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ABSTRACT
Online analytics, in most advanced scientific and business appli-
cations, rely heavily on the efficient execution of large numbers
of Aggregate Continuous Queries (ACQs). Incremental sliding-
window computation is used in the state-of-the-art ACQ process-
ing algorithms (FlatFIT, TwoStacks, and DABA) to avoid the re-
evaluation of the aggregate value of the window from scratch on
every update. FlatFIT and TwoStacks aim to increase throughput,
and DABA to minimize latency, while all process invertible and
non-invertible aggregates uniformly. In this paper, we propose a
novel algorithm, SlickDeque, that distinguishes the execution be-
tween invertible and non-invertible aggregates and offers better
throughput and latency for both types. In addition, our method
requires less memory and efficiently supports multi-ACQ pro-
cessing. We theoretically show the time and space complexity
advantages of SlickDeque and experimentally validate them using
a real workload. Specifically, our approach maintains 283% lower
latency spikes on average while achieving up to 19% throughput
improvement in a single query environment and up to 345% im-
provement in amulti-query environment over the state-of-the-art
approaches along with requiring up to 5 times less memory.

1 INTRODUCTION
Motivation Data stream processing has gained momentum in
many applications that require quick responses based on incom-
ing high velocity data flows. A representative example is a stock
market application, where multiple clients monitor the price fluc-
tuations of the stocks. In this setting, a system needs to be able to
efficiently answer analytical queries (e.g., average stock revenue,
profit margin per stock, etc.) for different clients, each one with
(possibly) different timing requirements. Efficient data stream
processing is also important in monitoring applications in the
fields of health care, science, social media, and network control.

Data Stream Management Systems (DSMS) [1–3, 22, 30] have
been proposed as the most suitable systems for handling such
data flows on-the-fly and in real time. In a DSMS, clients register
their analytical queries on incoming data streams. These queries
continuously aggregate streaming data, and as such they are
called Aggregate Continuous Queries (ACQs). ACQs are typically
associated with a range (r) and a slide (s) (also referred to as
window and shift [15]), which can be either count or time-based.
A slide denotes the period at which an ACQ updates its answer;
a range is the window for which the statistics are calculated.

An ACQ requires the DSMS to keep state over time while per-
forming aggregations. Normally, DSMSs only keep the window
of the most recent data, and produce the answers by running ag-
gregate queries over it. It has been shown that in sliding-window
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stream processing, it is beneficial to use incremental evaluation,
which involves storing and reusing calculations performed over
the unchanged parts of the window, rather than performing the
re-evaluation of the entire window after each update [10, 20].
Incremental evaluation typically runs partial aggregations on the
data and produces the answer by performing the final aggrega-
tion over the partial results [18, 19].
Problem Statement Handling of aggregate operations that are
both invertible and non-invertible proved to be essential in do-
mains such as finance and science. Invertible operations include
Sum, Product, Count, Average, and Standard Deviation, while
non-invertible operations include Max, Min, Range, Alphabetical
Max (for strings), ArgMax of Cosine, and ArgMin of x2. It was
shown previously that invertible operations can be processed
efficiently by maintaining a running Sum (or other aggregation),
and invoking the inverse operation (such as Subtract) on every
expiring tuple, however non-invertible operations require more
effort to be processed efficiently and remain a challenge.

The current state-of-the-art solutions for processing ACQs,
FlatFIT [26] and TwoStacks [28], aim to increase throughput and
DABA [28], to minimize latency. These solutions process invert-
ible and non-invertible aggregates uniformly, which negatively
affects their performance with increasing workloads. To address
the aforementioned shortcomings, in this paper we propose a
novel solution named SlickDeque, which handles aggregate op-
erations differently based on their invertibility property. The
invertible operations are processed using SlickDeque (Inv), our
new modified Panes (Inv) approach, while non-invertible ACQs
are processed with SlickDeque (Non-Inv), our novel deque-based
algorithm that intelligently maintains and utilizes intermediate
partial aggregates allowing a greater level of reuse of previously
calculated results. The separation based on invertibility leads
to exceptional throughput and latency for both invertible and
non-invertible operations in systems with heavy workloads.

We consider alsomulti-query, multi-tenant environments, where
large numbers of ACQs with different ranges and slides operate
on the same data stream, calculating similar aggregations.
ContributionsWe make the following contributions:
• We propose a novel solution for processing ACQs,
SlickDeque, which processes invertible and non-invertible
operations differently. SlickDeque is applicable for both single
query and multi-query environments. (Section 3)
• We theoretically evaluate SlickDeque and show that it achieves

better time and space complexities compared to the state-of-
the-art FlatFIT, TwoStacks, andDABA solutions. To our knowl-
edge, there are no prior algorithms that can achieve the same
time and space complexities without loss of query generality
in terms of supported aggregate operations. (Section 4)
• We experimentally evaluate SlickDeque based on a real dataset
and show that it significantly outperforms state-of-the-art
techniques in all tested scenarios by increasing the ACQ
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Figure 1: Panes Technique

Figure 2: Paired Window Technique

throughput by up to 19% in a single query environment and
by up to 345% in a multi-query environment, while main-
taining 283% lower latency spikes on average and reducing
memory consumption by up to 5 times. We also show that our
approach becomes superior to the state-of-the-art approaches
starting at window sizes as small as eight tuples with its ben-
efits increasing rapidly, making SlickDeque widely applicable
for processing ACQs in a variety of DSMSs. (Section 5)

2 BACKGROUND & RELATEDWORK
In this section we briefly review the underlying concepts of our
work, which are the incremental sliding-window computation
techniques. These could be broadly divided into partial aggrega-
tion and final aggregation. We also review other related work.

2.1 Partial aggregation
Partial aggregation can be thought of as the buffering of partial
results until the query result needs to be returned by the final
aggregation. Since partial aggregation allows some buffering be-
fore the result needs to be processed by a more expensive final
aggregator and each buffered partial can be reused multiple times
as part of final aggregations, the use of the CPU and memory
resources to maintain the partials can be amortized. The follow-
ing techniques aiming to reduce the number of partials were
proposed for partial aggregations.
Panes [19] was proposed as the first partial aggregation tech-
nique for processing ACQs efficiently. The idea behind it is to
partition the incoming datastream into “panes” (we refer to them
as partials), andmaintain just one aggregate value for each partial.
This way every incoming tuple will affect the aggregate value for
just the current partial, and when the whole aggregate is due to
be reported, the answer is assembled by performing the final ag-
gregation over all the partials in the current window. Therefore,
each new partial will be reused multiple times for different final
aggregations. For example, in Fig. 1 partial P5 is used 3 times as
part of the final aggregations F1, F2, and F3.
PairedWindow technique, or simply Pairs [18], was introduced
to reduce by a factor of 2 the number of partials in a window in
cases where the range is not divisible by the slide, reducing the

Figure 3: Cutty-slicing Technique

Figure 4: FlatFAT Technique

memory consumption and accelerating the final aggregations.
As illustrated in Fig. 2, two fragment lengths are used, f1 and f2,
where f2 = ranдe%slide and f1 = slide − f2.
Cutty-slicing was proposed as part of the Cutty optimizer [8],
and it starts each new partial only at positions that signify the
beginning of new windows. This way the final aggregation can
execute in the middle of the partial aggregation calculation by
accessing the current value in the partial (Fig. 3). This reduces
the number of partials per window by a factor of two compared
to Pairs but it comes at a cost: additional punctuations have to
be sent over the data stream to the execution module to indicate
the beginnings of the new partials, which reduces the effective
bandwidth of the stream and can slow down the system, espe-
cially if the workload includes a large number of queries with
small windows.

2.2 Final Aggregation
The goal of final aggregation is to produce the result of a query
by utilizing the partials. Initially it was performed by simply
iterating over them and constructing the answer [18, 19]. For
example the Panes technique (which we consider Naive in this
work) in Fig. 1 performs a final aggregation F1 by iterating over
partials P2, P3, P4, and P5. Naturally, such a solution quickly
became outdated due to the increasing workloads that created
bottlenecks in the final aggregator. To improve this, several final
aggregation techniques have been proposed [5, 21, 26–29, 31].
Panes (Inv) [19] (or Panes for Invertible (Differential) Aggregate
Queries) was proposed to efficiently process invertible aggregates,
and it works by maintaining a running aggregate (e.g. running
Sum), and invoking the inverse operation (e.g. Subtract) on every
expiring tuple. This algorithm (with minor differences) was also
proposed as R-Int [5] and Subtract-on-Evict [28]. In this paper we
extend this approach into SlickDeque (Inv), which can do multi-
query processing by maintaining a running aggregate for each
query with a distinct range registered on the data stream.

Despite being very effective, Panes (Inv) is only applicable for
invertible operations. In order to allow greater generality in query
processing, the following techniques have been introduced.
FlatFAT [29] (or Flat Fixed-sized Aggregator) is a final aggrega-
tion approach which stores tuples in a pre-allocated pointer-less

398



Figure 5: B-Int Technique

tree-based data structure (Fig. 4), and was later extended [8] to al-
low partial aggregation and multi-query processing by allowing
to store partial aggregates as tree leaves. Each internal node of
the tree contains an aggregate of its two children. New partials
are inserted into the leaves of the binary tree left-to-right. The
leaves form a circular array, meaning that after inserting a value
to the rightmost leaf, the next insert will go into the leftmost one.
Each insert triggers the update procedure, which is performed
by walking the tree bottom-up and updating all internal nodes.
An example of an update operation on leaf 15 is illustrated with
green squares in Fig. 4. The look-up of the answer in FlatFAT is
performed by returning the root node value if a query requires
the result for the maximum window, or by aggregating a min-
imum set of internal nodes that covers the required range of
leaves. The example of answering a query with a range of 11
partials starting from leaf 15 is shown with red triangles in Fig. 4.
B-Int[5] (or Base Intervals) is another final aggregation tech-
nique that uses a multi-level data structure that consists of dyadic
intervals of different lengths. On the first level, the intervals are
of a length of one partial, on the next level the interval length is
two partials, on the third level the length is four partials, and so
on. The top level has just one interval of the maximum supported
range length. The whole data structure is organized in a circular
fashion, so that the rightmost interval on any level is followed
by the leftmost interval from the same level (Fig. 5). Similarly to
FlatFAT, when producing the final aggregate, B-Int determines
the minimum number of intervals needed to represent the de-
sired range, and aggregates them. For example, in Fig. 5 B-Int
aggregates all intervals marked with color to get the answer for
the specified query range. Another tree-like approach similar to
FlatFAT and B-Int is [6].
FlatFIT [26] (or Flat and Fast Index Traverser) was proposedwith
a goal of increasing the throughput of ACQ processing. FlatFIT
achieves acceleration by dynamically storing the intermediate
results and their corresponding pointers, which indicate how
far ahead FlatFIT can skip in its calculation. It uses two circular
arrays, Pointers and Partials, interconnectedwith their indices and
a stack, Positions, for keeping indices that are currently processed.
The FlatFIT algorithm is applicable in a multi-query environment,
where it achieves a high throughput by allowing additional partial
result reuse between all ACQs on the stream.
TwoStacks [28] was shown to also achieve a high throughput by
using an old trick from functional programming to implement a
queue with two stacks, F (front) and B (back), where all insertions
push a value, val, and an aggregation, agg, of everything below it
onto B, and evictions pop from F. When F is empty, the algorithm
flips B onto F, making it a calculation heavy step that introduces
latency spikes to processing. To produce the final aggregation,
the tops of both the F and B stacks are aggregated.
DABA [28] (or De-Amortized Bankers Algorithm) was proposed
as an alternative to TwoStacks that reduces the latency spikes

Figure 6: DABA Technique

Figure 7: Shared Processing

while maintaining high throughput. The algorithm uses a prin-
ciple of the Functional Okasaki Aggregator to de-amortize the
TwoStacks algorithm. DABA uses two queues, vals and aggs, as
shown in Fig. 6 implemented as chunked-array queues with six
ordered pointers which make up the F and B stacks similarly to
TwoStacks. However after each insertion and eviction event, a
function fixup is called which re-balances the pointers and fixes
the consistency of the aggs queue.

Currently, neither TwoStacks nor DABA are known to support
multi-query execution as opposed to the other above algorithms.

2.3 Shared Processing of ACQs
Since theACQs are executed periodically (unlike one-shot queries),
several processing schemes, as well as ACQ optimizers, take
advantage of the shared processing of ACQs [8, 14, 18], which
reduces the long-term overall processing costs by sharing par-
tial results. To show the benefits of sharing in such scenarios,
consider the following example:
Example 1 (Fig. 7) Assume two ACQs monitor Max stock value
over the same data stream. The first ACQ has a slide of 2 tuples
and a range of 6 tuples, the second one has a slide of 4 tuples
and a range of 8 tuples. That is, the first ACQ is computing
partial aggregates every 2 tuples, and the second is computing
the same partial aggregates every 4 tuples. Clearly, the calculation
producing partial aggregates only needs to be performed once
every 2 tuples, and bothACQs can use these partial aggregates for
their corresponding final aggregations. The first ACQ will then
run each final aggregation over the last three partial aggregates,
and the second ACQ will run each final aggregation over the last
4 partial aggregates. ■

Partial results sharing is applicable for all matching aggregate
operations, such as Max, Product, Sum, etc. and for different but
compatible aggregate operations, for example Sum, Count and
Average can share results by treating Average as sum

count .
To determine how many partial aggregations are needed after

combining n ACQs into a shared execution plan, we first find the
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length of the new composite slide, which is the Least Common
Multiple (LCM) of the slides of the combined ACQs (in Example 1
it is four). Each slide is then repeated LCM/slide times to fit
the length of the composite slide, and all slide multiples are
marked within the composite slide as edges. If slides consist of
several fragments due to the partial aggregation, all fragments
are also marked within the composite slide as edges. The more
common edges are present in the composite slide, themore partial
aggregations can be shared.

In this work we combine all compatible ACQs into one shared
plan to achieve maximum sharing, which, in a general case, pro-
vides the most computational resource savings. Although, in
specific cases it was shown that aiming for maximum sharing is
not always beneficial [13, 14, 24, 25].

2.4 Other Related Work
Work similar to sliding-window aggregation exists in Temporal
Database Systems, which store the entire stream of tuples and
allow aggregations over any continuous segments of the stream,
which are calledHistorical Windows. In contract,DSMSs generally
support windows that end at or near the most recent results are
referred to as SuffixWindows in Temporal Databases. In Temporal
Databases, Red-black trees [17, 21], SB-trees, B-trees [31], and
Skylines [23] are used for aggregations. Due to the tree-based na-
tures of these algorithms their update complexities areO (loд(s )),
where s is the size of the entire stream history.

Several approximate calculation approaches were proposed
to save time and space by giving up accuracy [4, 7, 9, 11]. Our
approach focuses solely on computing exact answers since it is
crucial for many applications (e.g., financial, medical, etc.).

3 SLICKDEQUE
In this section we describe our new algorithm, SlickDeque, that
significantly speeds up the final aggregation calculations in a
sliding-window environment by employing different processing
schemes for invertible and non-invertible aggregations.

3.1 Algebraic Properties and Assumptions
One of the important metrics that allows the evaluation of the
difficulty of incremental evaluation of a particular query is the
algebraic properties of the underlying aggregate operation. Based
on classification from [12], all aggregate operations are divided
into three broad categories: distributive, algebraic, and holistic.
• Distributive aggregation means that the aggregation for the

set S can be computed from two of the same aggregations of
subsets S1 and S2, where subsets S1 and S2 were constructed
by splitting S in two. For example, if we have a set of 10
numbers and the Sum of the first 7 is 20, and the Sum of the 3
remaining is 15, then we can get the Sum of all 10 numbers by
adding 20 and 15. Therefore, Sum is a distributive aggregation.
• Algebraic aggregation means that the aggregation can be
computed from a number of distributive aggregations, e.g.,
Average, which is calculated from Sum and Count. The list of
common distributive aggregations includes Count, Sum, Sum
of Squares, Product, andMax. By combining these distributive
aggregations we can calculate some commonly used algebraic
aggregations such as: Average (Count and Sum), Standard
Deviation (Sum of Squares, Sum, and Count), GeometricMean
(Product and Count), and Range (Max and Min).

• Holistic aggregations are neither distributive nor algebraic,
e.g., Median, Top-K, Quantile, Collect Distinct. Holistic ag-
gregates are out of the scope for this work since they require
specifically tailored algorithms which cannot be generalized.
In this paper wewill focus on optimizing the distributive aggre-

gations; calculating the algebraic aggregations follows trivially.
Distributive aggregations can be further classified by their math-
ematical properties: associativity, invertibility, and commutativity.
Below we provide brief definitions of these properties.
• An operation ⊕ is associative if x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z is
true for all x ,y, z.
• An operation ⊕ is invertible if there exists an operation ⊖ such

that (x⊕y)⊖y = x for allx ,y, and ⊖ is feasibly inexpensive.

◦ Note: if operation ⊕ is non-invertible, thenx⊕y = z, where
z ∈
{
x ,y
}
. This is only true for non-holistic operations

(which we target in this work).

• An operation ⊕ is commutative if x ⊕ y = y ⊕ x is true for all
x ,y.

Query Operation Assumptions In terms of query operation
generality, our proposed approach, SlickDeque, is no different
from the state-of-the-art approaches, which all support non-
invertible and non-commutative operations while requiring the
operations to be associative. In general, all operations that can
be executed on a window of values are associative. The common
non-associative operations such as subtraction (x−y−z), division
(x/y/z), exponentiation (xyz ), and some binary operations such
as NAND and NOR, are generally impractical when executed on
sets of values larger than two. The difference of our proposed
SlickDeque approach is that it has separate processing algorithms
for the invertible operations (e.g., Sum, Product, Count, etc.) and
non-invertible operations (e.g., Max, Min, Range, Alphabetical
Max (for strings), ArgMax of Cosine, ArgMin of x2, etc.), which
allows us accelerated processing of both.
Window Structure Assumptions In non-FIFO window struc-
tures, the events of insertion and expiration are not synchronized,
which can cause window overflow situations when there are not
enough expiring tuples (or partial aggregates) to make room in
the window for the insertions. All of the compared approaches,
including ours, are able to handle such cases by performing dy-
namic resize operations. However in this paper we are focusing
on the FIFO window environment which is the most common
way to processing sliding-window aggregations in practice.
Arrival Order Assumptions Similarly, all of the aforemen-
tioned algorithms allow updates on multiple partial aggregates
already stored within the window. However in this paper we
focus on the classic streaming scenario when all new partial ag-
gregates are processed by the final aggregator one-by-one as they
become available. In such settings the arriving tuples have to be
in-order or slightly out-of-order. As long as the out-of-order tuples
are within the same partial aggregation, the final result will not
be affected. If, however, some tuples fall outside of their partial,
inconsistencies in the final result may arise. The mechanism that
all systems uses to cope with such extreme situations is outside
of the scope of this paper.

3.2 The SlickDeque Algorithm
In this subsection we provide the algorithm and implementation
details for our approach followed by the clarifying examples. We
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Algorithm 1 SlickDeque (Inv) Pseudocode
1: Input: A set of aggregate continuous queriesQ , invertible aggregate

operation ⊕, the initial value for ⊕ initVal, the inverse operation ⊖,
and partial aggregation technique PAT

2: Output: Continuous answers to queries in Q according to their
specifications.

3: Phase 1 (Preparation)
4: sharedPlan = buildSharedPlan(Q, PAT)
5: wSize = sharedPlan.wSize
6: partials = new array[wSize]
7: answers = new map(queryRange→ answer)
8: for i=0 to wSize do
9: partials[i] = initVal
10: end for
11: for each query q Q do
12: answers.insert(q.range, initVal)
13: end for
14: currPos = 0
15: Phase 2 (Execution)
16: while results are expected do
17: length = sharedPlan.getNextPartialsLength()
18: newPartial = partialAggregator.aggregate(length, PAT)
19: for each (qR→ ans) pair in answers do
20: startPos = currPos - qR
21: if startPos < 0 then
22: startPos += wSize
23: end if
24: ans = ans ⊕ newPartial ⊖ partials[startPos]
25: end for
26: queriesToAnswer = sharedPlan.getNextSetOfQueries()
27: for each query q in queriesToAnswer do
28: send answers.getVal(q.range) as answer to q
29: end for
30: partials[currPos] = newPartial
31: currPos++
32: if currPos == wSize then
33: currPos = 0
34: end if
35: end while

break down our algorithm description based on invertibility of
the aggregate operator.

SlickDeque for Invertible Aggregates
For processing invertible aggregates we propose SlickDeque (Inv),
a modified Panes (Inv) extended for processing multiple ACQs.
Pseudocode for it is depicted in Algorithm 1. The algorithm con-
sists of two major phases: Preparation and Execution.
The Preparation Phase given a set of queries,Q , and one of the
partial aggregation techniques (PAT) discussed in Section 2.1 (e.g.,
Pairs) as an input, SlickDeque (Inv) builds a shared execution plan
by executing the buildSharedPlan function (line 4). The sharedPlan
is constructed as discussed in Section 2.1, and includes a full list
of partials (or edges) augmented with their lengths and lists of
queries to be evaluated for each partial. The buildSharedPlan
function identifies the query with the longest range in terms of
the number of partials, and saves the range as the member wSize
of the sharedPlan (line 5). wSize signifies the necessary window
length needed to process all input queries.

After generating the sharedPlan, SlickDeque (Inv) initializes
its data structures: a circular array, partials, (line 6) and a map,
answers, (line 7). The partials array is initialized to a length equal
to wSize, and is used to store partial aggregates. The answers
map maintains the mappings of all queries with unique ranges to

their current answers. Queries operating over the same range can
share results even if they have different slides. Both the partials
array and the values of the answers map are initialized (lines 8-
13) with the initial value for the operation ⊕, initVal, supplied as
input. For example, initVal is −∞ for the Max operation.

The currPos variable signifies the current position within the
partials array (line 14). It starts at 0 initially and increases to
wSize − 1 during execution, after which it wraps back to 0. The
arriving partial aggregates will be inserted into the partials array
always at the currPos.
The Execution Phase is implemented as a loop that continu-
ously returns all query results while they are expected. At the
beginning of the loop (lines 17-18), SlickDeque (Inv) gets the next
partial’s length from the sharedPlan, and passes it to the new-
Partial Aggregator which uses the provided PAT technique to
produce the newPartial value.

Next, SlickDeque (Inv) loops over all range-to-answer map-
pings (qR → ans) in the answers map (lines 19-25). The loop
starts by identifying the start position, startPos, for each map-
ping within the partials array from which the values need to be
aggregated. startPos is identified by rewinding currPos back by
query range, qR, length.

Since SlickDeque (Inv) only works for the invertible queries,
it utilizes both the aggregate operation ⊕ (e.g., Sum if query
is seeking Sum), and an inverse operation ⊖ (e.g., Subtract if
the original operation is Sum). This way each answer, ans, is
updated by executing the aggregate operation ⊕ with the newly
calculated newPartial value and the inverse operation ⊖ with
expiring partials[startPos] value (line 24).

Next, the answers to all queries scheduled at the current po-
sition need to be produced (lines 26-29). After receiving the
queriesToAnswer (a subset of Q) from the sharedPlan, SlickDeque
(Inv) loops over them while sending back the corresponding an-
swers pulled from the answers map. Then, the Parial value is
inserted into the circular partials array at currPos, and currPos is
moved one position forward (lines 30-34).

The following Example 2 (illustrated in Fig. 8) should clarify
the above algorithm. In order to make the explanation more
intuitive we execute the two queries, Q1 and Q2, on the same
incoming datastream using two algorithms: Naive and SlickDeque
(Inv), and we illustrate each step of their calculations side-by-side.

Example 2 Assume we have queries Q1 and Q2, which are
seeking the Sum over the ranges of 3 and 5 tuples, respectively,
both with a slide of 1 tuple. The slide size is set to one tuple in
this example for simplicity, which means that there is no partial
aggregation and the answers to both queries need to be calculated
after every new tuple arrival. Since the range ofQ2 is 5, which is
greater than the range of Q1, and the slides of Q1 and Q2 are the
same, the shared execution plan has a wSize of 5 tuples.

Both Naive and SlickDeque (Inv) algorithms use the partials
array in order to maintain incoming partial aggregates (in this
case just tuples). The difference is that Naive produces answers
to queries by iterating over this array, while SlickDeque (Inv)
utilizes the additional answers map (Introduced above).

In the partials array we mark the positions that have been
modified by the algorithm in each step. The current position
(currPos) at each step is bolded in Fig. 8 for convenience. The
tuples enter the system in the order: 6, 5, 0, 1, 3, 4, 2, 7.

After the initialization in Step 0, in Step 1 the first tuple, 6,
arrives. Both algorithms store the new tuple at the currPos in the
partials array, and Naive iterates over indexes 3, 4, and 0 in order
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Figure 8: Example 2 processing of invertible aggregate
queries Q1 and Q2 using Naive and SlickDeque (Inv) algo-
rithms.

to answer Q1, and iterates over the entire array to answer Q2.
Both answers in this case are 6.

SlickDeque (Inv) on the other hand in step 1 just updates all
answers in the answers map by executing the operation ⊕ (in
this example it is Sum) with the newly arrived tuple 6 and the
inverse operation ⊖ (in this example it is Subtract) with values at
indexes 2 and 0 in the partials array, which both are zeros. The
updated answers are stored in the answers map.

In Step 2, the new partial, 5, arrives, and Naive iterates again
over the past 3 tuples to answer Q1 and over the whole window
to answerQ2, and sums up all of the values that were visited. The
SlickDeque (Inv) algorithm on the other hand, is able to provide
answers to both queries with just two operations each. It adds 5
and subtracts 0 from both answers in the map, making both 11.

Skipping ahead, in Step 4 SlickDeque (Inv) adds the new tuple,
1, to both answers, subtracts 6 from the answer to Q1 (since it is
now out of range of Q1), and then subtracts 0 from the answer
to Q2 (since 0 was in partials[3] in the previous step), returning
6 and 12 as answers to Q1 and Q2 respectively.

Skipping further, in Step 7 SlickDeque (Inv) adds 2 to both
answers, and subtracts 1 from Q1’s answer (since it is now out
of range for Q1) making it 9, and subtracts 5 from Q2’s answer
(since 5 was in partials[1] in the previous step) making it 10. ■

Notice that in this example Naive had to execute a total of
48 Sum operations, while SlickDeque (Inv) executed a total of 32
operations (Sum and Subtract).

SlickDeque for Non-Invertible Aggregates
For processing non-invertible aggregates we propose a novel
algorithm, SlickDeque (Non-Inv), which accelerates the process-
ing of ACQs by intelligently maintaining and utilizing a deque
data structure consisting of nodes allocated in chunks intercon-
nected with pointers. For simplicity of explanation we assume

that each node is allocated on a separate chunk. The benefits of
allocating multiple nodes per chunk are explained in Section 4.2.
Pseudocode for SlickDeck (Non-Inv) is depicted in Algorithm 2,
and similarly to SlickDeque (Inv) it consists of two major phases:
Preparation and Execution.
The Preparation Phase Similarly to SlickDeque (Inv), the exe-
cution starts by building a sharedPlan by executing the function
buildSharedPlan (line 4). It is constructed using one of the partial
aggregation techniques as discussed in Section 2.1, and it includes
a full list of partials augmented with their lengths and lists of
queries that need to be evaluated for each partial. The query with
the longest range in terms of the number of partials is identified
and saved as the member wSize of the sharedPlan, signifying the
necessary window length needed to process all input queries.

After generating the sharedPlan, SlickDeque (Non-Inv) defines
node, Node , structure that has members pos and val, and initial-
izes deque, d , composed of nodes, Node , (lines 6-7). SlickDeque
utilizes the currPos variable to signify the sequential number of
the current partial aggregate. It starts at 0 initially and increases
towSize − 1 during execution, after which it wraps back to 0.
The Execution Phase is implemented as a loop that contin-
uously returns all query results while they are expected, and
identically to SlickDeque (Inv), it begins by aggregating a newPar-
tial. The if-statement on line 13 is removing the expired node (if
present) from the head of the deque, d . The while-loop after that
(line 16) is executing operation ⊕ on two values: the value of the
tail node and of the new partial. If the new partial is returned by
the operation, the tail node is removed from the deque (it will
never be a query answer), and the next one is tested, otherwise
the loop stops. The new node is then added to the deque with
currPos as the position and newPartial as the value (line 19).

Next, set queriesToAnswer (a subset of Q scheduled at this
position) is accessed from the sharedPlan, and the answers for its
queries are produced in the for-loop below. Naturally, when the
sharedPlan was constructed, all queries in each queriesToAnswer
set were ordered descendingly by their range. We utilize this
ordering to answer all queries by looping over the deque only
once, since the larger ranges always correspond to the deque
nodes closest to the head. Therefore, the position i within the
deque is defined outside the loop and initialized to the head of
the deque (line 21).

The loop starts by identifying the startPos of the aggregation
for each query, q, by subtracting q’s range from currPos (line 23).
If startPos is negative it means that this range crosses a boundary
between two windows, and thus the boolean boundaryCrossed
is set to true and startPos is increased by the wSize. Otherwise
boundaryCrossed is set to false.

Then, based on whether the current range crosses the window
boundary or not, one of the two subsequent Answer Loops is exe-
cuted (lines 29-39), iterating over nodes from the current position
i until the answer node is identified based on the pos member
of each node, and returned as an answer to the query, q. The
next iteration (to answer the next query) will continue working
from the position i forward, until all queries are processed. After
returning all required answers the currPos is moved one position
forward (lines 42-45).

The following Example 3 (illustrated in Fig. 9) should clarify
the above algorithm. To make the explanation more intuitive we
again execute the two queries Q1 and Q2 on the same incoming
datastream using Naive and SlickDeque (Non-Inv), and illustrate
each step of their processing side-by-side.
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Algorithm 2 SlickDeque (Non-Inv) Pseudocode
1: Input: A set of aggregate continuous queries Q , non-invertible ag-

gregate operation ⊕, and partial aggregation technique PAT
2: Output: Continuous answers to queries in Q according to their

specifications.
3: Phase 1 (Preparation)
4: sharedPlan = buildSharedPlan(Q, PAT)
5: wSize = sharedPlan.wSize
6: Node with members pos and val
7: Deque d composed of nodes of type Node
8: currPos = 0
9: Phase 2 (Execution)
10: while results are expected do
11: length = sharedPlan.getNextPartialsLength()
12: newPartial = partialAggregator.aggregate(length, PAT)
13: if d.size > 0 AND d.front.pos == currPos then
14: d.pop_front()
15: end if
16: while d.size>0 AND d.back.val⊕newPartial==newPartial do
17: d.pop_back()
18: end while
19: d.push_back(new Node(currPos, newPartial))
20: queriesToAnswer = sharedPlan.getNextSetOfQueries()
21: i = d.firstNode
22: for each query q in queriesToAnswer do
23: startPos = currPos - q.range
24: boundaryCrossed = false
25: if startPos < 0 then
26: startPos += wSize
27: boundaryCrossed = true
28: end if
29: if boundaryCrossed == false then
30: //Answer Loop 1
31: while i.pos < startPos OR i.pos > currPos do
32: i = i.nextNode
33: end while
34: else
35: //Answer Loop 2
36: while i.pos < startPos AND i.pos > currPos do
37: i = i.nextNode
38: end while
39: end if
40: send i.val as answer to q
41: end for
42: currPos++
43: if currPos == wSize then
44: currPos = 0
45: end if
46: end while

Example 3 Assume we have queries Q1 and Q2, which are
seeking Max over the ranges of 3 and 5 tuples respectively, both
with a slide of 1 tuple. The slide size is again set to one tuple for
simplicity, which means that there is no partial aggregation and
the answers to both queries need to be calculated after every new
tuple arrival. As before, the range of Q2 (5) is greater than the
range of Q1 (3), and the slides of Q1 and Q2 are the same, the
shared execution plan has awSize of 5 tuples.

While Naive uses the circular partials array to maintain the
incoming partials (in this case just tuples), SlickDeque (Non-Inv)
only utilizes deque in its operation. In both partials and deque
we mark the positions modified in each step. The tuples enter
the system in the same order as in Example 2: 6, 5, 0, 1, 3, 4, 2, 7.

After the initialization Step, in Step 1 the first tuple, 6, arrives.
Naive stores it at the currPos in the partials array, and iterates

Figure 9: Example 3 processing of non-invertible aggre-
gate queries Q1 and Q2 using Naive and SlickDeque algo-
rithms.

over the last 3 indexes (3, 4, and 0) to answer Q1, and over the
entire array to answer Q2. Both answers in this case are 6.

SlickDeque (Non-Inv) places a new node with pos = 0 (which
is currPos) and val = 6, at the head of the deque, and since its pos
value is both within the last 3 and 5 positions from currPos, its
val is returned as the answer to both Q1 and Q2.

In Step 2, the new partial, 5, is placed into the currPos, and
Naive iterates again over the past 3 tuples to answerQ1 and over
the whole window to answerQ2, and returns the Max value from
all values visited, which is 6. Our algorithm on the other hand,
places the new tuple 5 as a val of the new node (with pos = 1) at
the end of the deque, and returns 6 (the val of the head node of
the deque) as an answer to both queries.

Skipping ahead, in Step 4 SlickDeque (Non-Inv) removes the
tail node of the deque since the newly arrived tuple, 1, is greater
than 0, which is the val of the tail node, and adds the new node
with pos = 3 and val = 1 at the end of the deque. Since Q2 has
a larger range, it is scheduled to be processed first. Its startPos
is identified: 3 − 5 = −2, and since -2 is negative, the window
boundary is crossed. Therefore startPos is moved to−2+5 = 3, and
the Answer Loop 2 is executed returning the val of the head node,
6. The startPos of Q1 is 3 − 3 = 0, and since 0 is not negative, the
window boundary is not crossed. Thus, the answer is produced
by iterating using Answer Loop 1, which returned 5, the val of the
second node from the head.

Skipping further, in Step 6 SlickDeque (Non-Inv) removes the
head node of the deque (with pos = 0 and val = 6) which expires
at this step since the currPos is 0. Also, since the newly arrived
tuple, 4, is greater than 3, the last node of the deque is removed,
and the new node with pos = 0 and val = 4 is added at the end
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of the deque. Q2 and Q1 are then both processed by executing
the Answer Loop 2 and returning 5 and 4 respectively. ■

Note that this example also shows the advantage of SlickDeque
(Non-Inv) over Naive by showing that Naive had to execute 48
Max operations total, while SlickDeque (Non-Inv) executed 11.

4 COMPLEXITY ANALYSIS
In this section, we calculate the time and space complexities of
Naive, B-Int, FlatFAT, FlatFIT, TwoStacks, DABA, and SlickDeque.
These are summarized in Table 1.

4.1 Time Complexities
We evaluate each algorithm’s time complexity in terms of the
number of aggregate operations it performs per slide to return
all query answers given a window size of n partial aggregates.
This metric was chosen because the aggregate operations are (1)
applied directly to the input data, (2) constitute the the bulk of
all performed operations, and (3) their number correlates best
with the actual query performance. In order to cover the entire
complexity space, we calculate amortized complexities as well as
worst-case complexities. Amortized complexities are important
to us because they correlate with ACQ processing throughputs,
while worst-case ones reflect possible latency spikes.

In addition to providing calculations for a single query envi-
ronment (where only one query covering the entire window is
executed each slide), we also evaluate a multi-query environment
with the maximum number of queries (which we refer to as a
max-multi-query environment). This way, a single query envi-
ronment can be though of as a lower bound of complexity per
slide, while a max-multi-query environment (which executes all
queries covering all possible ranges from 1 to the window length
(n) each slide), can be thought of as the upper bound. It is clear
that in most cases the complexity of the general case (with any
other numbers of queries) lays between these bounds.
Naive has an exact time complexity (with matching amortized
and worst cases) because it always executes the same number of
operations per slide. In a single query environment, its complexity
is n − 1 (asymptotically n) because it simply iterates over all n
partials and aggregates them.

In a max-multi-query environment, Naive needs to return
n answers each slide for ranges from 1 to n, yielding 0 to n − 1
operations, respectively. By summing up this arithmetic sequence
we get n2

2 −
n
2 (asymptotically n2).

FlatFAT has an exact time complexity of loд2 (n) in a single query
environment since each new partial updates the binary tree in a
bottom-up fashion from the leaf to the root. Since the number

Table 1: Algorithmic Complexities

Algorithm
Time Space

Single Query Max-Multi Single Max-Multi
Amort Worst Query Query Query

Naive n n n2 n n

FlatFAT loд(n) loд(n) n · loд(n) 2n** 2n**
B-Int loд(n) loд(n) n · loд(n) 2n** 2n**
FlatFIT 3 n n 2n 2n

TwoStacks 3 n — 2n —
DABA 5 8 — 2n —

Slick Inv 2 2 2n n 2n
Deque Non-Inv <2 n* n 2 to 2n* 2 to 2n*

*the probability of these cases is negligible: 1 in n!.
**true only when n is a power of 2, otherwise 3n.

of levels in a binary tree is loд2 (n) + 1, FlatFAT needs exactly
loд2 (n) operations to calculate the query answer. In a max-multi-
query environment it is intuitive that the upper bound of the
time complexity is n · loд2 (n), since FlatFAT needs to iterate over
n different query ranges at each slide and each range would
require loд2 (n) operations at most to return the result. The exact
complexity per slide can be produced by iterating over all possible
ranges and summing their required numbers of operations, which
equates to: n · loд2 (n) − 3n

2 +
5loд2 (n)

2 + 5
2 . For simplicity, we use

the asymptotic equivalent of this complexity: n · loд(n).
B-Int similarly to FlatFAT is of a binary nature, and is only dif-
ferent in how it handles updates and look-ups. In [29] B-Int has
been shown to have the same asymptotic time complexity as
FlatFAT, with B-Int being slower by a constant factor, which we
confirm in this work as well.
FlatFIT executes different numbers of operations for different
slides, unlike Naive, FlatFAT, and B-Int, which causes spikes in
latency. The execution of FlatFIT follows a cyclical pattern which
repeats every n + 1 slides, where n is the window size. In a single
query environment, the so called window reset event happens
once per such period and constitutes the worst-case complexity
per slide. During the window reset the indexes of the entire data
structure are updated in n − 1 steps. The window reset operation
is surrounded by two slides that require just one operation, and
the rest of the slides in a period require two operations each. By
summing everything, we have the amortized complexity for the
natural period of FlatFIT: (n−1)+2(n−2)+2 = 3(n−1), equating
to 3n operations for the period of n slides, which in turn makes
the amortized complexity asymptotically constant and equal to 3
operations per slide.

In a max-multi-query environment, FlatFIT keeps the data
structure maximally updated by answering queries over all pos-
sible ranges each slide, which allows it to calculate the query
answers with just one or zero operations each. Due to this, the
window reset event happens only once at the beginning of the
execution phase, and therefore in this scenario the operational
complexity of the FlatFIT algorithm is not amortized and yields
n − 1 operations per slide (asymptotically n).
TwoStacks also executes different numbers of operations for dif-
ferent slides, which introduces latency spikes similarly to FlatFIT.
During insertions, each new partial is added to the B stack and
one aggregate operation is performed to determine the new ag-
gregate value of the entire stack B. After that, another operation
is performed using the top values of both the F and B stacks to
return the query answer, which makes the complexity of inser-
tions 2 operations. The majority of evictions are free since they
are done by just popping the node from the F stack. When F
becomes empty, however, B is flipped onto F by popping values
one-by-one from B and inserting them into F while performing
one aggregate operation per insertion (to populate agg values on
F ). The flip procedure (n operations) clearly constitutes the worst-
case complexity per slide. To calculate the amortized complexity
we add all operations per one full iteration of the algorithm: n
insertions (1 operations each), n queries (1 operation each), and
one eviction that causes stack flip procedure (n operations), to-
talling 3n operations per n slides. Thus, the amortized complexity
of the algorithm in constant and equals 3 operations per slide.
TwoStacks does not currently allow multi query processing.
DABA was proposed to alleviate latency spikes in TwoStacks by
making its worst-case time complexity constant (though it still
performs different numbers of operations each slide). By doing
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that DABA sacrifices its amortized time complexity (and conse-
quently its throughput). Per one full window iteration DABA
executes 2 flip actions, n shift actions, and n evict actions (which
all cost 0 operations), n shrink actions (costing 3 operations each),
and also n insert actions and n answer look-up actions (cost 1 op-
eration apiece), totalling 5n operations per n slides, which yields
the amortized complexity of 5 operations. DABA’s worst-case
complexity can be attributed to a step that performs the follow-
ing sequence of actions: Evict, Flip, Shrink, Insert, Shrink, Query,
which costs 8 operations total. Similarly to TwoStacks DABA does
not currently support multi query processing.
SlickDeque for Invertible Operations has an exact time com-
plexity of just 2 operations per slide in a single query environ-
ment, since after each arrival of the new partial aggregate, the
query answer is updated twice: once by executing an aggregate
operation with the incoming partial, and once by executing the
inverse operation with the expiring partial. In a max-multi-query
environment SlickDeque (Inv) has to perform 2n operations, since
one aggregate operation and one inverse operation need to be
executed on each of the answers to n queries, which makes the
algorithm’s exact time complexity 2n.
SlickDeque for Non-Invertible Operations executes variable
numbers of operations per slide. As opposed to FlatFIT, TwoStacks,
and DABA which are input agnostic and have their worst-case
steps executed periodically, SlickDeque (Non-Inv) depends on the
input, and the probability of ever executing its worst-case step is
minuscule as we point out below.

Intuitively, in the long-running environmentwith a non-infinite
window, each partial can causes at most two operations: one
when it is inserted (invokes its comparison with the tail of the
deque), and one when it is deleted by another incoming partial
(invokes comparison of the incoming partial with the next item
on deque). Clearly, the only two situations when a partial per-
forms less than two operations in its lifetime are (1) if it becomes
the first element of the deque after its insertion (either by remov-
ing all other partials or by being inserted into an empty deque),
or (2) if it expires before being removed by another partial. If
both situations happen to the same partial it will be involved in
0 operations in its lifetime. Also, it is impossible to execute a full
window iteration without hitting one of the two situations by
one of the partials at least once, since we cannot have an element
in a deque that would both not get removed by another incoming
partial as well as not expired after a full window iteration. Thus,
the amortized complexity of this algorithm depends on the input,
however it is always less than 2 operations.

The worst time complexity of this algorithm happens when
the input (except the last partial of the window) is ordered in
the opposite way of the aggregate operator order, e.g., if Max is
processed and the entire input is ordered descendingly, forcing
the deque to fill up, after which the next input partial has the
largest value so far. This causes the new element to perform n op-
erations while deleting all nodes on the deque. Fortunately, such
a situation is highly unlikely on most inputs (1 in n! chance in
the uniform case). Consider the state-of-the art DABA algorithm
that we showed to have a worst-case complexity of 8 operations.
In order for SlickDeque (Non-Inv) to have a step with the same
complexity there should be at least 9 ordered partials in the input.
The probability of receiving 9 values ordered in a specific way in
a row is 1 out of 9! (equals 362880), which is highly unlikely.

In a max-multi-query environment, to process all queries
scheduled at a slide, the deque is traversed from the head while

answering each query. Clearly, if the number of nodes in the
deque is smaller than the number of different queries to answer,
some nodes will have answers to multiple queries. Thus, the
worst case would again be when the input forced the deque to
completely fill up, for which the probability is again 1 in n!. In
such a case, iterating over the entire deque at each step will take
n operations (and at worst 2 operations per step as shown in
the single query environment), so the complexity of the worst-
case becomes 2n. In the best case, the deque would have only
one node each slide that would answer all queries, which would
make complexity just 2 operations total.
Summary The differentiated processing of invertible and non-
invertible operations allows SlickDeque to utilize optimizations
tailored towards each type that are not available in the general
case. Thus, SlickDeque is superior in the time complexity for
both invertible and non-invertible cases compared to all other
algorithms. However, in the worst-case complexity per slide,
theoretically SlickDeque has a small possibility (1 in 362880 based
on the input) to be outperformed by DABA.

4.2 Space Complexities
Naive has the space complexity of n since it stores partials only
once and does not keep any additional structures. This complexity
stands despite the number of registered queries, since additional
queries do not require any additional structures.
FlatFAT andB-Int both have the space complexity of 2⌈loд (n)⌉+1.
Due to thir binary nature, they are more space efficient when
the window size is a power of two, in which case they consume
2n of memory: n for all leaf nodes and n − 1 for all tree nodes
above leaves. The first position within a flat array is normally
left unused in order to simplify the addressing of nodes within
the tree. In cases where the window size is not a power of two,
FlatFAT and B-Int round it up to the closest power of two, which
is mathematically expressed as: 2⌈loд (n)⌉ . Therefore, the space
complexity of these algorithms yields 2⌈loд (n)⌉+1. The window
rounding manifests the worst-case space complexity of 3n.
FlatFIT needs two pre-allocated arrays of size n to operate and
a stack that can grow up to 2 values total in a single query en-
vironment and in a max-multi-query environment. This results
in an asymptotic space complexity of FlatFIT 2n. However, in
terms of space complexity, single query and max-multi-query
environments do not bound FlatFIT. In a general case where we
have more than one query and less than the maximum queries
registered, the stack might have to store up to n/2 values (case
with two queries) at most. However, each additional query (of
a different range) after that cuts the maximum stack memory
consumption in half. Therefore, if the number of queries is q, the
space complexity of FlatFIT becomes 2n for q = 1 and q = n, and
2n + n

2q−1 for the rest of the possible values of q.
TwoStacks uses stack structures with nodes containing two
values, however both stacks combined can never have more than
n nodes total by the nature of the algorithm, which makes its
space complexity 2n.
DABA similarly to TwoStacksmaintains the front and back stacks
with nodes consisting of both values and aggregates, however it
is implemented on top of the doubly linked list of chunks. The
space complexity of DABA depends on the number of underlying
chunks, specifically, having less chunks that are bigger in size
saves space on pointers (left and right), but wastes space on over-
allocations (periodically window slides between chunks during
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the execution leaving up to two chunks’ worth of space wasted).
If the window is split into k chunks, then DABA’s space complex-
ity is: 2n + 4k + 4n/k . If we take a derivative with respect to k ,
equate it to zero, and solve for k , we conclude that the minimum
space complexity for DABA is achieved by setting k to

√
n, and it

equals 2n + 4
√
n (asymptotically 2n).

SlickDeque for invertible operations stores partial aggregates
similarly to Naive. In addition, it stores the answer for each query
with a unique range, making its single query space complexity
n + 1, and max-multi-query 2n.
SlickDeque for non-invertible operations performs node al-
locations in chunks to reduce the space required by pointers sim-
ilarly to DABA, causing an overallocation of up to two chunks’
worth of space (at the beginning and at the end of the deque).
The space complexity of SlickDeque (Non-Inv) does not depend
on the number of registered queries, but depends on the input. In
the worst-case, the input forces the deque to become full. In such
a case, having n nodes with two values each, and k chunks with
two pointers each, the space consumption becomes 2n+4k+4n/k .
By taking a derivative with respect to k , equating it to zero, and
solving for k , we conclude that k should be set to

√
n to minimize

the worst-case complexity, which becomes 2n + 4
√
n (asymptot-

ically 2n). Similarly to the time complexity, the chance of the
worst-case happening in normal conditions is very low: just 1
in n!. In the best case, however, each incoming partial forces the
deque to eliminate all of its nodes, making the space complexity
constant (2).
Summary SlickDeque shows a clear advantage over the rest of
the algorithms in terms of space complexity. SlickDeque (Inv)
shares the space complexity of n with Naive, while the rest of the
algorithms have a complexity of at least 2n, and the complexity
of SlickDeque (Non-Inv) is always less or equal than 2n (based on
the input). This means that only Naive can possibly outperform
it, however the probability of that happening is low (just 1 in
n!/2), and even then, Naive is still not a feasible solution because
of its high time complexity.

5 EXPERIMENTAL EVALUATION
In this section, we present our experimental evaluation that con-
firms the theoretical superiority of SlickDeque in practice, by
comparing it to other final aggregation approaches.

5.1 Experimental Testbed
Platform In order to test the performance of our sliding-window
aggregation technique, we built an experimental platform in
C++ (compiled with G++5.4.1). Specifically, we implemented a
stand-alone stream aggregator platform and programmed the
Naive, FlatFAT, B-Int, FlatFIT, TwoStacks, DABA, and SlickDeque
(Inv and Non-inv) algorithms within the same codebase, sharing
data structures and function calls to enable a fair comparison.
Although all of the compared algorithms can be easily ported
to any commercial general purpose stream processing system,
we chose to go with a stand-alone platform to carry out our
evaluation in an isolated environment in order to avoid any
potential system interference and overheads. In the future we
are planning to repeat our evaluation on a production system.
DatasetWe utilized the DEBS12 Grand Challenge Dataset [16]
which contains events generated by sensors of large hi-tech man-
ufacturing equipment. Each tuple in this dataset incorporates 3
energy readings and 51 values signifying various sensor states.
The records were sampled at the rate of 100Hz, and the whole

dataset includes ~33 million unique events, which we made into
a dataset of 134 million tuples.
WorkloadClearly, the performance of the final aggregation tech-
niques heavily depends on the window size, i.e., the larger the
window size the longer it takes to process updates to it. Thus, we
varied the window size from 1 tuple to 134 million tuples, which
is the maximum window size with our dataset. Given that the
goal of our evaluation is just to compare different final aggrega-
tion techniques, we eliminated any side effects (i.e., overheads
or benefits) induced by partial aggregation by setting all query
slides to one tuple.
Evaluation Metrics We chose to compare the algorithms using
throughput, latency, and memory requirement. Throughput is
measured as the number of query results returned per second in
a single query environment, while in a multi-query environment
it is measured as the number of slides of a shared execution plan
processed per second. Latency is measured in terms of the total
time it took to calculate and return the answer to each query.
Memory Requirement is measured by the maximum resident set
size of processes running the corresponding techniques.

5.2 Experimental Results
We ran our experiments on an Intel(R) i7-4770 CPU @ 3.40GHz
with 16 GB of RAM. For robustness, all the results were averaged
over three independent runs of each experiment aggregating
three different energy readings from the DEBS12 dataset.

Exp 1: Single Query Throughput
Exp1(a) Invertible Aggregates (Fig. 10)
In this experiment we varied the window size from 1 to 134
million tuples where each window is a power of two, and ran a
query calculating the invertible aggregation Sum over the entire
window after each new tuple arrival. From the results in Fig. 10
we clearly see that there are two groups of algorithms based on
their behavior with increasing window size: (1) with constant
throughput (SlickDeque, FlatFIT, TwoStacks, and DABA), and (2)
with steadily degrading throughput (FlatFAT, B-Int, and Naive).
Notice that the throughput rates are similar to what we expected
from the theoretical analysis of the algorithms in Section 4.

Fig. 10 shows that SlickDeque’s throughput is on average 15%
higher than the throughput of the second best algorithm (Flat-
FAT on windows 1 through 16, and FlatFIT on the rest) with a
maximum of 19%. We also observed that SlickDeque starts outper-
forming other algorithms on windows as small as 4 tuples and
increases its gain rapidly. FlatFAT showed to be more beneficial
than SlickDeque only on window sizes from 1 to 4 tuples, however
this benefit is negligible (1% at max).
Exp1(b) Non-Invertible Aggregates (Fig. 11)
In this experiment we replaced the calculation of Sum with the
non-invertible aggregation Max, that again runs over the entire
window after each tuple arrival. Similarly to Exp1(a), we see that
the throughput of some algorithms is practically unaffected by
the increasing window size. The results are depicted in Fig. 11.
Once again, the throughput rates correspond to what we expected
from the theoretical analysis of the algorithms.

In this experiment SlickDeque’s throughput is on average 7%
higher than the throughput of the second best algorithm with a
maximum of 10%, and SlickDeque starts outperforming all other
algorithms on windows as small as 16 tuples. FlatFAT showed to
be more beneficial than SlickDeque only on window sizes from 1
to 8 tuples with an advantage of 7% at max.
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Figure 10: Exp 1 Throughput in processed queries per sec-
ond in single query environment (Sum)

Figure 11: Exp 2 Throughput in processed queries per sec-
ond in single query environment (Max)

Exp 2: Max-Multi-Query Throughput
Exp2(a) Invertible Aggregates (Fig. 12)
In this experiment we ran a maximum number of queries calcu-
lating Sum value over the ranges from 1 to the window size after
each new tuple arrives. In this context increasing the window
also increases the number of queries that are processed after each
slide, enabling higher reuse of unchanged partial results among
them. Thus, in Fig. 12 we see that the throughput gradually in-
creases until the moment when the overhead of dealing with the
large window outweighs the benefit of sharing between queries.

In this setting, our approach demonstrated superior scalability
yet again by yielding throughput that is on average 45% higher
than the throughput of the second best technique with a maxi-
mum of 60%. Notice that SlickDeque performs the best on window
sizes from 4 tuples to 134 million tuples and only underperforms
compared to other algorithms on window sizes 1 and 2 by 3%
and 2%, respectively.
Exp2(b) Non-Invertible Aggregates (Fig. 13)
In this experiment we ran the maximum number of queries cal-
culating Max over all ranges from 1 to the entire window after
each tuple arrival. The results are depicted in Fig. 12, and are
close to our results in experiment Exp2(a).

In this setting SlickDeque yielded throughput on average 266%
higher than the throughput of the second best technique with
a maximum of 345%. SlickDeque showed to perform the best on
windows from 4 tuples to 134 million tuples while falling behind
Naive and FlatFAT on windows 1 and 2 by 7% on average.
Summary In all throughput experiments SlickDeque exhibits the
best results, while being slightly outperformed on small window

Figure 12: Exp 3 Throughput in processed slides per sec-
ond in multi-query environment (Sum)

Figure 13: Exp 4 Throughput in processed slides per sec-
ond in multi-query environment (Max)

sizes (between 1 and 8 tuples) when the overhead of maintaining
its structure outweighed the benefit of using it.

Exp 3: Query Processing Latency (Fig. 14)
In this experiment we fixed our window size at 1024 tuples and
ran all algorithms on the first million tuples of the DEBS data
set while recording how long it took to return an answer to each
query. We executed a single query processing Sum (invertible)
in the first test, and Max (non-invertible) in the second test. We
dropped the highest 0.005% latencies from all algorithms as out-
liers. The latency results of both tests were nearly identical for all
algorithms except SlickDeque, thus we combined them in Fig. 14,
where only SlickDeque has separate entries for invertible and
non-invertible cases.

Fig. 14 shows that both invertible and non-invertible SlickD-
eque versions exhibited the lowest latency in all the following
categories: Min, Max, Average, Median, 25th Percentile, and 75th
Percentile. Across all of the abovementioned categories, SlickD-
eque outperformed the second best algorithm by 8% on average
and 17% at most (for the non-invertible version), and by 75%
average and 548% at most (for the invertible version). Also, Slick-
Deque outperformed the second best DABA algorithm by 283%
on average in terms of the lowest max latency spike.

Exp 4: Memory Requirement (Fig. 15)
In this experiment we again varied the window size from 1 tuple
to 134 million tuples (but also included window sizes that are not
powers of two). We executed a query calculating the invertible
Sum aggregation in the first experiment, and the non-invertible
Max aggregation in the second. We measured the maximum
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Figure 14: Exp 4 Latency in nanoseconds per query answer

Figure 15: Exp 5 Experimental Memory Usage in Gigabyte
increments

resident set size (RSS) of the processes for all runs. The results of
this test are depicted in Fig. 15. On this graph, we combined the
results of both invertible and non-invertible runs of all algorithms
since their space requirements were identical in both Sum and
Max cases except for SlickDeque, which we plotted separately
for each case. Notice that due to the great similarity of space
requirement for several algorithms, we plotted: FlatFAT together
with B-Int, FlatFIT together with TwoStacks and DABA, Naive
together with SlickDeque (Inv), and SlickDeque (Non-Inv) was
plotted separately. The memory requirement rates correspond
to what we predicted from the theoretical analysis in Section 4.
SlickDeque demonstrated excellent scalability by matching the
space usage of Naive for the invertible case, and for the non-
invertible one outperforming the second best algorithm (Naive)
by 2 times on average with a maximum of 5 times.

6 CONCLUSIONS
The key contribution of this paper is SlickDeque, a novel tech-
nique for incremental sliding-window final aggregation process-
ing for single- and multi-query environments. Its power is the
differentiated handling of aggregate operations based on their in-
vertibility, which allows SlickDeque to use optimizations tailored
towards each type and that are not available in the general case.

We theoretically showed that SlickDeque significantly decreases
the number of operations required for a continuous query to re-
turn results while reducing its space requirement. As far as we
know, there are no prior algorithms that can achieve the same
time and space complexities without loss of query generality.
We showed experimentally that SlickDeque achieves up to 3.5x
higher throughput compared to the state-of-the-art algorithms,

while maintaining up to 5.5x lower latency and utilizing up to 5x
less memory. Our next step is to evaluate SlickDeque in dynamic
and multi-node environments on production systems.
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