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ABSTRACT

Many applications require similarity query processing. Most ex-
isting work took an algorithmic approach, developing indexing
structures, algorithms, and/or various optimizations. In this work,
we choose to take a different, systems-oriented approach. We de-
scribe the support for similarity queries in Apache AsterixDB, a
parallel, open-source Big Data management system for NoSQL
data. We describe the lifecycle of a similarity query in the system,
including the support provided at the query language level, in-
dexing, execution plans (with and without indexes), plan rewrites
to optimize query execution, and so on. Our approach leverages
the existing infrastructure of AsterixDB, including its operators,
parallel query engine, and rule-based query optimizer. We have
conducted an experimental study using several large, real data sets
on a parallel computing cluster to evaluate AsterixDB’s support
for similarity queries, and we share the efficacy and performance
results here.

1 INTRODUCTION

Similarity queries compute answers satisfying matching condi-
tions that are not exact but approximate. The problem of sup-
porting similarity queries has become increasingly important in
many applications, including search, record linkage [1], data clean-
ing [27], and social media analysis [4]. For instance, during a live
phone conversation with a client, a call center representative might
wish to immediately identify a product purchased by the customer
by typing in a serial number. The system should locate the product
even in the presence of typos in the search number. A social media
analyst might want to find user accounts that share common hob-
bies or social friends. A medical researcher may want to search
for papers whose title is similar to a particular article. In each of
these examples the query includes a matching condition with a
similarity function that is domain specific, such as edit distance
for a keyword or Jaccard for sets of hobbies.

There are two basic types of similarity queries. One is search, or
selection, which finds records similar to a given record. The other
is join, which computes pairs of records that are similar to each
other. There have been many studies on these two types of queries,
both with and without indexes. A plethora of data structures,
partitioning schemes, and algorithms have been developed to
support similarity queries efficiently on large data sets. When the
computation is beyond the limit of a single computer, there are
also parallel solutions that support queries across multiple nodes
in a cluster. (See Section 1.1 for an overview.) The techniques
developed in the last two decades have significantly improved the
performance of similarity queries and have enabled applications
to support such queries on millions or even billions of records.

Most existing work has taken an algorithmic approach, de-
veloping index structures and/or algorithmic optimizations. We
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have taken a different, systems-oriented approach — tackling the
problem of supporting similarity queries end-to-end in a full,
declarative parallel data management system setting. Here we
explain how such queries are supported in Apache AsterixDB, an
open-source parallel data management system for semi-structured
(NoSQL) data. By “end-to-end”, we refer to the whole lifecycle
of a query, including query language support for similarity condi-
tions, internal index structures, execution plans with or without an
index, plan rewriting to optimize execution, and so on.

Achieving our goal has involved several challenges. First, as
similarity in queries can be domain specific, we need to support
commonly used functions as well as letting users provide their
own customized functions. Second, due to the complex logic of
existing algorithms, we need to consider how to support them
using existing operators without “reinventing the wheel” (without
introducing new, ad hoc operators). Third, we need to consider
how to leverage an existing query optimizer framework to rewrite
similarity queries to achieve high performance. In this paper we
discuss these challenges and offer the following contributions:

(1) We show how to extend the existing query language of
AsterixDB to allow users to specify a similarity query, either by
using a system-provided function or specifying their own logic as
a user-defined function (Section 3).

(2) We show how to implement state-of-the-art techniques using
existing operators in AsterixDB, both for index-based and non-
index-based plans (Section 4) and for both search and join queries.
Our solution not only allows the query plans to benefit from the
built-in optimizations in those operators, but also to automatically
enjoy future improvements in these operators.

(3) We show how to rewrite similarity queries in an existing
rule-based optimization framework (Section 5). A plan for an ad
hoc similarity join can be very complex. As an example, a three-
stage join plan based on the technique in [34] can involve up to
77 operators (Section 5.2). To enable the optimizer to more easily
transform such complex plans, we developed a novel framework
called “AQL+" that takes a two-step approach to rewriting a plan.
A major advantage of the framework is that it allows AsterixDB to
support queries with more than one similarity join condition, mak-
ing it the first parallel data management system (to our knowledge)
to support similarity queries with multiple similarity joins.

(4) We present an empirical study using several large, real data
sets on a parallel cluster to evaluate the effects of these techniques.
The results show the efficacy of AsterixDB’s support for parallel
similarity queries on large data sets. (Section 6).

1.1 Related Work

There are various kinds of similarity queries on strings and sets.
For string similarity search, many algorithms use a gram-based
approach (e.g., [5, 20, 29]). VGRAM [19] extends the approach
by introducing variable-length grams. For string similarity join,
filtering techniques are widely used. Length filtering uses the
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length of a string to reduce the number of candidates. For ex-
ample, an algorithm called gram-count [15] utilizes the fact that
for two strings to be similar based on a threshold 6, their length
difference should be within é. Prefix filtering [3, 7, 12, 22, 26,
28, 35, 37-39] utilizes the fact that two strings are similar only
if they share some commonality in their prefixes. Many algo-
rithms have been proposed based on this observation, such as All-
Pair [3], PPJoin [39], PPJoin+ [39], MPJoin [28], ED-Join [38],
AdaptJoin [35], QChunk [26], VChunk [37], and Pivotal pre-
fix [12]. Other related algorithms exist such as M-Tree [9] and
trie-Join [14]. There have been several evaluation studies about
string-similarity [18] and set-similarity joins [24]. There is a recent
survey about string similarity queries [25]. The authors of [18]
found that AdaptJoin [35] and PPJoin+ [39] were best for Jac-
card similarity. Meanwhile, the authors of [24] concluded that
AllPair [3] was still competitive. The authors of [25] discussed
prefix-filtering techniques. Many of these algorithms assume the
data to be searched or joined can fit in main memory.

For parallel similarity join, a number of studies have used the
MapReduce framework [11, 21, 31, 34, 36]. There is one survey
that discusses parallel similarity join [13]. Vernica et al. [34]
proposed a three-stage algorithm in such a setting. There are also
studies on integrating similarity join into database management
systems [10, 15, 16, 30, 32]. Some adopted similarity join as a
UDF or express a similarity join in a SQL expression; others
introduced a relational operator to support similarity joins.

Our focus is different, as it is about supporting similarity in a
general-purpose parallel database system context. We needed to
address various systems-oriented challenges when adopting exist-
ing techniques in this context. System-wise, a parallel similarity
query processing system, Dima [33], has been proposed recently.
A key difference is that Dima is an in-memory based system, un-
like AsterixDB. There are some search systems and DBMSs that
support similarity queries, including Elasticsearch, Oracle, and
Couchbase. Unlike AsterixDB, Elasticsearch is middleware and it
focuses on search, not join. Oracle supports edit distance via an
extension package if a specific type of index is created. Couchbase
supports edit distance searches on NoSQL data in its new full-text
search service, but only via a separate full-text API (not its N1QL
query language). In contrast, AsterixDB provides a general class
of similarity functions for strings that work for both select and
join operations, and a similarity predicate can be part of a general
query along with non-similarity predicates.

2 PRELIMINARIES
2.1 Similarity Functions

A similarity measure is used to represent the degree of similarity
between two objects. An object can be a string or a bag of ele-
ments. There are various types of similarity measures depending
on the objects that are being compared. In this paper, we focus
on two widely used classes of measures, namely string-similarity
functions and set-similarity functions.

String-Similarity Functions: One widely used string similarity
function is edit distance, also known as Levenshtein distance.
The edit distance between two strings r and s is the minimum
number of single-character operations (insertion, deletion, and
substitution) required to transform r to s. For instance, the edit
distance between “james” and “jamie” is 2, because the former
can be transformed to the latter by inserting “i” after “m” and
deleting “s”. There are other string-similarity functions such as
Hamming distance and Jaro-winkler distance.
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Set-Similarity Functions: These are used to represent the simi-
larity between two sets. There are many such functions, such as
Jaccard, dice, and cosine. In this paper, we focus on Jaccard simi-
larity, which is one of the most common set-similarity measures.
For two sets r and s, their Jaccard similarity is Jaccard(r,s) =

}:Gz} . For example, the Jaccard similarity between r = {“Good”,
1

“Product”, “Value”} and s = {“Nice”, “Product™} is j.
Such set-similarity functions can also be utilized to measure the
similarity between two strings by tokenizing them (i.e., into n-
grams or words) and measuring the set similarity of their token
multisets. Dice and cosine values can be calculated similarly.
Similarity Search: Similarity search finds all objects in a collec-
tion that are similar to a given object based on a given similarity
metric. Let sim be a similarity function, and § be a similarity
threshold. An object r from a collection R is similar to a query
object q if sim(r,q) > .

Similarity Join: Joins find similar (r,s) pairs of objects from two
collections R and S, where r € R, s € S, and sim(r,s) > §.

2.2 Answering Similarity Queries

For similarity queries, using a brute-force, scan-based algorithm
is computationally expensive, so there have been many studies in
the literature to support similarity queries more efficiently. One
widely used method is the gram-based approach, which utilizes
the n-grams of a string. An n-gram of a string r is a substring of
r with length n. For instance, the 2-grams of string “james” are

” LLT3

{“ja”, “am”, “me”, “es”}.
(review-id usernami review-summary
1 james | This movie touched my heart!
( 2 mary | The best car charger | ever
[ 3 mario | Different than my usual but good
(4 jamie | Great Product - Fantastic Gift
[ 5 maria | Better ever than | expected

Figure 1: Example data of Amazon reviews (simplified).

String-similarity queries can be answered by utilizing an n-
gram inverted index. For each gram g of the strings in a collection
R, there is an inverted list [; of the ids of the strings that include
this gram g. Figure 2 shows the inverted lists for the 2-grams of
the “username” field of the sample Amazon reviews in Figure 1.

gram | am | ar | es | ia ie io ja | ma | me | mi ri ry
1 2 1 5 4 3 1 2 1 4 3 2
inverted 4 | 3 4|3 5
5 5

Figure 2: Inverted lists for 2-grams of the ‘“username” field.

We can answer a string-similarity query by computing the n-
grams of the query string and retrieving the inverted lists of these
grams. We then process the inverted lists to find all string ids that
occur at least T times, since a string » within edit distance k of
another string s must share at least T = |G(r)| — k X n grams with
s [17]. This problem is called the T-occurrence problem. Solving
the T-occurrence problem yields a set of candidate string ids. The
false positives are removed in a final verification step by fetching
the strings of the candidate string ids and computing their real
similarities to the query. As an example, given a gram length n = 2,
an edit distance threshold k = 1, and a query string ¢ = “marla”,
Figure 3 illustrates how to find the similar usernames from the
data in Figure 1. We first compute the 2-grams of q as {“ma”,
“ar”, “rl1”,“la”} and retrieve the inverted lists of these 2-grams.
We consider the records that appear at least T = 4 -2X1 =2
times on these lists as candidates, which have review-ids 2, 3, and
5. Last, we compute the real similarity for these candidates, and



the review-id 5 is the final answer. Note that if the threshold T < 0,
then the entire data collection needs to be scanned to compute the
results, which is called a corner case. In the above example, if the
threshold is 3, then T = 4 — 2 X 3 = —2, causing a corner case.

ma ar rl la  (Gandidate | Verification |
( 2 X
( 3 X
C 5 v

Figure 3: Answering an edit-distance query for “q”=marla
and T=2.

2.3 Apache AsterixDB

Initiated in 2009, the AsterixDB project integrated ideas from
three distinct areas — semi-structured data, parallel databases, and
data-intensive computing — to create an open-source software plat-
form that scales on large, shared-nothing commodity computing
clusters. AsterixDB consists of several software layers. The top-
most layer provides a parallel DBMS with a full, flexible data
model (ADM) and query languages (AQL/SQL++) for describing,
querying, and analyzing data. The next layer, a query compiler
based on Algebricks [8], is used for parallel query processing.
This algebraic layer receives a translated query plan from the
upper layer and transforms it using rule-based optimization. It
also generates Hyracks jobs to be executed on the Hyracks [6]
layer. It provides storage facilities for datasets that are stored and
managed by AsterixDB as partitioned LSM-based B+-trees with
optional LSM-based secondary indexes [2]. AsterixDB translates
a computation into a directed-acyclic graph (DAG) of operators
and connectors, and sends it to Hyracks for execution.

Each record in an AsterixDB dataset is identified by a unique
primary key and records are hash-partitioned across the nodes on
their primary keys. Each partition is locally indexed by a primary
key in an LSM B+-tree, a.k.a. the primary index, and resides on its
node’s local storage. AsterixDB also supports secondary indexing,
including B+-tree, R-tree, and inverted indexes, partitioned in the
same way as the primary index.

3 USING SIMILARITY QUERIES

In this section, we discuss similarity measures supported in As-
terixDB and how users express similarity queries. We also show
how users can specify indexes to expedite query processing.

3.1 Supported Similarity Measures

AsterixDB supports two similarity measures, edit distance and Jac-
card, to solve string and set similarity queries. Both measures can
be processed with or without indexes. Let us focus on edit distance
first. It can be calculated on two strings. As an extension in Aster-
ixDB, edit distance can also be computed between two ordered
lists. For example, the edit distance between ["Better", "than",
"T", "expected"] and ["Better", "than", "expected"] is
1. This generalization is possible since a character in a text string
can be viewed as an element on an ordered list if we think of a
string as a collection of ordered characters.

A Jaccard value can be computed on two lists of elements.
If a field type is string, a user can use a tokenization function
such as “word-tokens ()” to make a list of elements from
the string. For example, it is possible to calculate the Jaccard
similarity between two strings by tokenizing each string into a list
of words. The types of the elements on a list should be the same.

If a user wishes to use their own similarity measure, they can opt
to create a user-defined function (UDF). A UDF can be expressed
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in AQL or SQL++ (two query languages supported by AsterixDB)
or implemented as an external Java class. If the desired UDF
can be expressed in AQL or SQL++, the user can create such a
function using the following syntax.

create function similarity-cosine(x, y) {

3.2 [Expressing Similarity Queries

AsterixDB provides two ways to express a similarity query in AQL
or SQL++, illustrated by the example AQL in Figure 4. These
queries find the record pairs from the Amazon review dataset that
have similar summaries. In Figure 4(a) before the actual query, the
similarity function and threshold are defined with a “set” state-
ment. The query then uses a similarity operator “~=", which is a
syntactic sugar defined for similarity functions. The “~="" operator
computes the similarity between its two operands according to
the “simfunction” and “simthreshold,” and returns the
records that are similar. The same query can be written without
using the similarity operator by a more experienced user. In Fig-
ure 4(b), the query uses the “similarity-jaccard()” func-
tion, and this query is equivalent to that in Figure 4(a). The first

syntax can be easier to use since default settings for “simfunction”

and “simthreshold” exist so that a user does not need to pro-
vide the two “set” statements. In addition, the user does not
need to know the exact function name. Also, if the user wants
to change the similarity function, they only need to change the
“set” statements without changing the query itself. During query
parsing and compilation, it is easy for the optimizer to detect this
syntactic sugar and generate a desired optimized plan. On the
other hand, the second form gives the user more direct control.
There are a few variations of similarity functions in AsterixDB,
e.g., one that can do early termination during the evaluation, and

a user can freely choose any of them.
use dataverse TextStore;

set simfunction '-jaccard';
simthreshold '0.5';

$tl in dataset AmazonReview

$t2 in dataset AmazonReview

set
for
for
where word-tokens (S$tl.summary) ~= word-tokens ($t2.summary)
return { 'summaryl': $tl, 'summary2': $t2 }

(a) ~= Notation
use dataverse TextStore;
for st1 in dataset AmazonReview
for $t2 in dataset AmazonReview
where similarity-jaccard (word-tokens ($tl.summary),

word-tokens ($t2.summary)) >= 0.5

return { 'summaryl': S$tl, 'summary2': $t2 }

(b) Function Notation

Figure 4: AQL join on the “summary” field of the Amazon
reviews using Jaccard similarity.

3.3 Using Indexes

Without an index, AsterixDB scans the whole dataset to compute
the result for the given query. To expedite the execution, Aster-
ixDB supports two kinds of inverted indexes. The first type, called
“keyword index,” uses the elements of a given unordered list, and
is suitable for Jaccard similarity. The two queries in Figure 4 could
utilize a keyword index on the “summary” field. A keyword index
can be created using the following DDL statement, where “smix”
is the index name:



create index smix on AmazonReview (summary) type keyword;

The second index type is “n-gram index,” and is suitable for
edit distance. An n-gram index uses the extracted n-grams of a
string as the keys, and maps those keys to their corresponding
primary ids. The following is an example DDL statement to create
a 2-gram index on the “reviewerName” field:

create index nix on AmazonReview (reviewerName) type ngram(2) ;

4 EXECUTING SIMILARITY QUERIES

In this section, we discuss how similarity queries are internally
executed in AsterixDB. First, we present the execution flow for
a similarity query in the presence of an index, then describe the
execution flow when no index is available.

4.1 Executing Similarity Selections

We first present the execution strategy for selection queries. We
use an example query to explain the execution flow for Figure 5,
which computes the edit distance between a field V of a dataset
and a constant C.

for stl in dataset bar
where edit-distance ($t1.V, C) < 2
return {"id": $tl1.id, "field":S$tl1.V}

Figure 5: A similarity-selection query.

4.1.1 Index-Based Search Execution. When running the
above query on a cluster with multiple nodes, the query coor-
dinator (a.k.a. cluster controller) sends a request containing the
constant search key C to each participating node, since Aster-
ixDB uses a shared-nothing architecture. Figure 6 illustrates how
a similarity-selection query is executed using a secondary inverted
index on a 3-node cluster. Each node contains a partitioned pri-
mary index and a local inverted index.

S Inverted Index
P Primary Index

Sel Verification

Step 2 i
e a9 aas

Node Controller A Node Controller B Node Controller C

Figure 6: Parallel execution of a similarity-selection query.

If an index is available, AsterixDB runs an index-based selec-
tion plan at each node. It first gives the constant value C to the
secondary inverted index. The secondary-inverted-index search
generates (SecondaryKey, PrimaryKey) pairs that satisfy the T-
occurrence condition, which may include false positives. It then
looks up these primary keys in the primary index to fetch their
corresponding records. The primary keys are sorted prior to this
search to increase the chance of page cache hits in the buffer. After
the primary-index search, a SELECT operator is applied to remove
false positives and generate the final results. If the similarity con-
dition is selective enough, such an index-based search plan can be
much more efficient than a non-index-based plan that uses SCAN
and SELECT operators. Once the local results are generated at
each node, they are sent to the coordinator to be combined.

The compiler generates a non-index-based selection plan (the
left part of Figure 7). The optimizer then transforms the initial plan
to an index-based selection plan if there is an applicable index.
We will discuss this rewriting process further in Section 5.1.
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{
Select V~=C
? Local
Assign V (Secondary key)
F Local
Search Primary Index
? Local
Sort Primary keys
FTLocal
Search Secondary Index
T Broadcast to

C all nodes

f
SelectV~=C
— )
Assign V (secondary key) Rewrite
f Local
Scan Primary Index
Tt to

all nodes

Non-Index-Based Plan Index-Based Plan

Figure 7: A similarity-selection query plan

4.1.2 Non-Index-Based Search Execution. Similar to index-

based execution, when there are multiple nodes, the coordinator

sends a request containing the search key C to all the nodes. At
each node, as there is no index on the field in the given similarity
condition, AsterixDB scans the primary index, fetches all records,
and verifies the similarity condition on the given field for each
record. This process was depicted on the left part of Figure 7.
Finally, the results will be returned to the coordinator.

4.2 Executing Similarity Joins

A join has two branches as its input. We call the first one the “outer

branch” and the second one the “inner branch.” For example, in
Figure 8, the AQL variable $¢1 refers to the outer branch and $¢2
refers to the inner branch.

for $t1 in dataset bar

for $t2 in dataset foo

where similarity-jaccard($tl.A, $t2.B) > 0.5

return {"ofl": $t1.f1, "of2": S$t1.f2, "A": Stl.A,
"if1": $t2.f1, "if2": $t2.£f2, "B": $t2.B}

Figure 8: A similarity-join query.

4.2.1 Index-Based Join Execution. Similar to the similarity-
selection case, where a predicate was broadcast to all nodes, the
records from the outer branch of each node are broadcast to all
nodes in the similarity-join case. Figure 9 depicts how a similarity-

join query is executed using a secondary inverted index on a

3-node cluster.
Inverted Index

Cluster S
« | Controller J* P

Primary Index

"
‘Stepd 4 u 4 .4 Sel| Verification
, .
/ 3 Outer side
Out
_'—>S — P —VSil, i tuples

Node Controller B

Step 2
Ouhsr S —> P —>S_|

Node Controller C

Step 3

Oulsr S — P —>Si||

Node Controller A

Figure 9: Parallel execution of a similarity-join query.

The coordinator sends the query request to each participating
node. Each node of an outer-branch partition scans the outer-
branch data and broadcasts its records to all nodes with a secondary-
index partition. This broadcast replicates all records of the outer-
branch on each node where the secondary-index search will be
performed. Each node with an index-side partition uses the in-
coming outer-branch records as well as its local ones to search



its local inverted index. Once each secondary-index partition has
processed all the records from the outer branch, the resulting pri-
mary keys from the search will be fed into the primary index, and
a primary-index search will be executed. Again, the primary keys
are sorted before the primary-index search to increase the chance
of page cache hits. As before, we need to remove false positives
from the index-based subplan using a SELECT operator on the
original similarity condition, which is taken from the join operator.
This plan is depicted on the right part in Figure 10. Finally, the
results are sent to the coordinator to be combined.

Join

A~=B
Broadcast Local
to all node oca
Assign B (Secondary key)

{
SelectA~=B
? Local
Assign B (secondary key)
F Local

Search Primary Index
Subtree —WJ T Local
(outer dataset)

Scan Primary Index Sort Primaliy ke'ys
) Rewrite oca
(inner dataset) Search Secondary Index

(inner dataset)
Broadcast to all nodes?

Subtree

(outer dataset) J

Non-Index-Based (Logical Plan) Index-Based Plan

Figure 10: A similarity-join query plan.

4.2.2 Non-Index-Based Join Execution. When there is
no index, a simple nested-loop join could be performed. The
outer branch would feed the predicate from each record to the
primary index of the inner branch. The complexity of this solution
is quadratic. To avoid a costly nested-loop join, we instead adopt
a three-stage algorithm [34] in AsterixDB.

Since this algorithm uses a prefix-filtering method, a global
token order needs to be established to generate a prefix for each
field value. This global token order can be any arbitrary order, and
we choose the increasing token-frequency order, which tends to
generate fewer candidate pairs [34]. The first stage computes a
global token order by counting the frequency of each token in the
tokenized data and sorting the tokens based on their frequencies.
In the second stage, the algorithm computes a short prefix subset
for each set based on the global token order produced in the first
stage. Then, the record id and only the join attribute of each record
are replicated and repartitioned by hashing its prefix tokens. After
the repartitioning step, candidate pairs are generated by grouping
the pairs by their ids, and the similarity is computed for each pair
to filter out the dissimilar ones. This stage produces only similar
record id pairs. Finally, the third stage rescans the inputs to fetch
the rest of the record fields for these id pairs.

To apply this algorithm in AsterixDB, rather than implementing
new operators and complex query plans, we chose to represent the
algorithm using existing AQL constructs such as “for”, “let”,
“group by”, and “order by” since this approach is more ex-
tendable in the future. In addition, if/as we improve existing op-
erators, we do not need to modify the given AQL to utilize the
improved operators. Figure 11 shows an AQL query capturing
the three stages for a self-similarity join on the “summary” field
of the Amazon Review dataset, using Jaccard similarity with a
threshold; each step is implemented using basic AQL constructs
and functions. We now discuss the details of these three stages.

Stage 1: Token Ordering is expressed in lines 11-18 of Fig-
ure 11. In this subquery we iterate over the records in the dataset.
For each record, we retrieve the tokens in the “summary” field and
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/l —— - Stage 3 - ——
for SARevIeft in dataset ('ARevs')
for $ARevRight in dataset ('ARevs')
for S$ridpair in
// — - Stage 2 - —
for $ARevieft in dataset ('ARevs')
let $lenleft := len($ARevleft.summary)
let stokensleft :=
for StokenUnranked in $ARevleft.summary
for StokenRanked at $i in
/l —— - Stage 1 - ——
for St in dataset ('ARevs')
let $id := $t.ARev_id
for Stoken in word-tokens ($t.summary)
/++ hash */
group by S$tokenGrouped := S$token with $id
order by count ($id), $tokenGrouped
return StokenGrouped
where $tokenUnranked = /#+ bcast #/ $tokenRanked
order by $i
return $i
for SprefixTokenleft in subset-collection ($tokensleft, 0,
prefix-len—-jaccard($lenleft, .5f) — $lenleft + len($Stokensleft))
for $ARevRight in dataset ('ARevs')
let $lenRight := len($ARevRight.summary)
let StokensRight :=
for StokenUnranked in $ARevRight.summary
for StokenRanked at $i in
/l —— - Stage 1 - ——
for St in dataset ('ARevs')
let $id := $t.ARev_id
for Stoken in word-tokens ($t.summary)
/++ hash */
group by S$tokenGrouped := Stoken with $id
order by count ($id), $tokenGrouped
return StokenGrouped
where $tokenUnranked = /#+ bcast #/ $tokenRanked
order by $i
return $i
for S$prefixTokenRight in subset-collection (
StokensRight, 0, prefix-len-jaccard($lenRight, .5f))
where S$prefixTokenLeft = $prefixTokenRight
let $sim := similarity-jaccard($tokensleft, $tokensRight, .5f)
where $sim >= .5f and $ARevleft.ARev_id < S$ARevRight.ARev_id
group by S$idleft := $ARevleft.ARev_id,
$idRight := $ARevRight.ARev_id with $sim
return {'idLeft': $idLeft, 'idRight': $idRight, 'sim': $sim[0]}

where $ridpair.idleft = $ARevLeft.ARev_id and

Sridpair.idRight = $ARevRight.ARev_id
order by $ARevleft.ARev_id, $ARevRight.ARev_id
return {'left': $ARevleft, 'right': $ARevRight, 'sim': $ridpair.sim}
Figure 11: Three-stage set-similarity algorithm expressed in
AQL for a self join on the Amazon Review (ARevs) dataset
using Jaccard similarity with a threshold of 0.5.

count the number of occurrences of each token using a group-by
clause. To expedite this calculation, we use a compiler hint in line
15, which suggests using hash-based aggregation instead of the
default sort-based aggregation for the group-by statement, since
the order of tokens at this particular step is not meaningful. Finally,
we order the tokens based on their count using an order-by clause.
The same subquery is repeated later, in lines 30-37, in the context
of the second dataset. During the optimization, the optimizer will
detect the common subquery and execute the subquery only once
using a replicate operator to send the results to both outer plans.
More details can be found in Section 5.4.2.

Stage 2: Record ID (RID)-Pair Generation is expressed in lines
5-50. We scan the dataset in line 6, then retrieve each token from
the “summary” field. We order the tokens by the rank computed
in the first stage (lines 12-23) by joining the set of tokens in one
summary with the set of ranked tokens. We use a hint in line
19 that advises the compiler to use a broadcast join operator to



broadcast the ranked-tokens. Next, we order the join results by
rank, stored in the variable “$i.” We then extract the prefix tokens
in line 22, and use the “prefix—-len-jaccard()” built-in
function to compute the length of the prefix for Jaccard similarity
with a threshold of 0.5. The built-in “subset-collection ()”
function extracts the prefix subset of the tokens. The same process
of tokenizing, ordering the tokens, and extracting the prefix tokens
is done in lines 25-42 for the second stream of the dataset. We
then join the two streams on their prefix tokens in line 44, and
compute and verify the similarity of each joined pair. We use the
built-in “similarity-jaccard () ” function to compute the
similarity. Since a pair of records can share more than one token
in their prefixes, duplicate pairs could be produced, and they are
eliminated by using a group-by clause in line 48.

Stage 3: Record Join is expressed in lines 1-4 and 51-54, which
consists of two joins. The first join adds the record information
for the first RID of each RID pair, while the second join adds the
record information for the second.

The plan resulting from this large AQL query is shown in Fig-
ure 12. In the figure, “Hash repartition” means that a tuple is
repartitioned to a corresponding node based on its hashed value.
With “Hash repartition merge,” a step of merging tuples based on
sort field values occurs after a “Hash repartition.” To transform
a logical plan generated from a user’s similarity join query to
the three-stage-similarity query plan utilizing the AQL in Fig-
ure 11, we develop a new framework called AQL+, which will be
discussed in Section 5.2.
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Stage 1 [T . Hash repartition
Merge (Count Hash Group (RID Pairs)
erge (Count) » Hash repartition
Hash repartition merge

Verify RID Pairs
Local
Hash Join (Token)
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Prefix J Prefix
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Hash Group (Token)
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Figure 12: A logical plan of a three-stage-similarity join.

5 OPTIMIZING SIMILARITY QUERIES

In this section, we discuss how AsterixDB optimizes similarity
queries and describe the AQL+ framework.

5.1 Rewriting a Similarity Query

AsterixDB uses rule-based optimization [8]. A logical plan is
constructed from a given query, and each optimization rule is tried
on this plan. If a rule is applicable, then the plan is transformed. A
logical plan involving a dataset always starts with a primary-index
scan, followed by a SELECT operator if there is one or more
conditions. A non-index similarity query plan is constructed first,
and an index-based transformation or a three-stage-similarity join
can be introduced during the optimization.
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5.1.1 Rewriting a Similarity-Selection Query. Figure 7
showed how a similarity-selection query is optimized to use an
index. The left-hand side shows the original scan-based query
plan, and the right-hand side shows the optimized plan. Based on
a selection operator with a similarity condition (using the “~="
notation), the optimizer tries to replace the primary-index scan
with a secondary-index-based search plan.

To rewrite a similarity-selection query, the optimizer first matches
an operator pattern consisting of a pipeline with a SELECT op-
erator and a PRIMARY-INDEX SCAN operator. Next, it ana-
lyzes the condition of the given SELECT operator to see if it
contains a similarity condition and if one of its arguments is
a constant. If so, it determines whether the non-constant argu-
ment originates from the PRIMARY-INDEX SCAN operator and
whether the corresponding dataset has a secondary index on a
field variable V. For each secondary index on V, it checks an
index-to-function-compatibility table (Figure 13) to determine its
applicability. For example, an n-gram index can be utilized for
the “edit-distance () ” function. The final SELECT operator
filters out false positives.

(Index Type | Supported Functions )

( n-gram edit-distance(), contains()j
C keyword I similarity-jaccard()

Figure 13: Index-function compatibility table.

Corner cases: Recall that for queries using edit distance, the
lower bound on the number of common g-grams (or tokens) may
become zero or negative. For such a corner case, the optimizer
must revert to a scan-based plan even if an index is available. For
selection queries, it can foresee such cases at compile time when
applying the corresponding index-rewrite rule by analyzing the
constant argument in the similarity condition. When detecting a
corner case, it simply stops rewriting the plan. Note that no such
corner cases are possible for similarity queries based on Jaccard,
because if two sets have no elements in common, then they can
never reach a Jaccard similarity greater than 0. In contrast, two
strings could be within a certain (large) edit distance even if the
n-gram sets of the (short) strings have no common elements.

5.1.2 Rewriting a Similarity-Join Query. The basic rewrit-
ing of a similarity-join query using an index is shown in Figure 10.
The optimized plan on the right-hand side uses an index-nested-
loop join strategy. Similar to the rewrite for selection queries,
the optimizer replaces the primary-index scan of the inner branch
with a secondary-index search followed by a primary-index search.
Thus, it is required that the inner branch of the join is a primary-
index scan, while the outer branch could be an arbitrary operator
subtree (shown as “Subtree” in the figure). In the optimized plan,
the outer branch feeds into the secondary-index search operator,
i.e., every record from “Subtree” will be used as a search key to
the secondary index.

As in the similarity-selection case, the optimizer needs to re-
move false positives from the index-based subplan with a SELECT
operator on the original similarity condition, which is taken from
the join operator. Notice the “broadcast” connection between the
outer subtree and the secondary-index search, which signifies that
each partition executing the “Subtree” plan will broadcast its out-
put stream’s records to all the secondary-index partitions. The op-
timizer first matches the required operator pattern consisting of a
JOIN that has at least one input coming from a PRIMARY-INDEX
SCAN. Next, it analyzes the join condition to make sure the simi-
larity function has two non-constant arguments. If so, it continues



by checking if the inner argument B of the similarity condition is
produced by the join input from the PRIMARY-INDEX SCAN,
and whether the corresponding dataset has applicable secondary
indexes. Finally, the optimizer consults the index compatibility
matrix to decide whether it can rewrite the query using an index.

Non-Corner Case

Select A~=B
Local
Assign B (secondary key)
Local
Search Primary Index
f Local
Sort Primary keys
T Local

Search Secondary Index )

Edit Distance
Corner-Case Path

JoinA~=B

Assign B (secondary key)

Scan Primary Index

Broadcast to all nodes
Outer Subtree
Figure 14: An optimized similarity-join query plan with the
corner case.

Corner cases: For string-similarity joins using edit distance,
we must modify the basic index-nested-loop join plan in Figure 10
to correctly handle corner cases. Unlike selection queries where
the secondary-index search key is a constant, the secondary-index
search keys for an index-nested-loop join are produced by the
outer branch (“Subtree”). Join corner cases must therefore be
dealt with at query runtime, as opposed to query compile time
for selection queries. Figure 14 shows the modified index-nested-
loop plan for correctly handling corner cases for edit distance.
The main difference lies in separating the records produced by
the outer subtree into two sets, one containing non-corner-case
records (T > 0), and one containing corner-case records (T < 0).
We do this by using a replicate operator above the outer subtree,
followed by a selection operator on each of its two outputs to filter
out the corner-case and non-corner-case records, respectively. The
non-corner-case records are fed into the secondary-to-primary
index plan as before, while the corner records participate in a
non-index nested-loop join plan. The final query answer is the
union of the results of those two joins.

5.2 AQL+ Framework

As discussed in Section 4.2.2, we need to find a way to transform
a nested-loop-join plan generated from a user’s similarity-join
query to a three-stage join plan. An issue is that, unlike the index-
nested-loop-join optimization that adds or replaces a few operators
from a nested-loop join plan, as we can see in the AQL query in
Figure 11, a three-stage-similarity join query generates a large
number of operators. Figure 15 shows the number of operators in
a three-stage-similarity join.

( Operator [ Count Operator/ Count)
[Aqqreqate 6 Join 3
Assign 44 | Order 3 |
Data-Scan (Data-Scan| 6 Select | 4 |
Group 3 | Unnest| 8
Total | 77 )

Nested-loop join plan Three-stage-similarity join plan

Figure 15: Number of operators for a nested-loop join and
three-stage-similarity join plan for the same query.

534

Due to this complexity, it would be difficult to build an opti-
mization rule that manually constructs these operators to transform
a simple nested-loop join plan to a three-stage join plan. Instead,
we develop a novel rewrite framework called “AQL+.” As shown
in Figure 16, we use this framework to convert a simple logical
plan generated from a user’s join query to a three-stage join plan.

Once the optimizer receives a logical plan in AQL+, it extracts
the information from the logical plan and integrates it into an
AQL+ query template. The generated AQL+ query can be parsed
and compiled again using the AQL+ parser and translator. The
result is a transformed logical plan, and the plan optimization
process can then continue.

Similarity-join
query

Parser and
Translator

Logical plan
(nested-loop join)

AQL+ Query

AQL+ Framework

Rest ’
Logical plan ptimzation lonoo ‘
gical p process  Physical |Generation ‘Hyracks

(three-stage-

similarity join) Job

Figure 16: Execution of a similarity-join query using AQL+.
To combine the information from a logical plan and the three-
stage-similarity-join AQL query template, we need to find ways
to refer to the portions of the logical plan from the query tem-
plate. Therefore, the AQL+ framework consists of a few AQL
language extensions and the compilation of these language ex-
tensions during the optimization process. As a result, the AQL+
language is a superset of AQL. The AQL+ has three AQL ex-
tensions: Meta Variable (denoted as “$$”), Meta Clause (“##”),
and Explicit Join (“join”). We need these extensions to refer to
the logical variables and operators in the logical plan during the
optimization process, since the AQL+ transformation of a given
plan happens during the optimization process. This is because the
optimizer only sees the logical plan and physical plan, not the orig-
inal query. Since AQL itself does not have an explicit join clause,
AQL+ includes one in order to express a join on two branches.
For example, we use meta-variables to refer to the primary keys
of the input records or variables in the similarity predicate. The
usage of meta-clauses is to refer to inputs of the AQL query and to
logical constructs that cannot be directly specified in AQL, such
as joins. So any AQL+ template can be combined with any join
input branches, where the inputs can be from any kind of subplans
of other algebraic operators. In addition, to support various types
of data, similarity functions, and thresholds, the similarity-join
rule template uses placeholders, which are parts of the AQL+
query and are unknown until runtime. They are used for data
types, similarity-specific functions, or values. For example, the
“SIMILARITY” placeholder is used for built-in AQL functions,
and the “THRESHOLD” placeholder is for numerical values.

Table 1: AQL+ extensions.

Extension Symbol Functionality

Meta Variable $$ Refer to a variable in the plan
Meta Clause ## Refer to an operator in the plan
Join Clause join Express an explicit join

The AsterixDB optimizer integrates the information from the
given logical plan into the AQL+ query template and compiles the
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resulting AQL+ query. Specifically, for a three-stage-similarity
join, it needs to identify a similarity join operator that contains
a Jaccard similarity join and its threshold. It also needs to get
the information about the two branches of this join operator. Us-
ing the information from the join operator, the logical plan fed
into this AQL+ template can be transformed to the equivalent
three-stage-similarity plan. Rather than doing this transformation
by introducing a number of operators by hand, we rely on the
existing compilation path to generate a revised plan. This process
is depicted in Figure 16; the details of this optimization will be
discussed in the next subsection.

For the similarity join query in Figure 11, the optimizer will
generate an equivalent AQL+ template and use it to transform a
simple query during the rule-rewrite phase. In this way, the simple
query of Figure 4(a) can be transformed to the query in Figure 11
during the optimization process. Figure 17 shows a part of the
AQL+ template that generates a three-stage-similarity-join plan.
Here, we can see that actual dataset-scans are replaced with meta-
clauses and a meta-variable ($$LEFTPK _3) is used to refer to to
the primary key of an incoming record in the given logical plan.
Join-clauses are used to join two meta-clauses.

//-—-Stage3-——
join( (##RIGHT_1),
( join( (#LEFT_1) ,
/l — - Stage 2 - —
( join( (#HEFT_2

//-—— Stagel-—

#H#LEFT_3

let $id := $SLEFTPK 3

for Stoken in TOKENIZER ($$RIGHT_3)

/#+ hash =/

group by StokenGrouped := $token with $id
Figure 17: A part of three-stage-similarity-join algorithm ex-
pressed in AQL+.

In addition, the AQL+ framework can be applied to transform
multi-way-similarity join plans as well because of its power to han-
dle a logical plan iteratively. Similar to non-similarity-join cases,
multi-way-similarity joins can be transformed sequentially with-
out a limitation. For instance, Figure 18 shows a similarity-join
plan involving four datasets. The join between first two datasets, R
and S, has already been transformed into a three-stage-similarity
join plan. This branch will act as the outer branch when the opti-
mizer processes the next join operator on the third dataset T.

(R~=8)~=T)~=U
(Similarity Join 3) J
\
Scan4:U

el
(R~=8)~=T
(Similarity Join 2) J

Scan3: T

R~=S
(Similarity Join 1)
Figure 18: Rewriting a multi-way-similarity-join plan on four
datasets.

It should be noted that AQL+ is a general extension framework,
not only for similarity queries, and it can be used to support a
transformation using AQL during the compilation process.

5.3 Optimization Rule For Similarity Queries

As discussed before, optimization in AsterixDB is rule-based [8].
Once the Algebricks layer receives a compiled plan from an AQL
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query, it first optimizes the given plan logically. Then Algebricks
sets up physical operators for each logical operator. After that,
the physical optimization phase begins. When it is finished, a
Hyracks job is created and executed. During the logical and physi-
cal optimization, there are a number of rule sets that are applied
sequentially. A rule can be assigned to multiple rule sets. Based on
the configuration of a rule set, each rule can be applied repeatedly
until no rule in the set can transform the plan.

To apply the similarity-query optimization framework to this
optimization path, we create a new rule set for the AQL+ frame-
work and similarity queries. The rule set includes a similarity
Jjoin rule (SJR) along with a handful of other rules that need to
be applied after SJR is applied. As described earlier, the main
functionality of AQL+ is a transformation using a complex AQL
template to re-generate a logical plan while maintaining the cur-
rent surrounding plan as part of the new plan. SJR first analyzes the
conditions of each join operator. If its condition includes a similar-
ity predicate, it applies the AQL+ template to the plan to generate
an AQL+ query. Then it compiles the query into a new logical
Algebricks plan. Some parts of the plan were already optimized if
they belonged to the original incoming plan. However, most part
of the plan is not optimized yet, since the three-phase plan was
just compiled and has not gone through the optimization process
before the SJR rule set. Therefore, the newly generated plan needs
to go through some of the earlier optimization rules again. This
re-application process is not necessary for non-similarity queries,
since the plan generated from non-similarity queries is not trans-
formed in the SJR rule set. Therefore, we need to ensure that the
similarity-join rule set is only applied to similarity-join queries.
The benefit of this approach is that the optimization for similarity
queries can be processed without interfering with non-similarity
queries. This approach also gives a chance to the newly generated
similarity-query plan to reach the same level of transformation
once the similarity rule set has finished its work.

5.4 Improvements

We discuss two improvements to similarity query processing,
which can be applied to non-similarity query processing as well.

5.4.1 Surrogate Index-Nested-Loop-Join. A drawback of
an index-nested-loop join using a local secondary index is the need
to broadcast the outer side data to all secondary-index partitions
as explained in Section 4. For example, during an execution of
the AQL query in Figure 8, the outer side needs to broadcast join
key field “A,” as well as “f1” and “f2” field. If there are more
fields in the return clause, the broadcasting cost will be increased
as well. This broadcast step is a direct consequence of the co-
partitioning of each secondary index with its primary index. Also
a secondary-inverted-index search can generate multiple pairs of
results for the same primary key, as there can be multiple entries of
the secondary keys for the same primary key; thus, we also want
to reduce the sorting cost between the secondary-index search and
primary index search. We can reduce the cost by only sending
the secondary-key fields together with a compact surrogate for
each outer-side record, so that we can later use the surrogates to
obtain the surviving original records. This idea is reminiscent of
semi-join optimization in distributed databases [40].

Figure 19 shows a surrogate-based index-nested-loop-similarity
join plan. Notice the PROJECT operator that follows the REPLI-
CATE operator after the outer subtree, which eliminates all non-
essential fields from the outer side. The optimizer filters out the
“f1” and “f2” fields since the search key is “A.” In addition, since
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Figure 19: Surrogate index-nested-loop-join plan.
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the same subtree is used twice in the plan, a REPLICATE opera-
tor is introduced to reduce the subtree calculation time. We will
discuss this optimization in-depth in the next subsection. After the
secondary-to-primary index search, we must use the surrogates
from the outer side to obtain their complete records. As shown
in the figure, we resolve the surrogates via a top-level join of
the original outer subtree with the indexed nested-loop subtree
(after removing false positive matches). Since the top-level join
is an equi-join on the surrogates Sy and Sg, it can be executed
efficiently in parallel, e.g., using a hash join.

5.4.2 Materializing/Reusing Shared Subplans. As shown
in a simplified version of a three-stage-similarity join in Figure 20,
in case of the three-stage-similarity self join, the dataset R may
need to be scanned three to four times. For this case, we could sim-
ply execute the original data-scan operation four times. However,
if the two branches of this join result from a complex computation
from a subquery, it would be expensive to compute the result
of the subquery many times. To minimize the cost, AsterixDB
materializes the common subplan and reuses it several times.

F = = =1 |dentical
Stage 3 ' = = ' subplan Stage 3
""" '
! L %u_bire:e_ 1_ J_:
Stage 2
Materialize/Reuse
L]
Stage 1 Stage 1
1 L]
1 Subtree 1 |! Materialize  Replicate
' rj.--.' Subtree 1 P
. ===
1 Subtree 1 !

Figure 20: Materializing and reusing a subtree of a three-
stage-similarity self join.

6 EXPERIMENTS

We have conducted an experimental evaluation of our approach in
AsterixDB using large, real data sets. We used an 8-node cluster to
host an AsterixDB (0.9.2) instance, where each node ran Ubuntu
with a Quadcore AMD Opteron CPU 2212 HE (2.0GHz), 8GB
RAM, 1 GB Ethernet NIC, and two 7,200 RPM SATA hard drives.
Each dataset was horizontally partitioned into 16 partitions (2
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per node) based on primary keys to provide full I/O parallelism.
Table 2 shows the AsterixDB configuration parameters.

Table 2: AsterixDB parameters for the experiments.

Parameter Value
Global memory budget per node 6GB

Budget for in-memory components per dataset 1.5GB
Data page size 128KB
Disk buffer cache size 2GB

Sort buffer size 128MB
Join buffer size 128MB
Group-by buffer size 128MB

6.1 Datasets

Different similarity functions were used for different types of data.
Edit distance is more suitable for short string fields, while Jaccard
is more suitable for long fields with many elements. To evalu-
ate AsterixDB for different similarity functions, we used three
datasets with different characteristics, as shown in Table 3. The
Amazon Review dataset, discussed in earlier sections, included
Amazon product reviews [23]. The Reddit Submission dataset in-
cluded Reddit postings for about eight years. The Twitter dataset
had 1% of US tweets for three months obtained via Twitter’s
public API. When imported into AsterixDB, each data set had an
additional auto-generated primary key field, as AsterixDB requires
that each dataset must have a primary key. Other than this field,
we did not define more fields in the schema. This gave us a lot
of flexibility to import any datasets into AsterixDB. The dataset
size in AsterixDB was greater than the raw data size, since each
record included the information about each field. For example, for
a string field, its type needs to be included in addition to its value.

Table 3: Dataset properties.

Dataset AmazonReview Reddit Twitter
Content Amazor} product Reddit postings Tweets
Teviews
Numberof 83.68M 196M 155M
Records
. 0172006 - 06/2016 -
Data Period 1996 - 2014 08/2015 08/2016
Raw Data For- JSON JSON JSON
Raw Data Size 55 GB 252 GB 465 GB
Dataset Size 60.6 GB 320 GB 582 GB
Fields used summary, title, author text, user.name
reviewerName

Table 4 shows the characteristics of the fields of the datasets.
The minimum character length and minimum word count of the
fields were 0. The first three fields were used for edit distance,
while the last three fields were used for Jaccard.

Table 4: The characteristics of the fields.

Avg Max Avg Max
Field char char word | word
count count | count | count
AmazonReview. | =y 3| yg | g |y
reviewerName
Reddit.author 24.3 275 4.1 32
Twitter.user.name 10.6 20 1.7 10
AmazonReview. 238 361 40 44
summary
Reddit.title 1,056.2 | 400K | 1,173 20K
Twitter.text 62.5 140 9.7 70

6.2 Index Size

We built a keyword index for Jaccard similarity queries and a
2-gram index for edit distance queries. To measure the execution
time of basic exact match queries on the same fields as a baseline,
we also built a B+ tree index on the search fields. Table 5 shows



the index sizes for the Amazon Review dataset and the time it took
to create each index. An n-gram index took much more space than
a B+ tree or keyword index as it had more secondary keys per
record. For instance, a 2-gram index on the “reviewerName” field
took 15.6GB of disk space, which was about 25% of the original
dataset size. The size of a keyword index was also greater than a
B+ tree index on the same field since there are many secondary
keys per record. For a given type of index, the construction time
was roughly proportional to the size of an index. In each case, the
dataset itself was also stored in a primary B+ tree index.

Table 5: Index size and build time for Amazon reviews.

Field Index Type | Size (GB) | Build Time (s)
Dataset itself B+ tree 60.6 1,563
reviewerName B+ tree 2.7 223
reviewerName 2-gram 15.6 1,441
summary B+ tree 35 275
summary keyword 5.4 573

6.3 Selection Queries

To measure the performance of similarity-selection queries, we
first created a search value set that contained 10,000 random
unique values extracted from the search field. For Jaccard queries,
we ensured that the minimum number of words in each value in
the set was 3. For edit distance queries, the minimum length of
characters in each value was 3. For each similarity threshold, we
randomly chose a search value from the set for each query, sent
100 such queries to the cluster, and measured the average execution
time. The performance baseline for comparison purposes was an
equality-condition query that used the same value for the given
field. The query template in Figure 21 below was used to measure
the average execution time. “Simfunction” and “simthreshold” in
the queries were replaced with a specific similarity function and a
threshold. “V” was the given field and “C” was the random value
from the above set.

count ( for So in dataset X
where @simfunction ($0.V, C) >= @simthreshold
return {"oid":$o.id, "v":$0.V} );

Figure 21: Similarity-selection query template.

6.3.1 Jaccard Similarity. For each of the three datasets we
ran similarity queries using Jaccard similarity on suitable fields
using different thresholds: 0.2, 0.5, and 0.8. Figure 22(a) shows
the results. We see that the average execution time for similarity
selection queries decreased as the threshold increased in case of
index-based plans. For example, it took the index-based method
67.6 seconds to conduct a Jaccard query with a threshold of 0.2,
while it only took 25.5 seconds to execute a query with a threshold
of 0.5. If there was no applicable index, both similarity and exact-
match queries showed a high execution time as each record had to
be read from the primary index and that scan time was a dominant
factor in the overall execution time. We can also see the overhead
of the similarity query versus the exact-match query for all the
thresholds since it takes more time to calculate a Jaccard value
than to get the result of an exact match. This overhead decreased
as the threshold increased; this is because we applied certain
optimizations such as early termination and pruning based on
string lengths, which significantly reduced the cost of computing
the similarity.

When the threshold was low, the times were similar for both
index-based and non-index-based queries. This is because the
candidate set size using T-occurrence for index-based queries
was quite large when the threshold was low. This can be seen in
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Figure 22: Execution time of selection queries on Amazon re-
views.

Table 6. As the number of candidates increased, the search time
increased due to the need for a primary-index lookup for each
candidate.

Table 6: Candidate size and the final result size for the
indexed-select query for Amazon reviews in Figure 22(a).

Jaccard Actual Result | Candidate Set | Ratio

Threshold Record Count (B) | Record Count (C) | (B/C)
0.2 559,167 8,298,473 6.7%
0.5 12,260 660,016 1.9%
0.8 36 12,420 0.3%

6.3.2 Edit Distance. We measured the average execution
time of an edit distance selection query using different thresholds,
namely 1, 2, and 3. Figure 22(b) shows the results. As the threshold
increased, the execution time increased. The reason is similar
to the case of Jaccard queries: the candidate set size using T-
occurrence increased as the threshold increased. It took the index-
based method 2 seconds to run a selection query with a threshold
of 2; it took 8.9 seconds to run a query with a threshold of 3.
We can also see that the execution time of non-index-based edit
distance queries increased as the threshold increased for the same
reason as described above.

6.4 Join Queries

To measure the performance of similarity join queries, we ran self-
join queries on the three datasets. Specifically, the query template
in Figure 23 was used to measure the average execution time as in
the similarity-selection query case. Here, V is the field on which
we applied a similarity function and id is the primary key field.

count ( for $So in dataset X
for Si in dataset X
where @simfunction (So0.V, $i.V) >= @simthreshold
and $o.fl = C and $o.id < $i.id
return {"oid":S$o.id} );

Figure 23: Similarity-join query template.

6.4.1 Varying Threshold. We first extracted certain number
of records from the outer branch of the join to limit its input. For
each query, we chose 10 random records from the outer branch.
In the query template in Figure 23, a field named f1 was used to
specify such a limit. For Jaccard join queries, we used different
thresholds, namely 0.2, 0.5, and 0.8. For edit distance queries, we
used thresholds of 1, 2, and 3. When there was no applicable index,
AsterixDB chose to employ the three-stage-similarity-join plan for
Jaccard queries. The results are shown in Figures 24(a) and 24(b).
The trends were similar to those of selection queries except for the
exact-match join, which significantly outperformed both Jaccard



and edit distance joins since it used a hash join, where the join
keys were broadcast to multiple nodes.

Regarding the compilation overhead of AQL+, we observed
that the average overhead of generating a new logical three-stage-
similarity-join plan using AQL+ for the queries in Figure 24(a)
was around 50 ms, and it took around 500 ms to optimize that
plan. The overall compilation time of the three-stage-similarity-
join query was around 900 ms.
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Figure 24: Execution time of join queries on Amazon reviews.

6.4.2 Varying Record Number. For a Jaccard join query,
its execution time was smallest when the threshold was 0.8. In
this experiment, we varied the number of records from the output
branch and fixed the threshold at 0.8. The times for the non-index-
nested-loop self-join, index-nested-loop self-join, and three-stage-
similarity self-join on the Amazon Review dataset are shown in
Figure 25(a). We increased the number of output records from the
outer branch and measured the resulting execution time of each
join. First, we see that the execution time of non-index-nested-
loop self-join was already highest for 200 records and increased
drastically compared to other two types of joins. Once the number
of output records from the outer branch reached around 400, the
three-stage-similarity join began to outperform the index-nested-
loop join. This is because the time for the index-nested-loop join
is proportional to the number of records fed to the secondary-
index search, as it needs to deal with each record at a time. In
contrast, for the three-stage-similarity join, most of the time is
spent on global-token-order generation in the first stage. Once this
is generated and broadcast to all the nodes, hash joins in stage 2
and 3 can deal with the incoming records efficiently, since each
join key is sent to only one node. This benefit is visible in the
figure. For instance, the time for the three-stage-similarity join for
800 records was 619 seconds, while it was 674 seconds for 1,000
records. This result shows only 55 seconds of increase, while the
execution-time difference for the index-nested-loop joins going
from 800 to 1,000 records was 384 seconds.
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Figure 25: Execution time of join queries.

6.4.3 Multi-Way Join Queries. So far, we have used only
one similarity condition per similarity query. Next, we used two
similarity conditions in a query and varied the order of the two
conditions. The query template in Figure 26 was used to measure

(b) Multi-way-join queries on the three
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the average execution time. The dataset Y and the field 1 were
used to limit the number of records from the outer branch.

count ( for $p in dataset Y
for So in dataset X
for $i in dataset X
where $p.f1 = $o.f1 and S$p.id = C
and @simfunctionl ($o0.V1, $i.V1) >= @simthresholdl
and @simfunction2 ($0.V2, $1.V2) <= @simthreshold2
and $o.id < $i.id
return {"oid":$o0.id, "iid":$i.id} );

Figure 26: Multi-way-join query template.

Each query had an equi-join and a similarity join with two con-
ditions, including a Jaccard condition with a threshold of 0.8 and
an edit distance condition with a threshold of 1. For the equi-join,
we used an index-nested-loop join to fetch output records quickly.
Also, this join was used to limit the number of output records
from the outer branch fed into the similarity join. Then, Jaccard
similarity and edit distance conditions were applied. If we applied
the Jaccard condition first, the Jaccard join will be followed by the
edit distance condition in a SELECT operator. For both similarity
conditions, we used an index-based method for the first condition
and a non-index-based method for the second. Figure 25(b) shows
that the performance was the best when the index-based-Jaccard
join was conducted first, as there were no corner cases for Jaccard
similarity. This order generated fewer candidates than applying
the index-based edit distance predicate first. In contrast, for the
edit distance case, it needed to augment the corner-case path in
the logical plan, thus generated more candidates. In addition, it
should be noted that other queries showed similar patterns for all
the three datasets as well. That is, the average execution time of a
similarity query was proportional to the size of datasets when the
result cardinality was similar.

6.5 Scalability Tests

6.5.1 Scale-Out. For the scale-out experiment, we used four
clusters with different sizes, namely 1, 2, 4, and 8 nodes. When
we doubled the number of nodes in a cluster, we also doubled
the data size to store the same amount of data per node. Thus,
the 1-node cluster had 12.5% of our original data set size, the
2-node cluster had 25%, and the 4-node cluster had 50% of the
data. The 8-node cluster contained the original dataset, where the
data size was 100%. In other words, each node had 12.5% of the
original dataset. Ideally, the response-time graph would show a
flat line per query. As the number of nodes increased, the queries
were handled as expected, as shown in Figure 27(a). We can see
some variance in the case of the Jaccard-similarity join without
an index; in the three-stage-similarity join, the global token order
generated in stage 1 of the join needed to be broadcast to all the
nodes. Therefore, as the number of nodes increased, the commu-
nication cost increased as well. This gap was the greatest between
1 node and 2 nodes, since that was where we first incurred the
communication cost of global-token-order propagation. However,
the execution time increase was not high between 2 nodes and 4
nodes. Between 4 nodes and 8 nodes, we can see the trend as well.
Once the communication cost was accounted for, the execution
time of three-stage-similarity joins was quite scalable.

6.5.2 Speed-Up. For the speed-up experiment, we also used
four cluster sizes (1, 2, 4, and 8 nodes) with each cluster size
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Figure 27: Scale-out and speed-up queries on Amazon reviews.

being given the entire (100%) data set. Figure 27(b) shows that the
speed-up was proportional to the number of nodes. The speed-up
for the index-based-Jaccard-selection query with a threshold 0.8
was less than that of the other Jaccard queries. This was because
its execution time was already less than a few seconds on the
1-node cluster, and there was a basic overhead for each cluster
such as communication cost. In particular, the execution time of
that query on the 1-node cluster was 6.5 seconds, and its execution
time on the 8-node cluster was 1.5 seconds. Figure 27(c) shows
the execution time of the same queries on each cluster.

7 CONCLUSIONS

In this paper, we presented the support for similarity queries in
Apache AsterixDB, a parallel data management system. We de-
scribed the entire life cycle of a similarity query in the system,
including the query language, indexing, execution plans with or
without index, and plan rewriting to optimize the execution. Our
solution leverages the existing infrastructure of AsterixDB, in-
cluding its operators, query engine, and rule-based optimizer. We
presented an experimental study based on several large, real data
sets on a parallel computing cluster to evaluate the proposed tech-
niques, and showed their efficacy and performance to support
similarity queries on large data sets using parallel computing.
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