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ABSTRACT
Global-Scale Data Management (GSDM) empowers systems by
providing higher levels of fault-tolerance, read availability, and
efficiency in utilizing cloud resources. But, at which datacen-
ters should data be placed? Current cloud providers offer tens of
datacenters and hundreds of edge datacenters that are globally
distributed all over the world. Unlike networks within a datacen-
ter, the topology of theWide-Area Network (WAN) is asymmetric
and diverse—the latency connecting a pair of datacenters can
be an order of magnitude larger than the latency connecting
another pair. This makes placement a significant factor in perfor-
mance. However, it is not only placement. The specifics of the
transaction management protocol play a crucial role in decid-
ing which placement is ideal. In this paper, we develop GPlacer,
a placement optimization framework that embeds the transac-
tion protocol constraints into an optimization to derive both the
data placement and the transaction protocol configuration that
minimize the overall transaction latency. In developing GPlacer,
we discover counter-intuitive lessons about data placement and
transaction execution practices. Our evaluation shows that ap-
plying these lessons in addition to known best practices generate
deployments that reduce the average transaction latency by up
to 68%.

1 INTRODUCTION
Internet applications strive for high-performance 24/7 service to
clients dispersed around the world. Achieving this is threatened
by complete datacenter outages; either planned or unplanned.
To overcome these challenges, application services and their
backend databases are increasingly being deployed on multiple
datacenters spanning large geographic regions (geo-replication).
F1 [29], Spanner [11], and Tao [8] are examples of deployed
systems that are geographically replicated for fault-tolerance and
performance reasons.

Moving to Global-Scale Data Management (GSDM), despite
its benefits, raises many challenges that are not faced by tradi-
tional deployments. The large WAN communication latency is
orders of magnitude larger than the traditional LAN communica-
tion latency. Figure 1 illustrates the latency difference between
communication messages that occur within the same machine,
among different machine in the same datacenter, or in multiple
datacenters in different geographical regions. This large com-
munication latency of the WAN motivates systems like Yahoo’s
PNUTS [9], Facebook’s Tao [8] and others [17, 24] to trade off
replica consistency and/or multi-row transaction support with
high availability and scalability. However, enterprise applications
and applications with complex and evolving schemas have more
interest in data management systems that provide transactional
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Figure 1: Latency of the Wide-Area Network Round-Trip
Time communication (WAN RTT) compared to memory
access latency [27] and network latency within the data-
center (local RTT).

ACID properties [5, 11, 30]. Application developers spend sig-
nificant time to build transaction semantics and complex mech-
anisms, that are error-prone, on top of the eventual consistent
datastores in order to handle stale data items and reason about
inconsistency [11, 29]. Therefore, in the past few years, many
solutions have emerged to provide strongly consistent trans-
actions for geo-replicated databases [11, 16, 18, 21–23]. These
solutions use different replication and isolation techniques in
order to minimize the number of WAN messages required to
achieve strong ACID transactional guarantees for geo-replicated
databases, hence reducing the transaction latency.

Data placement is the problem of deciding the subset of data-
centers to host a full or a partial replica of the data to achieve a
certain objective such as minimizing the transaction latency, min-
imizing the deployment monetary costs, and any combination of
these and other user-defined objective functions.

In this paper, we propose GPlacer; an optimization framework
that solves the data placement problem. GPlacer embeds the
commit protocol constraints into an optimization to derive both
the data placement and the commit protocol configurations that
minimize the overall transaction latency. In developing GPlacer,
we discover counter-intuitive lessons about data placement and
transaction execution practices. These lessons exploit the latency
diversity and asymmetry of the WAN links and are widely appli-
cable to Paxos-based commitment protocols [13, 21] and leader-
based commitment protocols [5, 11]. GPlacer incorporates these
lessons, the commitment protocol constraints, and the applica-
tion requirements in an optimization to find the placement that
minimizes the average transaction latency.

WAN links are diverse and asymmetric; a link connecting a
pair of datacenters can be an order of magnitude larger than a link
connecting another pair. Table 1 shows the average measured
Round-Trip Time (RTT ) between every pair of nine Amazon
AWS datacenters in California (C), Oregon (O), Virginia (V ), São
Paulo (SP ), Ireland (I ), Sydney (Sy), Singapore (Si), Tokyo (T ),
and Seoul (Se). As shown, the average RTT between California
and Oregon datacenters is 22ms while the average RTT between
Singapore and São Paulo datacenters is 329ms. Therefore, the
number of WAN messages required per transaction is not the
only factor that dominates the transaction latency. Transaction la-
tency is a product of both the transaction commit protocol, which
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C O V I Si T Se Sy SP

C 0(1) 22(2) 65(13) 136(5) 189(12) 113(5) 142(12) 159(2) 185(11)

O 22(2) 1(1) 88(14) 125(2) 166(13) 101(11) 131(13) 178(3) 182(11)

V 65(13) 88(14) 1(16) 73(13) 220(22) 156(16) 179(20) 219(13) 121(16)

I 136(5) 125(2) 73(13) 0(0) 180(18) 211(10) 233(14) 301(5) 185(12)

Si 189(11) 166(12) 220(22) 180(17) 1(9) 68(8) 97(13) 169(8) 329(21)

T 113(5) 101(11) 156(18) 211(10) 68(9) 0(3) 32(9) 104(2) 263(15)

Se 142(9) 131(13) 179(20) 233(13) 97(13) 32(10) 1(9) 133(8) 290(16)

Sy 159(2) 178(3) 219(12) 301(5) 169(10) 104(2) 133(8) 1(0) 338(11)

SP 185(13) 182(12) 121(17) 185(13) 329(23) 263(16) 290(18) 338(14) 1(11)

Table 1: The average RTT latencies between different dat-
acenters inmilliseconds and the standard deviation inside
parentheses.

Figure 2: The average latency, of all the clients in 9 data-
centers, to reach the closest quorum (2 out 3) for all the
possible

(9
3
)
= 84 different placements sorted by latency.

controls the number of the WAN messages required per trans-
action, and the locations of the replicas, hence the placement,
which controls the latency per a WAN message. To illustrate the
placement effect on the average obtained transaction latency,
we hold the following experiment. We equally distribute clients
among the nine AWS datacenters. Three out of the nine data-
centers are chosen to host a data replica. The time to reach the
closest quorum, two replicas out of these three, is measured for
all the clients for all the possible placements and the average
latency is reported. Figure 2 shows the effect of only changing
the placement on the average obtained latency for all the clients
while fixing the protocol. As seen in Figure 2, changing only the
placement while fixing all the other parameters (the protocol,
the workload distribution, etc.) can lead to a significant change
of 1.75x between the minimum and the maximum reported aver-
age latency. This latency difference amplifies for real workloads
when transactions are executed in chains [20].

Unlike GPlacer that optimizes the placement for multi-row
transactional workload with strong consistency requirements, many
works focus on optimizing the placement for weaker consistency
levels and single-row operations. SPANStore [33] develops an op-
timization framework to optimize the monetary cost of deploying
a geo-replicated key/value store. This framework optimizes the
total cost of processing, storage, bandwidth, and I/O and finds the
placement that achieves the minimum overall cost while meeting
the application requirements. Liu et al. [19], like SPANStore, opti-
mize the deployment monetary cost. However, they consider cost
savings exploiting resource reservation payment model instead
of the pay-as-you-go payment model while avoiding over reserva-
tion. Ping et al. [26] propose the use of a utility function to derive
a placement that achieves a balance between the availability and
the speed of data access. Volley [4] analyzes data access logs and

generates a migration plan for data partitions to minimize the
access latency.

Sharov et al. [28] optimize the placement for strong consis-
tent transactions using leader-based protocols. Sharov assumes
that a database is sharded into multiple partitions and each par-
tition is replicated independently. Each partition has a leader
replica that serializes all the transactions that span this par-
tition to achieve isolation. This leader replicates the updates
to a majority quorum of the partition replicas to achieve fault
tolerance. Although they provide placements for strong con-
sistent transactional workloads, their optimizations are tightly
coupled with leader-based protocols and it does not apply to
the many non-leader-based protocols that are widely used such
as [6, 13, 16, 21, 25]. Also, their resulting optimal placement allo-
cates all the partition leaders together in one datacenter. Placing
all partition leaders in one datacenter introduces the risk of los-
ing access to the entire data until the leaders are re-elected. In
addition, the transactions that span a single partition might incur
higher latency than the latency observed when the leader of each
partition is placed closer to the clients that access this partition.

The rest of the paper is organized as follows. Section 2 explains
the transaction model, the client requests, and the assumptions
and limitations of application requirements. Although GPlacer
can optimize the placement for different classes of commitment
protocols, a Paxos-based protocol is used to explain the details
of GPlacer. Section 3 formalizes the placement problem into an
exhaustive search problem. Although the exhaustive search finds
the optimal placement, it does not efficiently scale with the num-
ber of datacenters. Therefore, we introduce several placement
heuristics that find sub-optimal placements while efficiently scale
with the number of datacenters. Section 4 describes the counter-
intuitive lessons learned during the development of GPlacer and
their effect on the transaction latency. In Section 5, we evaluate
the effect of the placement lessons on the transaction latency and
the abort rate. We also evaluate the output and the performance
of the proposed heuristics compared to the exhaustive search. In
Section 6, we explain the changes that need to be done to extend
GPlacer to optimize for other protocols. The paper is concluded
in Section 7.

2 BACKGROUND
Global-scale placement is the problem of deciding which datacen-
ters will store a full or a partial replica of an application’s data
subject to a certain objective function. Objective functions can
vary between minimizing the deployment monetary cost [19, 33]
or minimizing the data access latency for a defined set of client op-
erations [28]. Objective functions are always constrained by the
application requirements (e.g., availability, upper bound access
time, or bandwidth usage). In this section, we present our storage
model and our assumptions about the workload distribution, the
application requirements, and the objective function.

The universe of datacenters, denoted by DC , is defined as all
the datacenters that can host an application1 instance and/or a
replica2 of the database. We assume that the application is de-
ployed on a subset of the datacenters DCapp ⊆ DC . The clients
of the application are scattered around the globe and for sim-
plicity, we assume that clients are collocated with their closest
datacenter. The application is deployed in all the datacenters
that have clients. However, these datacenters can be different

1Application refers to the middle tier logic.
2Replica refers to a copy of the backend database.
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Figure 3: The state-transition diagram of a distributed
transaction adopted from [13].

from the datacenters that host replicas. DCdb ⊆ DC is the subset
of datacenters that host a database replica. We assume that the
database is partitioned and all the partitions are fully replicated
in DCdb .

2.1 The Transaction Management Protocol
The clients of the application access the globally-distributed stor-
age by issuing transactions, which are collections of read and
write operations followed by a commit or an abort. GPlacer con-
siders transactions with strong guarantees, i.e., serializability [7].
Strong consistent transactions on globally-distributed data re-
quire more coordination than weaker forms of access like even-
tual consistency or single-key atomicity— thus making strongly
consistent transactions more expensive. A strong consistency
transactional interface is more natural to programmers and is re-
quired by many applications. Thus, we adopt such strong access
semantics for GSDM as others did from both academia [16, 21]
and industry [11].

We adopt the distributed transaction model proposed by Gray
and Lamport [13]. Figure 3 shows the different states of a transac-
tion and the corresponding execution phases. A client drives the
execution of a transaction in three phases. The details of these
three phases differ across different transaction management pro-
tocols. However, the abstract semantics behind these phases are
the same for all the protocols that provide the same strong trans-
actional guarantees. The three phases of a transaction are: the
execution phase, the vote collection phase, and the apply phase.

During the execution phase, the transaction is in the working
state when read and write operations are processed. We assume
that writes are locally buffered at the client and the updates are
sent to the data replicas in the second phase. This assumption
is widely used in many geo-replicated transaction management
protocols [11, 16, 21]. For a read operation, clients communicate
with their read coordinator, rc . rc processes a read request and
responds back to the client. The RTT between a client c and rc is
denoted by RTTc−to−rc and the time for rc to process the read
request is denoted by Prc . The total execution phase latency is
denoted by Le = nr .(RTTc−to−rc + Prc ) where nr is the average
number of read requests per transaction. The transaction manage-
ment protocol determines the values of nr , RTTc−to−rc , and Prc .
Some protocols assume that the client is the read coordinator. In
such case, RTTc−to−rc = 0. Also, some protocols require that the
client issues read requests one by one and others require that the
client should batch all the reads in one request. The processing
time Prc depends on how many replicas rc should communicate
with to serve a read request. In our model protocol, rc has to
communicate with a majority quorum to serve each read (we
also consider read optimizations later in Section 2.2. As write
requests are locally buffered, their effect on the execution phase
latency is negligible. During the execution phase, a client might

decide to abort the transaction by simply moving the transaction
to the aborted state. However, if the client decides to commit the
transaction, the transaction is moved to the prepared state and
the vote collection phase starts.

During the vote collection phase, the client sends the trans-
action’s details to the commit coordinator cc which is responsi-
ble for coordinating with the other replicas to decide either to
commit or to abort the transaction. Typically, the cc uses either
two-phase commit (2PC) with two-phase locking (2PL) [11] or
quorum-based approaches (e.g., Paxos) with 2PL [21]. The vote
collection phase can be mapped to the first phase of the 2PC
or the first round of Paxos. The latency of the voting phase is
denoted by Lv =

RTTc−to−cc
2 + RTTcc−to−p where RTTc−to−cc

is the RTT between c and cc and RTTcc−to−p is the round-trip
time between the cc and the furthest participant p included in
the voting process.

If the decision of the vote collection phase is to abort, the
client is notified, the transaction is moved to the aborted state, the
other participants are asynchronously updated, and the obtained
locks are released. However, if the decision is to commit, cc
starts the apply phase by sending the apply message to all the
participants. Upon receiving the apply message, the participants
commit the transaction, release the locks, and respond back to the
coordinator. cc notifies the client and the transaction is moved to
the committed state. The latency of the apply phase is denoted by
La = RTTcc−to−p +

RTTc−to−cc
2 as the apply phase takes a round

of communication with the participants in addition to the time
to inform the client about the decision. A transaction commit
latency Lc is the time spent in the vote collection phase and the
apply phase combined: Lc = RTTc−to−cc + 2 · RTTcc−to−p . The
transaction latency Lt is the time from the beginning till the
end of a transaction: Lt = Le + Lc = nr · (RTTc−to−rc + Prc ) +
RTTc−to−cc + 2RTTcc−to−p .

GPlacer optimizes the average overall transaction latency over
all the clients in different datacenters. It is designed to optimize
the placement for a wide class of transaction commitment proto-
cols. In this paper, we focus on optimizing for multi-master Paxos-
based protocols [13, 21] and for leader-based protocols [11] both
on partitioned fully replicated databases. In multi-master Paxos,
each replica can act as the commitment coordinator role and
uses the two rounds of Paxos for both transaction isolation and
replication. However, in leader-based protocols, a transaction can
fall into one of two categories: single-partition transactions or
multi-partition transactions. Single-partition transactions span
only one partition and the isolation between transactions that
span this partition is managed by the leader of this partition.
Multi-partition transactions span multiple partitions and typi-
cally 2PC is used between the leaders of the partitions involved
in a transaction to achieve isolation. In both categories, partition
leaders replicate the updates of committed transactions to a ma-
jority quorum of their partition replicas using only the second
round of Paxos.

In Section 3, we formalize GPlacer. We use Replicated Com-
mit [21] as our protocol model where reads are served from a
majority of the replicas and commits are done using the two
rounds of Paxos for isolation and replication. In Section 2.2, we
explain some commonly used optimization to reduce the exe-
cution phase latency. In Section 6, we explain how to extend
GPlacer to optimize placement for leader-based protocols like
Spanner [11].
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2.2 Read optimizations
In this section, we present two widely-used read optimizations
that are considered in GPlacer. A read request latency Lr =
(RTTc−to−rc +Prc ). The first optimization, optimistic read, aims
to eliminate the read processing time Prc . The second optimiza-
tion, passive replica read aims to eliminate the time to reach
the coordinator RTTc−to−rc and the processing time Prc by bring-
ing a copy of the data to the client’s datacenter. We define two
different types of replicas a datacenter can host: active replica
or passive replica. An active replica contributes synchronously
in the voting collection and the apply phases and can act the
coordinator and the participant roles. However, a passive replica
is a read-only replica. It is asynchronously updated after the
transactions are committed.

Optimistic read aims to eliminate the read request process-
ing time by optimistically reading data values from the closest
active replica without any coordination with other active repli-
cas. This optimization has been introduced before as early as in
Postgres-R local reads [15] and as fast reads in Zookeeper [14].
Applying optimistic reads require validating the value read in the
commit phase to guarantee the freshness of the optimistically
read values in the execution phase. In Spanner [11], reads are
served by the leader of each partition. However, optimistic reads
can be beneficial by reading from the closest partition replica
instead from the partition leader. In Replicated Commit [21], a
client is required to read from a quorum of the replicas. Applying
optimistic read reduces the read latency by reading from one
replica instead of a quorum.

Passive replica read aims to completely eliminate the read
latency by processing read requests from a local read-only replica
or a passive replica. The reason behind this naming is that a
passive replica does not participate actively in the commit de-
cision. Therefore, adding more passive replicas does not affect
the commit latency. However, these replicas need to be asyn-
chronously updated which increases the bandwidth required per
committed transaction. Also, having many passive replicas in-
creases the deployment cost. Data read from a passive replica
needs to be validated in the commit phase to guarantee freshness.
If the data is frequently updated at the active replicas, the data
values read from a passive replica will be stale which increases
the transaction abort rate. The concept of passive replica read
has also been introduced in [28] as weak reads.

GPlacer chooses the set of active replicas and the set of passive
replicas. In addition, it assigns rc and cc for clients in every
datacenter. Application requirements are given as inputs to the
framework. GPlacer takes as an input the fault tolerance level f ,
the total number of replicas t , and the workload distribution. f
determines the number of active replicas and t determines the
number of passive replicas. The workload distribution determines
which datacenters should have active replicas, which should
have passive replicas, and which should not have a replica at
all. GPlacer finds placements that optimize the overall average
transaction latency for strongly consistent multi-row transaction
workloads. However, systems that require non-transactional or
weakly consistent operations can easily be tuned in GPlacer’s
prototype but we do not discuss them since they were treated in
previous works [4, 33].

3 FRAMEWORK FORMULATION
GPlacer finds the placement that minimizes the average trans-
action latency for partitioned fully replicated databases. As ex-
plained in Section 2, Paxos-based protocols use majority quorums
for both transaction isolation and replication while leader-based
protocols use majority quorums only for replication. Placement
for Paxos-based protocols requires finding the subset of datacen-
ters that should host replicas and the majority quorums used
by the protocol. Leader-based protocols requires an additional
step of placing the leaders of different database partitions on
the replicas chosen in the first step. In Section 3.1, we formu-
late the placement problem into an exhaustive search model
for Paxos-based protocols. This model evaluates all the possible
placement combinations and returns one placement that achieves
the minimum average transaction latency for a given workload.
The model finds the placement DCdb ⊆ DC and the majority
quorums for each replica in this placement that optimizes the ob-
jective function. Although the model finds the optimal placement,
due to the model complexity, it does not scale with the number
of datacenters when multiple cloud providers and edge datacen-
ters are considered. Therefore, in Section 3.2, we introduce two
replica-placement heuristics to find placements that are close
to optimal among hundreds of datacenters. The performance
and the resulting placements of these heuristics are evaluated in
Section 5.

3.1 Model formulation
The inputs of GPlacer fall into two categories:

• Datacenter information: this includes the number of
datacenters |DC | and the average RTT between every pair
of the datacenters.
• Application information: this includes the number of
datacenter scale outages f the deployment should tolerate
and the application workload distribution. The workload
distribution is denoted by ci and represents the number
of clients c at datacenter i .

The outputs of GPlacer include:

• The list of datacenters that should host a database replica.
• The read and the commit coordinator of clients at each
datacenter. Clients at one datacenter share the same read
and commit coordinators.

As the placement problem can be represented as an optimiza-
tion model, we first implemented the placement model as an
integer program and used the open source GLPK solver [2]. How-
ever, the solver could not efficiently scale with the number of
datacenters. Many of the optimization constraints are conditional
and to convert them to linear constraints, multiple binary out-
put variables are introduced. The binary outputs and their re-
lated constraints are quadratic in the number of the datacenters
O(|DC |2). In addition, GLPK solver introduced performance over-
head. Therefore, to conduct a fair comparison with the replica-
placement heuristics, we implement both the exhaustive search
and the heuristics in Java. The objective function of the place-
ment model is to minimize the average transaction latency of all
the clients in all the datacenters. Algorithm 1 shows the details
of the exhaustive search model.

Algorithm 1 evaluates all the possible subsets of the input
datacenters of size 2f + 1 and returns the one that minimizes
the average transaction latency. The function evalLat , in line 3,
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Algorithm 1 Evaluates all the possible placement combinations
and returns the one that achieves the minimum average latency
for given application requirements.
Input: f , |DC |, RTTi j ∀i, j ∈ DC and the Set C = {ci ∀i ∈ DC}

Output: DCdb , DCrc , and DCcc
1: DCdb ,DCrc ,DCcc ← {},minL← MaxInt
2: for each Set S ⊂ DC, |S | = 2f + 1 do
3: l , Src , Scc ← evalLat(S,RTT ,C)
4: if l < minL then
5: minL← l , DCdb ← S
6: DCrc ← Src , DCcc ← Scc
7: end if
8: end for

has different implementations based on the enabled read opti-
mizations. When all the read optimizations are disabled, evalLat
assumes that the read coordinator and the commit coordinator
are collocated with the client who issues a transaction and reads
are served from a majority quorum of replicas. However, if opti-
mistic read is enabled, the read latency is updated to the RTT to
the closest chosen replica from the client. Also, if passive replica
read is enabled, the read latency is updated to zero as all the
clients perform read operations from a local replica.

3.2 Replica-placement heuristics
Although Algorithm 1 finds the optimal placement among all
the possible placements, it does not efficiently scale when the
total number of the datacenters, |DC |, or the number of the repli-
cas, |DCdb |, increases. Our experiments show that choosing 7
replicas out of 60 datacenters

(60
7
)
takes 2 hours while choos-

ing 7 replicas out of hundreds of datacenters (which is the case
when we consider edge datacenters) could take years. Therefore,
we present two replica-placement heuristics that efficiently find
placements with sub-optimal average transaction latency. These
replica-placement heuristics consider the two main aspects that
affect the transaction latency; the latency between the clients
and the replicas and the latency between the replicas each other.
The running-time of these heuristics is polynomial in the total
number of the datacenters. The performance and the resulting
placements of these heuristics are compared to the exhaustive
search results in Section 5.2.

The first replica-placement heuristic is shown in Algorithm 2.
It uses an iterative greedy algorithm to choose the replicas. It
starts with an empty set of chosen replicas DCdb ← {}, line 1,
and at each iteration, it adds one replica to DCdb until 2f + 1
replicas are chosen. The inner loop, lines 4-14, evaluates the
effect of adding each unchosen replica to DCdb on the average
transaction latency and the replica that achieves the minimum
latency is added to DCdb , line 15. evalLat is the same evaluation
function introduced in Algorithm 1 line 3. The intuition behind
this heuristic is that choosing the best candidate at each step
should lead to a solution that is optimal or close to the optimal.

The second replica-placement heuristic is presented in Algo-
rithm 3. It is based on the K-Means algorithm. It assigns weights
to every datacenter, initially equals to the number of clients in
this datacenter; line 4. A datacenter weight is updated according
to the number of quorums it participates at; line 13. Datacenter
weights are iteratively updated and datacenters are sorted by
their weights. The top 2f + 1 datacenters are chosen to host
replicas in lines 5 and 18. The algorithm evaluates the placement

Algorithm 2 Greedily adds one replica at a time achieving the
minimum average latency at each iteration.
Input: f , |DC |, RTTi j ∀i, j ∈ DC and the Set C = {ci ∀i ∈ DC}

Output: DCdb , DCrc , and DCcc
1: DCdb ,DCrc ,DCcc ← {}
2: while |DCdb | < 2f + 1 do
3: S ← DCdb ,minL← MaxInt ,minDC ← ϕ
4: for all dc ∈ DC do
5: if dc < S then
6: S ← S ∪ {dc}
7: l , Src , Scc ← evalLat(S,RTT ,C)
8: if l < minL then
9: minL← l ,minDC ← dc
10: DCrc ← Src , DCcc ← Scc
11: end if
12: S ← S \ {dc}
13: end if
14: end for
15: DCdb ← DCdb ∪ {minDC}
16: end while

in every iteration and stops when the average transaction la-
tency converges. To avoid fast convergence to a local minimum,
a minimum iteration count is required before terminating the
algorithm; lines 1 and 7. The minimum evaluated placement is
saved to make sure that the final placement does not achieve
higher transaction latency than any placement that has been
evaluated before.

Algorithm 3 Assigns weights to datacenters and iteratively
chooses the top weighted 2f + 1 to host replicas.
Input: f , |DC |, RTTi j ∀i, j ∈ DC , t and the SetC = {ci ∀i ∈ DC}

Output: DCdb , DCrc , and DCcc
1: minIter ← t , iter ← 0
2: DCdb ,DCrc ,DCcc ← {}
3: ln−1, ln ← MaxInt
4: Weiдhts ← {c0, c1, ..., c |DC |} // Initialize weights with the

number of clients at each datacenter.
5: DCdb ← top(sort(Weiдhts), 2f + 1) // Sort on weights and

choose a placement of the top 2f + 1.
6: ln ,DCrc ,DCcc ← evalLat(DCdb ,RTT ,C)
7: while ln < ln−1 | | iter + + < minIter do
8: ln−1 ← ln
9: NewW ← {0, 0, ..., 0} // New Weights
10: for all dc1 ∈ DC do
11: for all dc2 ∈ DC do
12: if dc2 ∈ nearestQuorum(dc1) then
13: NewW [dc2]+ =Weiдhts[dc1]
14: end if
15: end for
16: end for
17: Weiдhts ← NewW
18: DCdb ← top(sort(Weiдhts, 2f + 1)
19: ln ,DCrc ,DCcc ← evalLat(DCdb ,RTT ,C)
20: end while

4 SURPRISING PLACEMENT LESSONS
During the development of GPlacer, we learned some counter-
intuitive lessons about data placement that exploit the diversity
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and the asymmetry of the WAN links to decrease the execution
and the commit latencies, hence the transaction latency. (The
transaction latency Lt is sum of the execution latency Le and
the commit latency Lc .) In this Section, we explain the details
of these placement lessons and their effect on the transaction
latency.

4.1 Request handoff
A client executes either read or commit requests. The latency of
these two requests can be abstracted as the sum of: RTTc−to−c ,
the round-trip time between the client and the request coordina-
tor and Lp , the time for the coordinator to process the request.

Therefore, the request latency is mainly affected by the dis-
tance between the client and the coordinator, the distance be-
tween the coordinator and the participants, and finally the num-
ber of communication rounds required between the coordinator
and the participants to serve the request. Different transaction
management protocols choose the coordinator based on some
intuitive heuristics. In [21], Mahmoud et al. assume that the client
is the coordinator of a transaction. In Spanner [11], the 2PC co-
ordinator is randomly chosen from the leaders of the partitions
involved in a multi-partition transaction. In [23], Nawab et al.
choose the coordinator to be the closest replica to the client.
However, the choice of the coordinator can drastically affect the
request latency. To illustrate this effect, we provide two examples
of 2PC and Paxos deployments to show that carefully choosing
the coordinator can save up to 48% of the average latency.

Two-phase commit: assume there are three data partitions
X , Y , and Z deployed in three AWS datacenters in SP , V , and I
respectively. Now, assume a client in datacenter I wants to com-
mit a transaction t that updates the elements x1 ∈ X , y1 ∈ Y , and
z1 ∈ Z . The commit latency at any coordinator equals to double
the RTT between the coordinator and the furthest involved parti-
tion leader. Therefore, if the client chooses the leader of partition
Z in datacenter I to be the commit coordinator, the resulting
commit latency is 2 ·max(RTTIV ,RTTI SP ) = 2 ∗ 185 = 370ms .
Although the time between the client and the coordinator is
neglected, the latency is still high because the coordinator is
relatively far from SP . However, if the client chooses the leader
of partition Y in datacenter V to be the commit coordinator, the
resulting commit latency is RTTIV + 2 ·max(RTTV I ,RTTV SP ) =
73 + 2 ∗ 121 = 315ms saving around 15% of the commit latency
without modifying any constraint of the original 2PC protocol.
Also, when datacenter V is the 2PC coordinator, the participant
at datacenter I will be notified about the commit decision after
RTTIV

2 +max(RTTV I ,RTTV SP ) + RTTIV
2 = 36.5 + 121 + 36.5 =

194ms . The participant at datacenter I can directly inform the
client with the decision saving around 48% of the latency obtained
when I is chosen to be the coordinator.

Paxos: assume there are five replicas of the database in dat-
acenters I , V , SP , O , and C as shown in Figure 4. A client in
datacenter SP wants to commit a transaction which requires to
execute the two rounds of Paxos to reach a consensus about the
commit decision. The latency of the two rounds of Paxos equals to
double the RTT between the coordinator and the furthest replica
in the closest majority to the coordinator. Therefore, if the client
in SP chooses the replica in SP to be the coordinator, the resulting
commit latency equals to 2 ·max(RTTSPSP ,RTTSPV ,RTTSPO ) =
2 ·max(1, 121, 182) = 2∗182 = 364ms . However, if the client in SP ,
delegates the coordination to the replica in V , the resulting com-
mit latency will be RTTSPV + 2 ·max(RTTVV ,RTTV I ,RTTVC ) =

Figure 4: Five replicas of the database are deployed in dat-
acenters I , V , SP , O , and C.

121 + 2 ∗ 73 = 267ms saving around 26.6% of the commit latency
obtained when SP is chosen to be the coordinator.

We presented a primitive version of the handoff idea in [34]. To
generalize, for any requestR from a client at datacenterA, it might
be beneficial to handoff this request to a replica at datacenter
B if the summation of RTTAB and the time for datacenter B to
serve this request LB are less than LA, the time to serve this
request at datacenter A. In other words, request handoff from
datacenter A to datacenter B is beneficial if LA > RTTAB + LB .
This optimization is widely applicable on different protocols and
different request types.

4.2 Cover all the optimization aspects
During our SIGMOD demo [34], we ask the participants to place
5 data replicas in 5 out of the 9 datacenters shown in Figure 5.
The participants are told that the data is fully replicated in the
5 chosen datacenters and the commitment protocol uses the
two rounds of Paxos for isolation and replication and reads are
served from the closest quorum. In addition, optimistic read and
passive replica reads can be used and there is no restriction on the
number of passive replicas that can be used. Finally, the workload
at each site is represented by the number of blue clients at each
datacenter and handoff can be used when possible.

When passive replica read is enabled and there is no restriction
on the number of passive replicas assuming low contention, the
commit latency contributes the most to the average transaction
latency. As explained in Section 2, the commit latency is expressed
as: Lc = RTTc−to−cc + 2 · RTTcc−to−p .

Most of the demo participants tried to optimize the time to
reach the commit coordinator cc by placing the active replicas
at the datacenters that have clients. Although this strategy is
intuitive and reduces the time to reach cc to zero, it does not
find the placement the minimizes the overall average commit
latency. This happens because the datacenters that have clients
happen to be far from each other and the time to reach a quorum
of participants is maximized using this strategy.

Figure 5 shows that the placement that minimizes the commit
latency must consider all the optimization aspects of the com-
mit latency. It places quorums of replicas close to each other
(quorums are shown using the dotted curves) and uses handoff
to handoff the commitment to replicas that can quickly form a
quorum (handoff is shown using solid arrows). Surprisingly,
in this example, non of the chosen replicas are placed in
datacenters that have clients.
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Figure 5: A placement scenario that shows the importance
of considering different optimization aspects to minimize
the average transaction latency.

5 EVALUATION
A performance evaluation study of the request handoff, the read
optimizations, and the proposed heuristics is conducted in this
section. In our study, we first evaluate the effect of the read opti-
mizations and the request handoff on execution and commit la-
tencies in Section 5.1. In Section 5.2, we evaluate the performance
of the replica-placement heuristics introduced in Section 3.2. We
compare the running time and the resulting placement laten-
cies of these heuristics to the running time and the placement
latencies of the exhaustive search algorithm in Algorithm 1.

5.1 Placement optimizations
5.1.1 Experimental setup. We use the placement scenario in

Figure 4 to evaluate the effect of read optimizations and request
handoff on the transaction latency. Request handoff exploits
the diversity of the WAN links to decrease the transaction la-
tency and this scenario shows a good example of this diversity,
RTTSPC > 8RTTOC . Amazon EC2 machines in Ireland (I ), Vir-
ginia (V ), São Paulo (SP ), Oregon (O), and California (C) datacen-
ters are leveraged as infrastructure for our experiments. Larger
machines are used in datacentersC andO so that we can measure
the handoff effect without causing throttling in datacentersC and
O . Compute optimized machines are used because computing is
the main source of contention in our experiments. We use one
compute optimized (c4.large) machine with 2 vCPUs and 3.75 GB
of RAM in datacenters V , I , and SP while we use one compute
optimized (c3.4xlarge) machine with 16 vCPUs and 30 GB of RAM
in datacenters C and O . We assign active replicas to servers in
C , O , and V while we assign passive replicas to servers in I and
SP . These machines use HBase [3] as the underlying persistent
data store. The average RTTs observed between different data-
centers are shown in Table 1. The observed RTTs are sampled
over 48 hours using AWS nano machines pinging each other. The
data is fully replicated in all five datacenters and an optimistic
Paxos-based concurrency control protocol is used. A transaction
requires two majority rounds to commit and the read-set is vali-
dated at commit time. We implemented multiple versions of the
protocol based on how read requests are processed in the execu-
tion phase. Maj0 is conservative and requires read requests to
be processed from a majority of the active replicas.Maj1 imple-
ments the optimistic read optimization and requires read requests
to be processed from one active replica. Maj2 implements the
optimistic read and passive replica optimizations and processes
read requests from either active or passive replica. Transaction
commitment is implemented the same way in all three versions.

The commit handoff optimization is applied on all three versions
and it only changes the way a commit coordinator is chosen. For
this, we implemented Maj0h, Maj1h, and Maj2h to apply the
handoff optimization on the three protocol implementations. We
compare the average obtained commit and transaction latencies
for all the three implementations with and without applying
the handoff optimization. In addition, we compare transaction
throughputs and abort rates for all three implementations.

Dedicated client machines in each datacenter generate client
workloads. Each client machine is configured with a read coordi-
nator and a commit coordinator. Also, client machines execute
a workload thread per client. Clients are uniformly distributed
among the 5 datacenters in all the experiments unless otherwise
stated. Client machines use YCSB [10] to generate workloads.
Since YCSB is not designed to generate multi-record transactions,
we use Transactional YCSB (T-YCSB) [12], an extended version of
YCSB that generates multi-record transactions, for this purpose.
T-YCSB generates transactions that consist of read and write
operations on different data records followed by a commit. Each
transaction is configured to have five operations. The ratio of
read to write operations is 1:1 unless otherwise specified. Read
and write operations choose a key from a pool of 50000 keys fol-
lowing a zipfian distribution. This small number of keys enables
us to observe the performance of the system under contention.
Each client can have only one outgoing transaction. Clients sub-
mit a new transaction as soon as they receive a decision for their
outgoing transaction. Each experiment runs for 10 minutes.

5.1.2 Experimental results. Transaction latency. Active repli-
cas are placed in only three datacenters C , O , and V . Therefore,
a majority quorum consists of two active replicas. The Maj0 im-
plementation assumes that clients at each datacenter drive their
transactions(no handoff). Also, it assumes that reads have to be
processed from at least two active replicas and commits have to
be accepted by and applied to at least two active replicas.Maj0h
allows clients in SP to handoff their commit to O and clients
in I to handoff their commits to C .Maj1h andMaj2h allow the
same handoff plans while enabling optimistic reads inMaj1h and
optimistic reads and passive replica reads inMaj2h.

Figure 6 shows the effect of increasing the number of clients
from 10 to 200 on transaction latency. As a transaction requires
two round trips to a quorum of two active replicas to commit,
clients in C and O have their location as an advantage that they
can always achieve lower transaction latency and higher through-
put than clients in other sites as long as the number of clients
is equal in all the datacenters. Therefore, to measure the effect
of the placement optimizations on transaction latency in isola-
tion from the throughput, we use the normalized transaction
latency as a comparison metric between different implemen-
tations. The normalized transaction latency Lnorm is the av-
erage of the average transaction latency in all the datacenters
Lnorm =

LC+LO+LV +LI+LSP
5 where Li is the average transac-

tion latency at datacenter i . As shown in Figure 6a, applying
read optimizations inMaj2 significantly enhances Lnorm by 48%
compared toMaj0. Also, the handoff inMaj2h enhances Lnorma
by 26% compared toMaj2 leading to a total enhancement of 60%
compared toMaj0. Increasing the number of clients beyond 100
(20 at each datacenter) causes throttling in server machines. This
throttling leads to an increase in the overall transaction latency
and a decrease in the benefit obtained from the applied opti-
mizations. Figures 6b and 6c shows the effect of applying read
optimizations and handoff on transaction latencies at I and SP
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(a) Overall normalized transaction latency.
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 0

 50

 100

 150

 200

 250

 300

 350

 0  5  10  15  20  25  30  35  40

T
ra

n
s
a
c
ti
o
n
 l
a
te

n
c
y
 (

m
s
)

Number of clients

(d) Transaction latency in California.

Figure 6: Transaction latency as number of clients in-
creases. Figures 6a, 6b, 6c, and 6d share one plotting leg-
end.

respectively. As shown, read optimizations and handoff together
inMaj2h enhances transaction latency compared toMaj0 by 62%
and 68% in I and SP respectively. Also, handoff inMaj2h saves
30% and 38% of the transaction latency compared to Maj2 for
clients in I and SP . Figure 6d presents the effect of the placement
optimizations on the transaction latency in C . As shown, read
optimizations significantly reduce the transaction latency in C
by 49% as reads are served locally. This applies until throttling
happens. After throttling, the transaction latency in C increases
forMaj2 because serving reads locally in all the datacenters in-
creases the frequency of the transactions that are ready to commit
in the system causing more contention in datacenters C and O .
The handoff slightly increases the transaction latency in C and
its negative effect is negligible before the throttling happens.
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Figure 7: Overall average commit latency as number of
clients increases.

Commit latency. Figure 7 shows the effect of the placement
optimizations on the overall average commit latency. While the
normalized transaction latency is significantly enhanced by ap-
plying read optimizations, read optimizations negatively affect
the overall commit latency. By reducing the execution phase
latency, the number of active transactions that are ready to com-
mit increases and leads to an increase in the commit latency.
However, applying handoff enhances the overall average commit
latency by 10 − 15% in Maj0h, Maj1h, and Maj2h compared to
Maj0,Maj1, andMaj2 respectively.
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(a) Overall throughput.
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Figure 8: Throughput as number of clients increases. Fig-
ures 8a, 8b, and 8c share one plotting legend.
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Figure 9: Overall abort rate as number of clients increases.

Throughput. The throughput, measured by number of op-
erations per second, is presented in Figure 8. Figure 8a shows
that applying read optimizations in Maj1 andMaj2 achieves 2x
the throughput inMaj0 until hitting the thrashing point(≥ 100
clients). After that, throughput is slightly higher inMaj1,Maj2,
and Maj1h and about 8% higher in Maj2h. Throughput results
in I and SP are shown in Figures 8b and 8c. These figures show a
significant increase of 100% between Maj0 and Maj2h in I and
170% between the same implementations in SP . Applying hand-
off not only significantly benefits I and SP but also benefits the
overall throughput.

Abort rate. The abort rates are shown in Figure 9. The abort
rate is a result of many factors, such as the amount of contention,
the number of concurrent transactions, the lifetime of a transac-
tion, among others. As shown, the overall abort rate is below 1%
for all six different implementations. However, we observed two
important patterns that are worth analyzing. First, read optimiza-
tions increase the abort rate by 100% for some experiment runs.
Obtaining the read-set from a local copy increases the chances
of reading a stale value and hence increasing transaction aborts.
However, these stale values has a small life-time as all the passive
replicas are asynchronously updated. Second, handoff decreases
the abort rate by 25−30% because a transaction’s lifetime is short-
ened by reducing the overall transaction latency and specifically
the high latency transactions in I and SP .

5.2 Replica-placement heuristics
We evaluate the replica-placement heuristics in this section. This
evaluation tries to answer two questions: How fast can these
heuristics find a placement? and how good is this placement com-
pared to the optimal placement?. For that, we compare the per-
formance and the resulting placements of the proposed heuris-
tics in Algorithms 2 and 3 to the performance and the resulting
placements of the exhaustive search in Algorithm 1 at scale. We
assume that optimistic reads and passive replica reads are en-
abled. Therefore, we use commit latency as a comparison metric
as the transaction execution latency is negligible when reads and
writes are served locally and none of the replicas are overloaded
with requests. The proposed heuristics and the exhaustive search
programs are all implemented in Java which allows us to conduct
a fair comparison. The exhaustive search algorithm evaluates
all possible placement combinations and returns the placement
that achieves the minimum average commit latency for a certain
workload. Algorithm 2 introduces a greedy heuristic that adds
one replica at a time achieving the minimum average transaction
latency at each iteration. Algorithm 3 is inspired by the K-Means
algorithm and it assigns initial weight to each datacenter equals
to the number of clients at this datacenter. Weights are updated

based on the quorums a datacenter participates at and based on
handoff.

Finding the optimal placement of five replicas within ten data-
centers can be efficiently done. It requires the evaluation of only
252 different placements and the exhaustive search is sufficient
in this case. However, in a more realistic setting, the number of
datacenters around the globe, including edge datacenters, may
easily exceed 4000 datacenters [1]. Also, it has been shown in [33]
that it is economically efficient to deploy storage in datacenters
of different cloud providers as non of them provides cheaper
storage in all the deployment regions. To choose five datacenters
out of 4000 datacenters requires to evaluate 8.5e+15 different
placements. To get a sense of the space size and the running time,
we evaluated the exhaustive search algorithm and the heuristics
proposed in Section 3.2 using different datasets.

First, we generate multiple datasets of datacenters DC dis-
tributed around the globe with randomly chosen round-trip time
0 ≤ RTT ≤ 500 ms. We also make sure that the triangle inequal-
ity holds among any three datacenters such that ∀A,B,C ∈DC
RTTAB + RTTBC ≥ RTTAC . Second, we distribute the workload
around the generated datacenters with ratios between 0− 10. We
use the generated data as inputs to both the exhaustive search
program and the placement heuristics. These experiments are
run locally on an Intel Core i5-3210M CPU 2.50GHz with 8GB of
RAM.

Running time. In this part of the evaluation, we answer the
first question, namely How fast can these heuristics find a place-
ment?. Figures 10a and 10b show a running time comparison be-
tween the exhaustive search and the placement heuristics when
the number of replicas are 5 and 7 respectively. As shown, the run-
ning time of the exhaustive search grows exponentially with the
number of datacenters while the running time of both heuristics
are negligible(< 1 second). Also, the exponential power signifi-
cantly increases as the number of replicas required to be placed
increases. This shows that it is infeasible to use the exhaustive
search when the datacenter set size exceeds few tens.

Resulting placements. The second part of the evaluation
answers the second question about the quality of the placements
found by the proposed heuristics.We compare the commit latency
of the resulting placement to the optimal commit latency of the
resulting placement decided by the exhaustive search. Figures 11a
and 11b show the relative commit latency of the heuristics com-
pared to the optimal commit latency when the number of placed
replicas are 5 and 7 respectively. In these figures, the optimal
commit latency is represented by 1.0. A relative comparison of
the commit latency is shown for both the placement heuristics
and the best of the two heuristics as well. As shown, the best
of the two heuristics is optimal in 70% of the cases and within
5% − 11% of the optimal in the rest of the cases. As the running
times of both heuristics is negligible, we can always run both the
heuristics and choose the best placement out of the two results.
Figure 11 suggests that neither heuristics beats the other in all
cases.

6 GPLACER EXTENSIONS
In this section, we discuss how GPlacer can be extended to opti-
mize the placement for leader-based protocols. In leader-based
protocols, a transaction can fall into one of two categories: single-
partition transactions or multi-partition transactions. Single-
partition transactions span only one partition and the isolation
between transactions that span this partition is managed by the
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Figure 10: The running time (seconds), in log scale, of ex-
haustive search and placement heuristics as number of
datacenters increases. Figures 10a and 10b show the run-
ning timewhen 5 replicas and 7 replicas are chosen respec-
tively. Both figures share one plotting legend.
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Figure 11: A comparison of the resulting commit la-
tency of placements by exhaustive search and placement
heuristics as number of datacenters increases. Figures 11a
and 11b compare the estimated latency when 5 replicas
and 7 replicas are chosen respectively. Both figures share
one plotting legend.

leader of this partition. Multi-partition transactions span multiple
partitions and typically 2PC is used between the leaders of the
partitions involved in a transaction to achieve isolation. In both

categories, partition leaders replicate the updates of committed
transactions to a majority quorum of their partition replicas using
only the second round of Paxos.

The average transaction latency for leader-based protocols is
affected by the following factors:

• The distance between the client and the partition leader
• The distance between the partition leader and its replicas
• The distance between different partition leaders involved
in multi-partition transactions
• The percentage of multi-partition transactions Pmp−txn
(how often 2PC is required to be executed)

The first two factors mainly affect single-partition transactions
while the last two factors mainly affect multi-partition transac-
tion. Finding the optimal placement for leader-based protocols
can easily become impractical. Consider a database with p par-
titions and we want to place the leaders of these partitions on
r replicas. There are rp different placement combinations and
finding the optimal placement by checking all the combinations
is impractical. For example, if a database has 500 partitions and
we want to place these partitions among 5 replicas. To find the
optimal leader placements, 5500 different combinations need to
be evaluated. Therefore, different heuristics are usually used to
limit the search space.

6.1 Leader-placement heuristics
A solution that considers all the optimization aspects should adapt
the placement based on the percentage of the multi-partition
transactions Pmp−txn . Sharov et al. [28] place the leaders of all
the partitions in one datacenter. Algorithm 4 implements the
leader-placement heuristic introduced in [28]. It iterates over
all the replicas, line 4, and evaluates the latency assuming that
all the partition leaders are placed in the currently evaluated
replica. The replica that achieves the minimum latency is re-
turned. This heuristic optimizes the placement when Pmp−txn
is high. However, when Pmp−txn is low, placing the leaders of
all the partitions in one datacenter can hurt the performance in
addition to introducing a single point of failure.

The second heuristic is to independently place the leaders of
different partitions. For every partition, place its leader at the
same datacenter where it is accessed the most. This heuristic
optimizes the placement when Pmp−txn is low and partitions are
mostly accessed from one datacenter.

Algorithm 4 Finds datacenter dcl ∈ DC that achieves the min-
imum average transaction latency assuming all the partition
leaders are put together in one datacenter.

Input: DC , RTTi j ∀i, j ∈ DC , and ci ∀i ∈ DC
Output: dcl

1: dcl ← ∅, l ← MaxInt
2: for all j ∈ DC do
3: tempL← 0
4: for all i ∈ DC do
5: tempL+ = ci · (RTTi j +qj ) // qj is the time for replica

j to reach its closest quorum from DC .
6: end for
7: if tempL < l then
8: l ← tempL, dcl ← j
9: end if
10: end for
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Placing all the partition leaders in one datacenter favors multi-
partition transactions while independently placing them in mul-
tiple datacenters favors single-partition transactions. When the
workload is a mixture of both transaction categories, both heuris-
tics fail to optimize the placement. Therefore, we present a third
heuristic that optimizes the placement when the workload is di-
vided between the two categories. This heuristic uses GPlacer to
find the set of 2f + 1 datacenters that should host a replica DCdb
according the workload distribution. Then it runs Algorithm 5
to independently place the leaders of each partition among the
chosen replicas. The second heuristic independently places parti-
tion leaders in the universe of all datacenters DC while the third
heuristic limits the placement to the set of datacenters that are
chosen by GPlacerDCdb . In Section 6.2, we compare the resulting
placements of the three heuristics.

Algorithm 5 Places the leader of each partition among the cho-
sen replicas and closer to the clients who access this partition
the most.
Input: DCdb , and pi ∀i ∈ DC and ∀p ∈ P // P is the set of all

partitions and pi is the percentage of access for partition p from
datacenter i .

Output: ∀p∈P lp

1: for all p ∈ P do
2: i ←max(∀j ∈DC pj )
3: lp ← nearest(dc ∈ DCdb , i) // returns the nearest data-

center dc ∈ DCdb to datacenter i .
4: end for

6.2 Leader-placement heuristics evaluation
We compare the expected average commit latency of the resulting
leader placements using the three heuristics. The percentage of
distributedmulti-partition transactions is varied and the expected
commit latency is calculated for the three heuristics. Before plac-
ing partition leaders in the third heuristic, we use the exhaustive
search algorithm to find DCdb . Then, we use the heuristic to
place partition leaders among the chosen replicas.

The commit latency of a single partition transaction is esti-
mated as the RTT from the client datacenter to the partition
leader datacenter plus the RTT from the partition leader datacen-
ter to a majority of the partition replicas. The commit latency of a
multi-partition transaction requires an addition 2PC between the
involved partitions. In our evaluation, we assume that the 2PC
added latency is negligible if all the involved partition leaders are
placed together and two round-trips to all the partition leaders if
they are not placed together. This assumption favors algorithm 4
over our proposed heuristic in algorithm 5.

Figure 12 shows the expected commit latency when the three
heuristics are used to place partition leaders. The expected com-
mit latency is shown in a log scale in the y-axis and the percentage
of the multi-partition transaction is shown in the x-axis. In this
scenario, clients are distributed among 10 datacenters and 5 data-
centers host replicas for heuristic 3. A transaction has to be repli-
cated to 3 replicas before it is committed. As heuristic 1 places all
partition leaders in one datacenters, the average commit latency
does not change with the percentage of multi-partition trans-
actions. Therefore, the average estimated commit latency is a
horizontal line. However, for heuristics 2 and 3, increasing the per-
centage ofmulti-partition transactions boosts the average commit
latency as the cost of the 2PC between all partition leaders in-
creases. Figure 12 suggests that heuristic 2 should be used to place

partition leaders as long as Pmp−txn is low (below 9%). Heuristic
3 should be used when 9% < Pmp−txn < 25% and heuristic 1
should be used if Pmp−txn is high (above 25%). Typically, the
percentage of multi-partition transactions is < 10% [31, 32].
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Figure 12: A commit latency comparison between leader-
placement heuristics as the percentage of multi-partition
transaction increases.

It is important to mention that the commit latency crossing
lines between the three heuristics are different for different sce-
narios and estimates should be calculated a priori to decide which
leader placement achieves the minimum commit latency for a
given scenario. Our framework evaluates the outcomes of the
three heuristics and choses the placement that achieves the mini-
mum latency.

7 CONCLUSION
In this paper, we address the data placement problem of geo-
replicated databases with strong consistency guarantees. We
present different placement optimizations to reduce transactions
execution latency and commit latency. These placement opti-
mizations are widely applied on different distributed transaction
management protocols. Our evaluation shows that applying the
read optimizations and the request handoff optimization could
reduce transaction latency by 68% and increases throughput by
170%. To address the placement problem at scale, we propose dif-
ferent placement heuristics that can efficiently find sub-optimal
placementswithin 5−10% of the optimal placements. Experiments
show that these heuristics are able to scale without significantly
reducing the quality of the resulting placements from the optimal
placement. Finally, we discuss three partition leader placement
heuristics to place partition leaders. Experiments show that non
of the three heuristics is superior when the percentage of multi-
partition transactions changes. Unlike in [28] which uses one
heuristic to place partition leaders regardless of the percentage
of multi-partition transactions, our framework switches between
different heuristics when the percentage of multi-partition trans-
actions changes.

8 ACKNOWLEDGEMENT
This work is partially funded by the NSF grant CNS-1703560.

REFERENCES
[1] 2017. Datacenter Map. http://www.datacentermap.com/datacenters.html/.

(2017).
[2] 2017. GLPK: GNU Linear Programming Kit. https://www.gnu.org/software/

glpk/. (2017).
[3] 2017. HBase. https://hbase.apache.org/. (2017).
[4] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman,

and Harbinder Bhogan. 2010. Volley: Automated Data Placement for Geo-
Distributed Cloud Services.. In NSDI, Vol. 10. 28–0.

395



[5] David F. Bacon, Nathan Bales, Nico Bruno, Brian F. Cooper, Adam Dickinson,
Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi, Eugene Kogan,
Alex Lloyd, Sergey Melnik, Rajesh Rao, Dave Shue, Chris Taylor, Marcel
van der Holst, and Dale Woodford. 2017. Spanner: Becoming a SQL System.
In Proc. SIGMOD 2017. 331–343.

[6] Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James
Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh.
2011. Megastore: Providing scalable, highly available storage for interactive
services.. In CIDR, Vol. 11. 223–234.

[7] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley.

[8] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, and
others. 2013. Tao: FacebookâĂŹs distributed data store for the social graph.
In Presented as part of the 2013 USENIX Annual Technical Conference (USENIX
ATC 13). 49–60.

[9] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni. 2008. PNUTS: Yahoo!’s hosted data serving platform. Proceedings of
the VLDB Endowment 1, 2 (2008), 1277–1288.

[10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. 2010. Benchmarking cloud serving systems with YCSB. In
Proceedings of the 1st ACM symposium on Cloud computing. ACM, 143–154.

[11] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, and others. 2013. Spanner: GoogleâĂŹs globally
distributed database. ACM Transactions on Computer Systems (TOCS) 31, 3
(2013), 8.

[12] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. 2011.
Albatross: lightweight elasticity in shared storage databases for the cloud
using live data migration. Proceedings of the VLDB Endowment 4, 8 (2011),
494–505.

[13] Jim Gray and Leslie Lamport. 2006. Consensus on transaction commit. ACM
Transactions on Database Systems (TODS) 31, 1 (2006), 133–160.

[14] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed.
2010. ZooKeeper: Wait-free Coordination for Internet-scale Systems.. In
USENIX annual technical conference, Vol. 8. 9.

[15] Bettina Kemme and Gustavo Alonso. 2000. Don’t Be Lazy, Be Consistent:
Postgres-R, A NewWay to Implement Database Replication.. In VLDB. Citeseer,
134–143.

[16] Tim Kraska, Gene Pang, Michael J Franklin, Samuel Madden, and Alan Fekete.
2013. MDCC: Multi-data center consistency. In Proceedings of the 8th ACM
European Conference on Computer Systems. ACM, 113–126.

[17] Avinash Lakshman and Prashant Malik. 2009. Cassandra: structured storage
system on a p2p network. In Proceedings of the 28th ACM symposium on
Principles of distributed computing. ACM, 5–5.

[18] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and
Zhengkui Wang. 2016. Towards a non-2pc transaction management in dis-
tributed database systems. In Proceedings of the 2016 International Conference
on Management of Data. ACM, 1659–1674.

[19] Guoxin Liu and Haiying Shen. 2016. Minimum-cost Cloud Storage Service
Across Multiple Cloud Providers. In Distributed Computing Systems (ICDCS),

2016 IEEE 36th International Conference on. IEEE, 129–138.
[20] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt Lloyd.

2016. The SNOW Theorem and Latency-Optimal Read-Only Transactions.. In
OSDI. 135–150.

[21] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and
Amr El Abbadi. 2013. Low-latency multi-datacenter databases using replicated
commit. Proceedings of the VLDB Endowment 6, 9 (2013), 661–672.

[22] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2013. Message Fu-
tures: Fast Commitment of Transactions in Multi-datacenter Environments..
In CIDR.

[23] Faisal Nawab, Vaibhav Arora, Divyakant Agrawal, and Amr El Abbadi. 2015.
Minimizing commit latency of transactions in geo-replicated data stores. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. ACM, 1279–1294.

[24] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman
Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, and
others. 2013. Scaling memcache at facebook. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
13). 385–398.

[25] Stacy Patterson and others. 2012. Serializability, not Serial: Concurrency
Control and Availability in Multi-Datacenter Datastores. PVLDB (2012).

[26] Fan Ping, Jeong-Hyon Hwang, XiaoHu Li, Chris McConnell, and Rohini Vab-
balareddy. 2011. Wide area placement of data replicas for fast and highly
available data access. In Proceedings of the fourth international workshop on
Data-intensive distributed computing. ACM, 1–8.

[27] Moinuddin K Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. 2011.
Phase change memory: From devices to systems. Synthesis Lectures on Com-
puter Architecture 6, 4 (2011), 1–134.

[28] Artyom Sharov, Alexander Shraer, Arif Merchant, and Murray Stokely. 2015.
Take me to your leader!: online optimization of distributed storage configura-
tions. Proceedings of the VLDB Endowment 8, 12 (2015), 1490–1501.

[29] Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric Rollins, Bart
Samwel, Radek Vingralek, Chad Whipkey, Xin Chen, Beat Jegerlehner, Kyle
LittleïňĄeld, and Phoenix Tong. 2012. F1 - The Fault-Tolerant Distributed
RDBMS Supporting Google’s Ad Business. In SIGMOD. Talk given at SIGMOD
2012.

[30] Michael Stonebraker. 2010. Why Enterprises Are Uninterested in
NoSQL. http://cacm.acm.org/blogs/blog-cacm/99512-why-enterprises-are-
uninterested-in-nosql/fulltext/. (2010).

[31] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-store:
Fine-grained elastic partitioning for distributed transaction processing sys-
tems. Proceedings of the VLDB Endowment 8, 3 (2014), 245–256.

[32] Alexander Thomson and others. 2012. Calvin: fast distributed transactions
for partitioned database systems. In SIGMOD.

[33] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Har-
sha V Madhyastha. 2013. SPANStore: Cost-effective geo-replicated storage
spanning multiple cloud services. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, 292–308.

[34] Victor Zakhary, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2016.
Db-risk: The game of global database placement. In Proceedings of the 2016
International Conference on Management of Data. ACM, 2185–2188.

396


	Global-Scale Placement of Transactional Data StoresVictor Zakhary, Faisal Nawab, Divy Agrawal, Amr El Abbadi

