 1:

(i) start searching the PoI vertices that match the first category

from start pointvq and insert the route found into priority queue

Qb which stores all found routes (line 4), (ii) fetch a route from

Qb (line 6), (iii) search for the next PoI vertices that semantically

match the next category cd from PoI vertex pd which is the end

of the fetched route, and insert the fetched route with each of the

found PoI vertices intoQb (lines 7–9), and (iv) ifQb is not empty,

return to (ii), otherwise output the minimal set of sequenced

route S (line 10). In steps (i) and (iii), we find PoI vertices from

the end of the fetched route using a Dijkstra algorithm modified

for the SkySR query as described in Section 5.2.2.

Algorithm 1: Bulk SkySR algorithm

1 procedure BSSR(vq , Sq)
2 S ← ϕ ;
3 priority_queue Qb ← ϕ ;
4 mDijkstra(ϕ , cS [1], vq , Qb , S);
5 while Qb is not empty do
6 R← Qb .dequeue();

7 cd ← cS [|R | + 1];
8 pd ← pR [|R |];
9 mDijkstra(R, cd , pd , Qb , S);

10 return S;

11 end procedure

5.2.1 Branch-and-bound. We search for sequenced routes si-

multaneously to reduce the search space. Our idea to safely re-

duce the search space is to exploit the branch-and-bound algo-

rithm, which can reduce unnecessary search space. This section

40

describes the theoretical background of using the branch-and-

bound algorithm. We use the following three lemmas to reduce

the search space:

Lemma 5.1. Let S be a minimum set of sequenced routes while
searching for SkySRs and S′ be the minimum set of sequenced
routes after finding SkySRs. If sequenced route R is dominated by a
sequenced route in S, R cannot be included in S′.

proof: FromDefinition 4.2, we search for a set of SkySRs, which

are not dominated by the other sequenced routes. If we find a

sequenced route not dominated by any sequenced routes in S,

we update S by inserting the new sequenced route and deleting

a sequenced route dominated by the new one. Therefore, any

sequenced routes in S after the update are not dominated by any

sequenced routes in S prior to the update. As a result, sequenced

routes in S′ are not dominated by any sequenced routes in S. In

other words, R is not included in S′ if we have sequenced route

R′ in S such that l (R′) ≤ l (R) and s (R′) ≤ s (R). □

Lemma 5.2. Let E (R) be a set of super-routes of R starting from
the same start point. For any route R′ in E (R), the length and
semantic scores l (R′) and s (R′) cannot be less than l (R) and s(R),
respectively.

proof: Let R′ be a route included in E (R). Since we have

D (ui ,uj) ≥ 0, the following property holds for a route R from

Equation (1) of Definition 3.5.

D (vq ,pR′[1]) + Σ |R
′ |−1

i=1 D (pR′[i],pR′[i+1])

= D (vq ,pR [1]) + Σ |R |−1i=1 D (pR [i],pR [i+1])

+Σ |R
′ |−1

i= |R | D (pR′[i],pR′[i+1])

≥ D (vq ,pR [1]) + Σ |R |−1i=1 D (pR [i],pR [i+1]).

Therefore, we have l (R) ≤ l (R′). s(R) is the possible minimum

semantic score of R when it becomes a sequenced route. Thus,

even if PoI vertices are added to R, we have s(R) ≤ s (R′). As a
result, we have l (R) ≤ l (R′) and s(R) ≤ s (R′). □

In terms of the branch-and-bound algorithm, Lemma 5.1 and

5.2 give us the upper and lower bounds of the scores of a route,

respectively. We can prune routes according to the following

lemma.

Lemma 5.3. (pruning condition) If (i) R is a sequenced route
included in the set S of sequenced routes and (ii) l (R) ≤ l (R′) and
s (R) ≤ s(R′), any routes in E (R′) cannot be included in S.

proof: If we have l (R) ≤ l (R′) and s (R) ≤ s(R′), R′ is not
included in S (Lemma 5.1). From Lemma 5.2, the scores of R′

cannot become less than l (R′) and s (R′) even if we expand R′.
Therefore, any routes in E (R′) cannot be included in S because

R′ is dominated by or equivalent to the sequenced route with

l (R) and s (R) . □
Lemma 5.3 gives us the length score threshold for a route, and,

if the length score of a route is greater than this threshold, we

can prune the given route. We define the length score threshold

of a route as follows:

Definition 5.4. The threshold l (R) of the length score of route

R is given by the following equation:

l (R) = min

R′∈S
{l (R′) |s(R) ≥ s (R′)}. (3)

If l (R) ≤ l (R), we can safely prune R because it cannot be

included in the result. Thus, we can reduce the search space

without sacrificing the exactness of the result. Equation (3) has a

small computation cost because S includes only a small number

of sequenced routes as shown in Section 7.

5.2.2 Themodified Dijkstra Algorithm. We search the next PoI

vertices that semantically match the next PoI category using the

modified Dijkstra algorithm. The modified Dijkstra algorithm can

prune unnecessary routes based on Lemma 5.3. Moreover, based

on the following lemma, it terminates unnecessary traversal of

the graph and avoids inserting unnecessary routes.

Lemma 5.5. Let R = ⟨pR [1], . . . ,pR [i],pR [i + 1],pR [i + 2] . . . ,
pR [|R|]⟩ be a route and pi :i+1 be a PoI vertex on a path between
pR [i] and pR [i + 1]. Route R must be dominated by or equivalent
to another route if we have sim(cS [i + 1], cpi :i+1) ≥ sim(cS [i +
1], cpR [i+1]).

proof: Let R′ = ⟨pR [1], . . . ,pR [i],pi :i+1,pR [i+2], . . . , pR [|R|]⟩
be a route such that the difference between R and R′ is only in

pi :i+1 and pR [i + 1]. Since the PoI vertex pi :i+1 is on the path

between pR [i] and pR [i + 1], we have l (R) ≥ l (R′) based on

triangle inequality (i.e., D (pi :i+1,pR [i + 1]) +D (pR [i + 1],pR [i +
2]) ≥ D (pi :i+1,pR [i + 2])). Moreover, if sim(cS [i + 1], cpi :i+1) ≥
sim(cS [i + 1], cpR [i+1]), we have s (R) ≥ s (R′). Therefore, R is

dominated by or equivalent toR′ because l (R) ≥ l (R′) and s (R) ≥
s (R′). □

Lemma 5.5 gives us two properties for the SkySR query: (i)

even if we find a PoI vertex that passes through another PoI

vertex that has a better category similarity, we can ignore the

PoI vertex, and (ii) if we find a PoI vertex that perfectly matches

the given category, we do not need to traverse the graph through

the PoI vertex. As a result, using Lemma 5.3 and 5.5, we can

efficiently find the next PoI vertices.

Algorithm 2 shows the pseudocode for the modified Dijkstra

algorithm, which is used to find PoI vertices that semantically

match cd from pd . In priority queueQd for the modified Dijkstra

algorithm, the top vertex is the closest vertex to pd . The queue is
initialized topd (line 3). The closest vertex topd is dequeued from

Qd (line 5). Rt is a route expanded from Rd , which is Rd with

fetched vertex u (line 7). If the length score of Rt is greater than
or equal to the threshold of Rd , the modified Dijkstra algorithm

terminates the process (Lemma 5.3) (line 8). We check whether

(i) u semantically matches cd and (ii) u does not proceed through

another PoI vertex whose category similarity is greater than or

equal to that of u (line 9). If we satisfy the above conditions and

the length score of Rt is less than its threshold (line 10), we insert

Rt into the priority queue or the set of sequenced routes (lines

10–12). Otherwise, we skip the process to insert Rt (Lemma 5.3

and 5.5). The neighbor vertices of u are inserted intoQd unless u
perfectly matches cd (Lemma 5.5) (lines 13–17).

5.3 Optimization techniques
In this section, we propose four optimization techniques for BSSR.
Section 5.3.1 explains an initial search for sequenced routes and

proposes NNinit. We then explain tightening the upper and the

lower bounds in Section 5.3.2 and Section 5.3.3, respectively.

Furthermore, in Section 5.3.4 we propose an on-the-fly caching
technique to reuse previous search results of the modified Dijkstra

algorithm.

5.3.1 Initial search. We prune unnecessary routes efficiently

using the branch-and-bound algorithm. However, we cannot

calculate the threshold of R if there are no sequenced routes in

S whose semantic scores are not greater than that of s(R) based

41

Algorithm 2:Modified Dijkstra algorithm to find the next

PoI vertices matching cd from pd
1 procedure mDijkstra(Rd , cd , pd , Qb , S)
2 dist [u] = inf for all u ∈ V ∪ P, dist [pd] = 0;

3 priority_queue Qd ← {pd };
4 while Qd is not empty do
5 u ← Qd .dequeue;

6 if u is already visited then continue;

7 Rt ← Rd ⊕ u ;
8 if l (Rt) ≥ l (Rd) then break;

9 if u ∈ Ptcd and u is not through the PoI vertex whose category
similarity is higher than that of u then

10 if l (Rt) < l (Rt) then
11 if Rt is a sequenced route then S.update(Rt);
12 else Qb .enqueue(Rt);

13 if u < Pcd then
14 for each u′ for e (u, u′) ∈ E do
15 if dist [u] +w (u, u′) < dist [u] then
16 dist [u′] = dist [u] +w (u, u′).w ;

17 Qd .enqueue(u′);

18 end procedure

on Equation (3). Therefore, initially, we search for the sequenced

route whose semantic score is 0. However, the length score of

the sequenced route can be large if its semantic score is 0. To

tighten the threshold, we also search for sequenced routes whose

semantic scores are greater than 0 because the length scores of

them are less than that of the sequenced route with a semantic

score of 0. We initially find several sequenced routes to tighten

the upper bound.

We propose NNinit, which searches for several sequenced

routes efficiently. NNinit performs a nearest neighbor search

repeatedly to find PoI vertices that perfectly match the given cat-

egories. With this process, we can find a sequenced route whose

semantic score is 0. Moreover, NNinit can find the PoI vertex

that semantically matches the given category during the nearest

neighbor search. When we find the last visited PoI vertex, we

may find PoI vertices that semantically match the last category in

Sq . Therefore, we can obtain sequenced routes whose semantic

scores are greater than 0 and length scores are small. As a result,

NNinit can find several sequenced routes without incurring addi-

tional cost, and one of the sequenced routes has a semantic score

of 0.

We present the pseudocode for NNinit in Algorithm 3. Here,

priority queueQ is initialized to start point vq (line 3). NNinit re-
peats the Dijkstra algorithm |Sq | times to find sequenced routes

(line 4). The Dijkstra algorithm is executed to search for the

closest PoI vertex that perfectly matches cSq [i] from the initial

vertex (the first initial vertex is vq) (lines 5–19). Here, the clos-
est vertex to the initial vertex is dequeued from Q (line 7). If

the algorithm finds a PoI vertex that perfectly matches cSq [i],
this vertex is added to R and Q is initialized to the PoI vertex

(lines 12–15). When it finds the last PoI vertex that semantically

matches cSq [|Sq |], it inserts the sequenced route into S (lines

9–11). Finally, we obtain a set of sequenced routes, and one of

the sequenced routes in S has a semantic score of 0.

Example 5.6. We show an example of NNinit using Example

1.1, which searches an Asian restaurant, an A&E place, and a gift

shop in this order from start point vq . NNinit executes the Dijk-
stra algorithm three times because the size of category sequence

is three. First, NNinit searches PoI vertices that perfectly match

Asian restaurant from vq . Then, it finds p2 that is the closest PoI

Algorithm 3: Initial search for finding sequenced routes

with a small cost

1 procedure NNinit(vq , Sq)
2 S ← ϕ , R← ϕ ;
3 priority_queue Q ← {vq };
/* execute Dijkstra algorithm |Sq | times */

4 for i : 1 to |Sq | do
5 dist [u] = inf for all u ∈ V ∪ P, dist [Q .top] = 0;

6 while Q is not empty do
7 u ← Q .dequeue;

8 if u is already visited then continue;

9 if i = |Sq | and u ∈ PtcSq [i] then

10 R′ ← R ⊕ u ;
11 S.update(R′);

12 if u ∈ PcSq [i] then
13 R← R ⊕ u ;
14 Q ← {u };
15 break;

16 for each u′ for e (u, u′) ∈ E do
17 if dist [u] +w (u, u′) < dist [u′] then
18 dist [u′] = dist [u] +w (u, u′);
19 Q .enqueue(u′);

20 return S;

21 end procedure

that perfectly match Asian restaurant to vq . Next, it searches
the closest PoI vertex that perfectly matches A&E to p2 and then

finds p5. From the next search, NNinit inserts sequenced routes

to S when it finds PoI vertices that semantically match gift shop.

NNinit finds p7 whose category is Shop&Service (i.e., semanti-

cally match) and thus inserts ⟨p2,p5,p7⟩ to S. After finding p7, it
finds p8 that perfectly matches gift shop and inserts ⟨p2,p5,p8⟩
to S. Finally NNinit returns S including {⟨p2,p5,p8⟩, ⟨p2,p5,p7⟩}.
The length score of ⟨p2,p5,p7⟩ is 12, which is less than the length

score of ⟨p2,p5,p8⟩ of 15.

5.3.2 Tightening upper bound: Arranging routes in the priority
queue. We use the upper bound to prune unnecessary routes. The

upper bound is computed from the obtained sequenced routes.

To tighten the upper bound, it is important to efficiently find se-

quenced routes that have small length and semantic scores. BSSR
extends a route at the top of the priority queue to search for a se-

quenced route, as shown inAlgorithm 1. Note that priority queues

in existing algorithms conventionally consider only distances

(i.e., a distance-based priority queue). If we use a distance-based

priority queue, BSSR preferentially extends a route with a small

length score. Although we must increase the size of a route to

|Sq | to find a sequenced route, a route that has a small length

score likely has a small size. Therefore, it is difficult to search

for sequenced routes efficiently using a distance-based priority

queue.

To search for sequenced routes efficiently, we preferentially

extend a route that has a large size. Here, since many routes in

the priority queue could have the same size, we must consider

an additional priority, which is expected to affect performance.

If multiple routes in the priority queue are the same size, we

preferentially extend the route with the smallest semantic score.

We can reduce the search space by searching for sequenced routes

in ascending order of semantic score. Moreover, if routes are the

same size and have the same semantic score, we preferentially

extend the route with the smallest length score. As a result, we

can efficiently obtain sequenced routes with small length and

semantic scores.

42

5.3.3 Tightening lower bound: Possible minimum length score.
As described in Section 5.2.1, we use the length scores of routes as

the lower bound, i.e., we prune a route if the length score of the

route is not less than the threshold. Note that the length score of

the route increases as the route size increases. This indicates that

it is difficult to prune routes before the route size increases. Our

approach to tighten the lower bound of the route is to estimate the

increase of the length score. However, if we carelessly estimate a

future length score, we may sacrifice the exactness of th result.

The basic idea of this estimation is to calculate the possible min-
imum distance. Here, we compute the smallest distance among

any pair of PoI vertices in sets of PoI vertices. We use the follow-

ing two minimum distances, semantic-match minimum distance
ls and perfect-match minimum distance lp :

Definition 5.7. (minimumdistance) The semantic-matchmin-

imum distance ls and perfect-match minimum distance lp are

given by the following equations:

ls (R)=Σ
|Sq |−1
i= |R | ls [i],where ls [i]= min

pi∈Pti ,pi+1∈Pti+1
D (pi ,pi+1). (4)

lp (R)=Σ
|Sq |−1
i= |R | lp [i],where lp [i]= min

pi∈Pti ,pi+1∈Pci+1
D (pi ,pi+1). (5)

In Equations (4) and (5), Pti and Pci denote the set of PoI vertices
associated with a category tree of cSq [i] and the set of PoI vertices
whose category is cSq [i], respectively.

We compute the semantic-match minimum distance based on

the distance to the PoI vertices that semantically match the next

category. We can safely add the semantic-match minimum dis-

tance to the current length score without restriction. However,

the semantic-match minimum distance is much less than the

threshold. Thus, it could be difficult to improve pruning perfor-

mance; thus, we use the perfect-match minimum distance to

increase pruning performance. The perfect-match minimum dis-

tance is computed based on the distance to the PoI vertices that

perfectly match the next category. We can improve pruning per-

formance using the perfect-match minimum distance compared

to the semantic-match minimum distance because the perfect-

match minimum distance is much greater than the semantic-

match minimum distance; therefore, the perfect-match minimum

distance tightens the lower bound more than the semantic-match

minimum distance. However, we can use the perfect-match mini-

mum distance only in a special case, i.e., where a route must pass

only PoIs that perfectly match the given categories so as not to

be dominated. The perfect-match minimum distance works well

if the number of sequenced route in S is large because the con-

straint is usually satisfied by increasing the number of sequenced

route in S.

Lemma 5.8. Let R′ and R′′ be sequenced routes in S and R
be a route such that (i) l (R) ≥ l (R′) and s (R) < s (R′) and (ii)
l (R) < l (R′′) and s (R) ≥ s (R′′). Let δ be the minimum increment
of a semantic score2. We can pruneR if we have (a) l (R) ≥ l (R′) and
s (R) + δ ≥ s (R′) and (b) l (R) + lp (R) ≥ l (R′′) and s (R) ≥ s (R′′).

proof: First, we consider case (a). If we have l (R) ≥ l (R′) and
s (R) + δ ≥ s (R′), R is dominated by or equivalent to R′ if its
semantic score increases. Therefore, R must only pass through

PoI vertices that perfectly match the given categories not to be

dominated. If R passes through only PoI vertices that perfectly

2
The least increase of the semantic score is computed from the category tree.

Specifically, we can compute the least increase from the category that is most

similar (but not equal) to the next category.

match the given categories, the length score of R increases by

at least lp (R). For case (b), if we have l (R) + lp (R) ≥ l (R′′) and
s (R) ≥ s (R′′), R is dominated by or equivalent to R′′ if its length
score increases by lp (R). As a result, if we have two routes R′

and R′′, such as (i) l (R) ≥ l (R′) and s (R) + δ ≥ s (R′) and (ii)

l (R) + lp (R) ≥ l (R′′) and s (R) ≥ s (R′′), R is dominated by or

equivalent to at least one of R′ and R′′. □
To compute the estimation of the lower bound, we compute

two types of possible minimum distances ls and lp . A naive ap-

proach computes all minimum distances from the PoI vertices

that semantically match cSq [i] to cSq [i + 1] for 1 ≤ i ≤ |Sq | − 1
by iteratively executing the Dijkstra algorithm. However, this

has a high computational cost. To reduce the cost, we execute

a multi-source multi-destination Dijkstra algorithm. In this algo-

rithm, all start points are inserted into the same priority queue.

Then, the algorithm dequeues vertices in the same manner as the

conventional Dijkstra algorithm. Here, the process is terminated

if the top of the priority queue becomes one of the destinations.

This approach only needs |Sq | − 1 times to compute the possible

minimum distance. The multi-source multi-destination Dijkstra

algorithm guarantees the minimum distance by the following

lemma:

Lemma 5.9. The multi-source multi-destination Dijkstra algo-
rithm guarantees the minimum distance from the start points to
the destinations.

proof: We first insert multiple start points into the priority

queue, and their distances from the start points are initialized as

0. If we find a vertex, it is inserted into the queue and the distance

to the vertex is updated from the closest start point to the vertex.

The vertex with the smallest distance from the start point in the

priority queue is dequeued from the priority queue. If the top

vertex in the priority queue is one of the destinations, there are

no destinations with smaller distance than the top one. Therefore,

we can guarantee the minimum distance from the start points to

the destinations. □
Algorithm 4 shows the pseudocode to compute the semantic-

match minimum distance. The estimation of the lower bound is

executed after line 4 in Algorithm 1. Here, we initialize Pi and

Pi+1 (lines 3–4). l (ϕ) denotes the threshold for a route whose se-

mantic score is 0. The difference between computing the semantic-

match and perfect-match minimum distances is whether the PoI

vertices in Pi+1 semantically or perfectly match the given cate-

gory.

Example 5.10. We show an example to compute the semantic-

match minimum distance using Example 1.1. P1, P2, and P3 in-
clude {p1,p2,p6,p10,p11}, {p5,p9,p12}, and {p3,p4,p7,p8,p13}, re-
spectively. First, PoI vertices in P1 are inserted to priority queue

Q , and the set of destinations is P2. By processing the Dijkstra al-

gorithm, we compute possible minimum distance ls [1] = 2 (from

p6 to p9). Next, we search PoI vertices that semantically match

A&E to gift shop. Then, we compute ls [2] = 1 (from p12 to p13).
Finally, we obtain semantic-match minimum distance ls = {2, 1}.
We can compute the perfect-match minimum distance in the

same way and obtain lp = {3, 1}, which is greater than ls .

5.3.4 Reuse of the temporal result: On-the-fly caching tech-
nique. Although BSSR efficiently prunes unnecessary routes, it

may iteratively execute the modified Dijkstra algorithm at the

same vertex because, in Algorithm 1 (line 8), pd could be the

43

Algorithm 4: Computing possible minimum distance

1 procedure EstimationLowerbound(vq , Sq)
2 for i : 1 to |Sq | − 1 do
3 Pi ← {p |p ∈ PtcSq [i] and D (vq, p) < l (ϕ) };

4 Pi+1 ← {p |p ∈ PtcSq [i+1] and D (vq, p) < l (ϕ) };

5 dist [u] = inf for all u ∈ V ∪ P, dist [p] = 0 for all p ∈ Pi ;
6 priority_queue Q ← {p } ∈ Pi ;
7 while Q is not empty do
8 u ← Q .dequeue;

9 if u is already visited then continue;

10 if u ∈ Pi+1 then
11 ls [i] = dist [u];
12 break;

13 for each u′ for e (u, u′) ∈ E do
14 if dist [u] +w (u, u′) < dist [u′] then
15 dist [u′] = dist [u] +w (u, u′);
16 Q .enqueue(u′);

17 return ls ;

18 end procedure

same as the former executions of the modified Dijkstra algo-

rithms. Thus, we reuse the result starting at the same PoI vertex

by materializing the result of the modified Dijkstra algorithm

(i.e., keeping PoI vertices matching cd and distances from pd to

the PoI vertices), which we refer to as on-the-fly caching.
After finding SkySRs, on-the-fly caching frees the results of

the modified Dijkstra algorithms (this is why we call it on-the-fly),
because the search space rarely overlaps across different inputs

(i.e., Sq and vq differ).

5.4 Theoretical Analysis
In this section, we theoretically analyze the cost and correctness

of the proposed BSSR.

Theorem 1. (Time complexity) Let γ be a ratio of pruning
and α be a ratio of the size of a graph to find the SkySRs. The time
complexity of BSSR isO (γ (α |P|) |Sq |α (|E|+ (|V|+ |P|) log(α (|V|+
|P|)))).

proof: The time complexity of the Dijkstra algorithm isO (|E|+
|V| log |V|) if the number of vertices is |V|. In our setting, we

have |V| + |P| vertices because we have two types of vertices. In

addition, we do not need to search the whole graph by reducing

the graph size according to the threshold. Therefore, the time

complexity of the modified Dijkstra algorithm isO (α (|E|+ (|V|+
|P|) log(α (|V| + |P|))). The time complexity of BSSR depends on

the number of times the modified Dijkstra algorithms is executed.

The number of modified Dijkstra algorithms is equal to all the

potential routes |P| |Sq | . Recall that we can prune the number of

routes using the branch-and-bound algorithm. Finally, the time

complexity of BSSR isO (γ (α |P|) |Sq |α (|E|+ (|V|+ |P|) log(α (|V|+
|P|)))). □

In our approach, γ and α depend on the upper and lower

bounds. These are affected by the graph structure, the category

trees, and the ratio of PoI vertices, and the time complexity of

BSSR depends on these factors.

Theorem 2. (Space complexity) Let γ be the pruning ratio,
and α be the ratio of the size of the graph to find the SkySRs. The
space complexity of BSSR is O (|E| + |V| + |P| + γ |Sq |(α |P|) |Sq |).

proof: We store the whole graph of size O (|E| + |V| + |P|). We

also store routes into the priority queue andS, and the maximum

number of routes is |P| |Sq | . We can prune the number of routes

using the branch-and-bound algorithm. The size of the routes is

proportional to |Sq |. Therefore, the space complexity of BSSR is

O (|E| + |V| + |P| + γ |Sq |(α |P|) |Sq |). □
If the number of routes in the priority queue is small, the

graph size becomes the main factor related to the memory usage.

Otherwise, the number of routes in the priority queue is the main

factor.

Theorem 3. (Correctness) BSSR guarantees the exact result.

proof: BSSR prunes routes based on the upper and lower

bounds. BSSR safely prunes routes dominated by or equivalent

to the obtained sequenced routes. As a result, BSSR does not

sacrifice the exactness of the search result. □

5.5 Running Example
We demonstrate BSSR with optimization techniques using Exam-

ple 1.1. Table 4 shows routes in priority queueQb and sequenced

routes in S. To compute category similarity and semantic score,

we use Equations (6) and (7), respectively.

First, we process NNinit, and S initially includes {⟨p2,p5,p8⟩,
⟨p2,p5,p7⟩}. 1st step: BSSR starts to find PoI vertices that seman-

tically match Asian restaurant from vq with the threshold of 15.

Then, it finds p1, p2, p6, p10, and p11. Both p2’s and p10’s category
similarities are 1, and their lengths are 6 and 8, respectively. Thus,

p2 comes the top inQb . 2nd step: BSSR searches PoI vertices that

semantically match Arts&Entertainment from p2, and finds p5.
Since ⟨p2,p12⟩ passes through p5 and l (⟨p2,p9⟩) is more than 15,

both routes are not inserted to Qb . 3rd step: as the top route is

⟨p2,p5⟩, BSSR searches PoI vertices that semantically match gift

shop from p5. BSSR does not find any routes due to the thresh-

old. 4th step: BSSR fetches ⟨p10⟩ from Qb and inserts two routes

⟨p10,p5⟩ and ⟨p10,p12⟩ toQb . 5th step: BSSR fetches ⟨p10,p12⟩ and
finds sequenced route ⟨p10,p12,p13⟩. Since ⟨p10,p12,p13⟩ domi-

nates ⟨p2,p5,p8⟩, ⟨p2,p5,p8⟩ is deleted from S. 6th step: The top

route ⟨p10,p5⟩ is deleted from Qb because its length score is not

smaller than the threshold of 13. 7th step: BSSR fetches ⟨p1⟩ and
inserts ⟨p1,p5⟩ and ⟨p1,p9⟩. 8th step: BSSR fetches ⟨p1,p9⟩ and
finds a sequenced route ⟨p1,p9,p8⟩. ⟨p1,p9,p8⟩ is inserted to S,

and ⟨p2,p5,p7⟩ is deleted from S. 9th step: ⟨p1,p5⟩ is deleted due

to the threshold. 10th step: BSSR fetches ⟨p6⟩ and finds a route

⟨p6,p9⟩. 11th step: BSSR finds a sequenced route ⟨p6,p9,p8⟩, and
the route dominates ⟨p1,p9,p8⟩. 12th step: The distance from p11
to the PoI vertices that match A&E is larger than the threshold.

Finally, BSSR returns the set of SkySRs S.

6 VARIATIONS AND EXTENSIONS
The SkySR query has a number of variations and extensions. We

discuss some of these in the following.

Directed graphs: The SkySR query can be easily applied to

directed graphs. We only need to use the Dijkstra algorithm

for directed graphs. Here, no modification of the main idea is

required.

PoI with multiple categories: To treat PoIs with multiple cat-

egories, we can change the definitions of sequenced routes and

category similarity. Specifically, we change condition (ii) in Defi-

nition 3.4 to state that at least one cpi [j] (1 ≤ j ≤ ki) semantically

matches cS [i] for 1 ≤ i ≤ |S|, where cpi [j] is the j-th category

of pi and ki is the number of categories associated with pi . The
category similarity is either the highest or the average value

among the category similarities.

44

Table 4: Example of BSSR algorithm

0 Qb :
S: ⟨p2, p5, p8⟩, ⟨p2, p5, p7⟩

1 Qb : ⟨p2⟩, ⟨p10⟩, ⟨p1⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p2, p5, p8⟩, ⟨p2, p5, p7⟩

2 Qb : ⟨p2, p5⟩, ⟨p10⟩, ⟨p1⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p2, p5, p8⟩, ⟨p2, p5, p7⟩

3 Qb : ⟨p10⟩, ⟨p1⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p2, p5, p8⟩, ⟨p2, p5, p7⟩

4 Qb : ⟨p10, p12⟩, ⟨p10, p5⟩, ⟨p1⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p2, p5, p8⟩, ⟨p2, p5, p7⟩

5 Qb : ⟨p10, p5⟩, ⟨p1⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p2, p5, p7⟩

6 Qb : ⟨p1⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p2, p5, p7⟩

7 Qb : ⟨p1, p9⟩, ⟨p1, p5⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p2, p5, p7⟩

8 Qb : ⟨p1, p5⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p1, p9, p8⟩

9 Qb : ⟨p6⟩, ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p1, p9, p8⟩

10 Qb : ⟨p6, p9⟩, ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p1, p9, p8⟩

11 Qb : ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p6, p9, p8⟩

12 Qb :
S: ⟨p10, p12, p13⟩, ⟨p6, p9, p8⟩

Complex category requirement:We can specifymore detailed

category requirements, such as conjunction, disjunction, and nega-
tion. For example, we can specify that a PoI category is “American

restaurant” or “Mexican restaurant” (disjunction), but not “Taco

Place” (negation). If PoI vertices are associated with more than

two categories, we can specify a conjunction such as “Cafe” and

“Bakery”. Note that the time complexity of our algorithm does

not change if we specify a detailed requirement because the de-

tailed requirements are equivalent to increasing the number of

categories.

Skyline trip planning query: The proposed algorithm can be

applied to the trip planning query without category order. For

searching routes without category order, the proposed algorithm

searches PoI vertices that semantically match a category in a

given set of categories. Then, if the algorithm finds PoI vertices,

it deletes the categories that are already included in the routes

to find next PoI vertices. Note that we need to modify some

definition and scoring functions for routes without category

order. By this procedure, we can find skyline routes efficiently.

SkySR with destination: Note that we can specify the destina-

tion. The simple way to calculate a SkySR with a destination is to

add the distance from the last visited PoI vertex to the destination

to the length score after finding the sequenced route. To improve

efficiency, we traverse PoI vertices from both the destination and

the start point.

7 EXPERIMENTAL STUDY
We perform experiments to evaluate the effectiveness of the

proposed algorithm. All algorithms are implemented in C++ and

run on an Intel(R) Xeon(R) CPU E5620 @ 2.40GHz with 32 GB of

RAM.

7.1 Experimental settings
Algorithm. We compare the proposed BSSR and algorithms

that iteratively find OSRs using the Dijkstra-based solution and

the PNE approach (denoted Dij and PNE, respectively), as de-
scribed in Section 3. We evaluate performance with respect to

(i) response time, and (ii) maximum resident set size (RSS) to

represent memory usage.

Table 5: Summery of dataset

Dataset Area |V | |P | |E |
Tokyo Tokyo 401,893 174,421 499,397

NYC New York city 1,150,744 451,051 1,722,350

Cal California 21,048 87,365 108,863

Dataset. We conduct experiments using various maps (Tokyo,

New York city, and California). Table 5 summarizes each dataset.

For the Tokyo and NYC datasets, the road network is extracted

from OpenStreetMap
3
and the PoI information is extracted from

Foursquare. Each PoI is embedded on the closest edge in the

same way as [10] and is associated with the Foursquare category

trees. Note that the number of category trees in Foursquare is 10.

For the Cal dataset, the road network and PoI information are

available online
4
. The number of categories in the Cal dataset

is 63
5
. For each dataset, we use distances based on longitude

and latitude as edge weights and treat the graphs as undirected

graphs. The graphs are implemented using adjacency lists.

For each dataset, we generate 100 searches, in which the size

of a sequence is |Sq |. The start points are selected randomly from

vertices in the maps. The categories of sequences are selected

randomly from the leaf nodes in the category trees with the con-

straint that they have different category trees. Since the number

of PoI vertices associated with each category is significantly bi-

ased, we select only categories that have a large number of PoI

vertices.

Here, category similarity is calculated based on the Wu and
Palmer similarity measure [19] and the semantic score is calcu-

lated as the product of the category similarities of the sequence

members. Specifically, we calculate the category similarity and

semantic score using the following equations:

sim(c, c ′) = maxci ∈a (c ′)
2·d (cm)

d (c)+d (c ′) , (6)

s (R) = 1 − Π
min(|R |, |Sq |)
i=1 sim(cpR [i], cSq [i]), (7)

where a(c), d (c), and cm denote the set of ancestor categories of

c (including c), the depth of c , and the deepest common ancestor

category of c and ci , respectively.

7.2 Overview of results
First, we present an overview of the performance of all algorithms.

Figure 3 shows the response time with various category sequence

sizes, and Table 6 shows the RSS for a category sequence of size

four. Here, “BSSR w/o Opt” denotes BSSR without optimization

techniques. In Figure 3, there are missing bars for the case of size

of sequence 5, because the executions were not finished after a

month.

BSSR achieves the least response time with all datasets and

reduces the search space by exploiting the branch-and-bound

algorithm and the proposed optimization techniques. By compar-

ing BSSR and BSSR w/o Opt, we confirm that the optimization

techniques increase efficiency. When the size of the category

sequence is small, PNE finds SkySRs efficiently because it can

search for sequenced routes efficiently if the category sequence

size is small. On the other hand, as category sequence size in-

creases, the response time of PNE and Dij increases significantly.

3
https://www.openstreetmap.org

4
http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm

5
Since the PoIs in the Cal dataset have no category tree information, we generate a

category of height three where a non-leaf node has three child nodes.

45

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

2 3 4 5

R
e
s
p
o
n
s
e
 t
im

e
 [
s
e
c
]

Size of sequence |Sq|

BSSR
BSSR w/o Opt

PNE
Dij

(a) Tokyo

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

2 3 4 5

R
e
s
p
o
n
s
e
 t
im

e
 [
s
e
c
]

Size of sequence |Sq|

BSSR
BSSR w/o Opt

PNE
Dij

(b) NYC

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

2 3 4 5

R
e
s
p
o
n
s
e
 t
im

e
 [
s
e
c
]

Size of sequence |Sq|

BSSR
BSSR w/o Opt

PNE
Dij

(c) Cal

Figure 3: Results obtained for the datasets with various |Sq |

Table 6: RSS Comparison

BSSR BSSR w/o Opt PNE Dij
Tokyo 239.6 MB 497.5 MB 239.8 MB 4.8 GB

NYC 658.0 MB 659.4 MB 658.7 MB 9.7 GB

Cal 36.7 MB 53.7 MB 36.6 MB 70.3 MB

Table 7: Effect of initial search for various |Sq |

Dataset Approach Metrics 2 3 4 5

Tokyo

Proposed

Weight sum 0.009 0.013 0.017 0.021

Response time [msec] 3.5 5.1 6.9 8.6

of routes 1.49 1.33 1.36 1.49

Ratio 0.74 0.79 0.82 0.86

Existing Weight sum 0.32 (regardless |Sq |)

NYC

Proposed

Weight sum 0.044 0.066 0.073 0.078

Response time [msec] 10.7 16.5 19.5 24.1

of routes 1.76 1.79 1.81 1.82

Ratio 0.67 0.81 0.85 0.83

Existing Weight sum 1.31 (regardless |Sq |)

Cal

Proposed

Weight sum 0.79 1.28 1.57 1.85

Response time [msec] 1.4 2.3 2.9 3.9

of routes 2.27 2.37 2.28 2.25

Ratio 0.70 0.79 0.85 0.86

Existing Weight sum 12.14 (regardless |Sq |)

If the category sequence size is large, BSSR achieves better per-

formance than PNE and Dij even if we do not use optimization

techniques. By comparing Dij to PNE, it can be seen that their

performance depends on the datasets and the category sequence

size. Although the PNE approach was proposed to be a more

sophisticated algorithm than the Dijkstra-based solution [16],

PNE requires more time than Dij for the NYC and Cal datasets,

which implies that it is not effectively robust to datasets. In terms

of RSS, BSSR and PNE achieve nearly the same performance.

These two algorithms do not store many routes in the priority

queue; therefore, RSS is highly dependent on the graph size. On

the other hand, as Dij stores many routes in the priority queue,

RSS is significantly larger than those of the other algorithms.

Although we do not show the routes returned by each algorithm

due to space limitations, all algorithms output the same routes.

As a result, BSSR achieves the fastest response time with small

memory usage without sacrificing the exactness of the result.

7.3 Optimization Techniques
The optimization techniques improve the efficiency of BSSR.
Here, we evaluate each optimization technique.

Initial Search: We show the search spaces with and without

an initial search for the first modified Dijkstra algorithm to eval-

uate the effect of the initial search. Moreover, we evaluate NNinit
in terms of response time. Table 7 shows the weight sum, which

Table 8: Effect of priority queue for various |Sq |

Dataset Approach 2 3 4 5

Tokyo

Proposed 3750 17600 112000 397000

Distance-based 3890 23500 189000 1760000

NYC

Proposed 13800 108000 172000 637000

Distance-based 14800 165000 444000 1520000

Cal

Proposed 4900 24800 84900 383000

Distance-based 5300 34900 168000 899000

represents the search space, the response time of NNinit, and the
number of sequenced routes found by NNinit for various cate-
gory sequence sizes. In addition, we show the ratio of the length

score of the sequenced route with the largest semantic score

among the sequenced routes found in the initial search to the

length score of the sequenced route whose semantic score is 0 in

the initial search. The weight sum with the initial search is signif-

icantly smaller than that without the initial search. We can avoid

traversing the whole graph using the initial search; thus, this can

significantly reduce the search space of BSSR. Moreover, since

the response time ofNNinit is significantly less than that of BSSR
(Figure 3), we confirm that NNinit can reduce the search space

efficiently. Note that the number of sequenced routes found by

the initial search is not large. On the other hand, the length score

of the sequenced route with the largest semantic score is much

smaller than that of the sequenced route whose semantic score

is 0. As a result, NNinit reduces the search space significantly

without increasing total response time.

Tightening Upper Bound: The priority queue aims at effi-

ciently tightening the upper bound to reduce the search space.

Here, we show the total number of vertices visited by BSSR,
which is highly related to the response time. Table 8 shows the to-

tal number of vertices visited by the proposed priority queue and

distance-based priority queue for various category sequence sizes.

The number of vertices visited by the proposed priority queue is

less than that of the distance-based priority queue. In particular,

as the size of the category sequences increases, the performance

gap increases because, as the category sequence size increases,

the distance-based priority queue cannot find sequenced routes

efficiently. Thus, the upper bound is rarely updated. On the other

hand, the proposed priority queue can update the upper bound

efficiently because the route with the largest size is dequeued

preferentially. Thus, the proposed priority queue is more suitable

than the distance-based approach for finding SkySRs.

Tightening Lower Bound: To tighten the lower bound, we

propose two types of possible minimum distances, i.e., semantic-

match and perfect-match minimum distances. If the minimum

possible distance is large, we can prune routes even if the routes

46

 0

 0.01

 0.02

 0.03

 0.04

 0.05

Tokyo NYC Cal

R
a

ti
o

 o
f

w
e

ig
h

t
s
u

m

Semantic-match
Perfect-match

Figure 4: Effect ofminimum
possible distances

10
0

10
1

10
2

10
3

2 3 4 5

#
 o

f
D

ijk
s
tr

a

Size of sequence |Sq|

with cache
w/o cache

(a) Tokyo

10
0

10
1

10
2

10
3

2 3 4 5

#
 o

f
D

ijk
s
tr

a

Size of sequence |Sq|

with cache
w/o cache

(b) NYC

10
0

10
1

10
2

10
3

2 3 4 5

#
 o

f
D

ijk
s
tr

a

Size of sequence |Sq|

with cache
w/o cache

(c) Cal

Figure 5: Effect of on-the-fly caching for various |Sq |

 0

 1

 2

 3

 4

 5

 6

 7

 8

2 3 4 5

#
 o

f
S

k
y
S

R
s

Size of sequence |Sq|

Tokyo
NYC

Cal

Figure 6: Number of SkySRs for various |Sq |

include a small number of PoI vertices. Figure 4 shows the ratios

of the possible minimum distances to the sum weights of the

initial search when we set the category sequence size to five. The

semantic-match and perfect-match minimum distances in the

Tokyo dataset effectively reduce the search space by tightening

the lower bound. However, different from the Tokyo dataset, the

possible minimum distances in the NYC and Cal datasets are

small. Since the PoI vertices in the two datasets are relatively

concentrated in a small area, the possible minimum distances

become small. The effect of the possible minimum distances

highly depends on the skews of locations of the PoI vertices.

On-the-fly Caching: On-the-fly caching can reuse the re-

sults of former modified Dijkstra algorithm executions; thus,

the number of executions of the Dijkstra algorithm decreases.

Figure 5 shows the numbers of executions of modified Dijkstra

algorithms by BSSR with all optimization techniques and those

except for on-the-fly caching. The number of executions of the

Dijkstra algorithms decreases using on-the-fly caching. In partic-

ular, when the category sequence size increases, the performance

gap increases because, as the category sequence size increases,

we have more opportunities to reuse former results. Thus, we

confirm that on-the-fly caching is effective to reduce the number

of executions of the Dijkstra algorithms.

7.4 Number of skyline sequenced routes
Figure 6 shows the number of SkySRs obtained with each dataset

for various |Sq |. As shown, the Cal dataset returns the largest
number of SkySRs. The response time and RSS obtained with

the Tokyo and NYC datasets are much greater than the those of

the Cal dataset, which implies that the number of SkySRs does

not affect response time and RSS significantly. Moreover, if we

use a complete real-world dataset, we may not require a ranking

function because the number of SkySRs would be small.

Table 9: Example SkySRs in Tokyo

Distance Sequenced route

7451 meters Beer Garden→ Sushi Restaurant→ Sake Bar

1295 meters Bar→ Sushi Restaurant→ Sake Bar

0

13 2

4

Sushi
restaurant

Bar

Sake
Bar

Sake
Bar

Beer
Garden

Sushi
restaurant

Second route
First route

Start
point

Destination

Figure 7: Visualization of routes in Tokyo: black circles
(with 0 and 4) denote a start point and a destination, re-
spectively. Blue and red circles denote sequences of PoIs
for the first and second routes in Table 9, respectively, and
their numbers indicate the order of PoIs to be visited.

7.5 Usecase
We show an example of SkySRs in Tokyo. We assume that we

plan to go to places for dinner and drinks. We want to visit

a “Beer garden”, a “Sushi restaurant”, and a “Sake bar” from

our current location and finally go to our hotel. Table 9 and

Figure 7 show two representative SkySRs from the four identified

SkySRs. Note that the other two routes are similar to either of

the representative routes. In the Foursquare category trees, “Bar”

includes “Beer Garden” and “Sake bar”, and “Japanese restaurant”

includes “Sushi restaurant”. Thus, we find routes using “Bar”

and/or “Japanese restaurant”. The second route is much shorter

than the first route that perfectly matches the user requirement,

and the difference between them is only whether they pass a

“Bar” or “Beer garden”. The best route depends on the users and

situations (e.g., weather); thus, we confirm that SkySRs are useful

to help users make decisions.

8 USER STUDY
We developed a prototype SkySR query service

6
using Open-

StreetMap and the Santander Open Data platform from San-

tander, Spain
7
. Figure 8 shows a screenshot of the prototype

system, which outputs one of the SkySR route. We performed

a test in July, 2017. To gather users for this test, the Santander

municipality arranged meetings with different groups of people

6
https://ss.festival.ckp.jp/OuRouteSuggestion/dispSearchRoute/index. The default

language is Spanish.

7
http://datos.santander.es

47

Figure 8: Screenshot of the prototype system

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Q1 Q2 Q3

R
a

ti
o

 o
f

a
n

s
w

e
rs

1
2
3

Figure 9: Ratios of answers for each question

to present the service: municipal staff (computing, convention

and tourism municipal services), students from vocational train-

ing departments who are developing webpages and apps, and

citizens. We also provided a leaflet that shows the concept of the

SkySR query and how to use the service. In this test, users freely

used the service and answered a questionnaire (25 respondents).

The questionnaire included the following three questions.

Q1 What do you think about this service?

Answer. 1. I love it, 2. I like it, 3. I do not like it.

Q2 Would you recommend it to anyone?

Answer. 1. Yes, 2. Maybe, 3. No.

Q3 Do you think that it is a good idea for the city: citizens,

tourists, commercial sectors?

Answer. 1. Yes, 2. Maybe, 3. No.

We summarize the ratios of answers for each question in Figure

9. As shown, more than 80% of the users liked the service. In

addition, the questionnaire shows that the service is valuable for

the city. From the user experiment, we confirm that the SkySR

query is useful for users and cities.

9 CONCLUSION
In this paper, we have first introduced a semantic hierarchy for

trip planning. We then proposed the skyline sequenced route

(SkySR) query, which finds all preferred routes from a start point

according to a user’s PoI requirements. In addition, we have

proposed an efficient algorithm for the SkySR query, i.e., BSSR,
which simultaneously searches for all SkySRs by a single traver-

sal of a given graph. To optimize the performance of BSSR, we
proposed four optimization techniques. We evaluated the pro-

posed approach using real-world datasets and demonstrated that

it comprehensively outperforms naive approaches in terms of

response time without increasing memory usage or sacrificing

the exactness of the result. Moreover, we developed a SkySR

query service using open data, and conducted a user test, which

confirmed that SkySR queries are useful for both users and cities.

In future work, we would like to extend the proposed approach

in several directions. First, because we assume a forest structure

for the category classification in this paper, a more complex

classification may provide better granularity. Second, because we

have not used any preprocessing techniques such as indexing, we

plan to propose a suitable preprocessing method for the SkySR

query. Finally, although the SkySR query proposed in this paper

considers two scores (length and category similarity), it could be

extended to consider many attributes of a PoI (e.g., text, keywords,

and ratings) and the cost/quality of a graph (e.g., route popularity,

tolls, and the number of traffic lights).

ACKNOWLEDGEMENT
This research is partially supported by the Grant-in-Aid for Sci-

entific Research (A)(JP16H01722) and Grant-in-Aid for Young

Scientists (B)(JP15K21069).

REFERENCES
[1] Saad Aljubayrin, Zhen He, and Rui Zhang. 2015. Skyline Trips of Multiple

POIs Categories. In DASFAA. 189–206.
[2] S Börzsöny, Donald Kossmann, and Konrad Stocker. 2001. The Skyline Opera-

tor. In ICDE. 421–430.
[3] Haiquan Chen, Wei-Shinn Ku, Min-Te Sun, and Roger Zimmermann. 2008.

The Multi-rule Partial Sequenced Route Query. In ACM SIGSPATIAL GIS. 1–10.
[4] Jian Dai, Chengfei Liu, Jiajie Xu, and Zhiming Ding. 2016. On Personalized

and Sequenced Route Planning. World Wide Web 19, 4 (2016), 679–705.
[5] Jochen Eisner and Stefan Funke. 2012. Sequenced route queries: Getting things

done on the way back home. In ACM SIGSPATIAL. 502–505.
[6] Pierre Hansen. 1980. Bicriterion path problems. In Multiple criteria decision

making theory and application. 109–127.
[7] Xuegang Huang and Christian S Jensen. 2005. In-route skyline querying for

location-based services. In W2GIS. 120–135.
[8] H-P Kriegel, Matthias Renz, and Matthias Schubert. 2010. Route Skyline

Queries: A Multi-preference Path Planning Approach. In ICDE. 261–272.
[9] Eugene L Lawler and David E Wood. 1966. Branch-and-bound Methods: A

Survey. Operations research 14, 4 (1966), 699–719.

[10] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-

Hua Teng. 2005. On Trip Planning Queries in Spatial Databases. In SSTD.
273–290.

[11] Jing Li, Yin David Yang, and Nikos Mamoulis. 2013. Optimal Route Queries

with Arbitrary Order Constraints. TKDE 25, 5 (2013), 1097–1110.

[12] Xiaobin Ma, Shashi Shekhar, Hui Xiong, and Pusheng Zhang. 2006. Exploiting

a Page-level Upper Bound for Multi-type Nearest Neighbor Queries. In ACM
GIS. 179–186.

[13] Ernesto Queiros Vieira Martins. 1984. On a multicriteria shortest path problem.

European Journal of Operational Research 16, 2 (1984), 236–245.

[14] Yutaka Ohsawa, Htoo Htoo, Noboru Sonehara, and Masao Sakauchi. 2012.

Sequenced Route Query in Road Network Distance based on Incremental

Euclidean Restriction. In DEXA. 484–491.
[15] Philip Resnik. 1995. Using Information Content to Evaluate Semantic Similar-

ity in a Taxonomy. In IJCAI. 448–453.
[16] Mehdi Sharifzadeh, Mohammad Kolahdouzan, and Cyrus Shahabi. 2008. The

Optimal Sequenced Route Query. The VLDB Journal 17, 4 (2008), 765–787.
[17] Michael Shekelyan, Gregor Jossé, and Matthias Schubert. 2015. Linear Path

Skylines in Multicriteria Networks. In ICDE. 459–470.
[18] Yuan Tian, Ken CK Lee, and Wang-Chien Lee. 2009. Finding Skyline Paths in

Road Networks. In ACM SIGSPATIAL GIS. 444–447.
[19] Zhibiao Wu and Martha Palmer. 1994. Verbs Semantics and Lexical Selection.

In ACL. 133–138.
[20] Bin Yang, Chenjuan Guo, Christian S Jensen, Manohar Kaul, and Shuo Shang.

2014. Stochastic Skyline Route Planning under Time-varying Uncertainty. In

ICDE. 136–147.

48

	Sequenced Route Query with Semantic HierarchyYuya Sasaki, Yoshiharu Ishikawa, Yasuhiro Fujiwara, Makoto Onizuka

