
Scalable and Dynamic Regeneration of Big Data Volumes
Anupam Sanghi, Raghav Sood, Jayant Haritsa

Indian Institute of Science

Bangalore, India

{anupam,raghav,haritsa}@dsl.cds.iisc.ac.in

Srikanta Tirthapura

Iowa State University

Ames, USA

snt@iastate.edu

ABSTRACT
A core requirement of database engine testing is the ability to

create synthetic versions of the customer’s data warehouse at

the vendor site. A rich body of work exists on synthetic data-

base regeneration, but suffers critical limitations with regard to:

(a) maintaining statistical fidelity to the client’s query process-

ing, and/or (b) scaling to large data volumes. In this paper, we

present HYDRA, a workload-dependent database regenerator
that leverages a declarative approach to data regeneration to

assure volumetric similarity, a crucial aspect of statistical fidelity,

and materially improves on the prior art by adding scale, dy-

namism and functionality. Specifically, Hydra uses an optimized

linear programming (LP) formulation based on a novel region-
partitioning approach. This spatial strategy drastically reduces

the LP complexity, enabling it to handle query workloads on

which contemporary techniques fail. Second, Hydra incorporates

deterministic post-LP processing algorithms that provide high

efficiency and improved accuracy. Third, Hydra introduces the

concept of dynamic regeneration by constructing a minuscule

database summary that can on-the-fly regenerate databases of

arbitrary size during query execution, while obeying volumet-

ric specifications derived from the query workload. A detailed

experimental evaluation on standard OLAP benchmarks demon-

strates that Hydra can efficiently and dynamically regenerate

large warehouses that accurately mimic the desired statistical

characteristics.

1 INTRODUCTION
In industrial practice, a common requirement for database ven-

dors is to adequately test their database engines with represen-

tative data and workloads that accurately mimic the data pro-

cessing environments at customer deployments. This need can

arise either in the analysis of problems currently being faced by

clients, or in proactively assessing the performance impacts of

planned engine upgrades on client applications. While, in princi-

ple, clients could transfer their original data and workloads to

the vendor for the intended evaluation purposes, this is often

infeasible due to privacy and liability concerns. Moreover, even

if a client is willing to share the data, transferring and storing the

data at the vendor’s site may prove to have impractical space and

time overheads, especially in the anticipated Big Data era. For

instance, if a customer faces a problem on exabyte (10
18
) sized

relational tables, transferring and storing such data is likely to be

infeasible even on the best of systems. Therefore, an important

requirement, looking into the future, is to be able to dynamically
regenerate representative databases, at query execution time that

accurately mimic the behavior of the client’s data processing

environment.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

A rich body of literature exists on data regeneration, beginning

with workload-independent techniques (e.g [12, 15]), which pro-

vide scalable and efficient solutions, but fail to retain complex sta-

tistical characteristics such as the sizes of intermediate relations

created during execution of a query plan. To address this problem,

a particularly potent approach of workload-dependent database
regeneration was introduced in QAGen [11], and has served as

the foundation for many of the practicable systems proposed over

the last decade [6, 18]. Workload-dependent techniques aim to

generate synthetic data whose behavior is volumetrically similar
to the client database on the pre-specified query workload. That

is, assuming a common choice of query execution plans at the

client and vendor sites (ensured through “plan forcing” [3] or

“metadata matching” [8]), the output row cardinalities of indi-

vidual operators in these plans are very similar in the original

and synthetic databases. This similarity helps to preserve the

multi-dimensional layout and flow of the data, a pre-requisite for

achieving similar performance on the client’s workload. As a case

in point, the DataSynth [6, 7] tool from Microsoft expresses such

volumetric constraints as a Linear Program (LP) whose solution

is used to construct the synthetic database.

A common limitation of contemporary techniques (reviewed

in detail in Section 8), is that they run into issues of scale and
efficiency at one stage or the other in the regeneration pipeline.

This is partly due to their focus on materialized static solutions,

making them impractical at large volumes. Further, the ability to

scale to large query workloads and data volumes has not been

clearly established, and validations have been typically restricted

to relatively simple and small benchmarks such as TPC-H [2].

These limitations become especially problematic from a futuristic

“Big Data" perspective, where we have to contend with enormous

data volumes and complex query workloads.

To materially address this challenge, we present HYDRA, a
data regeneration tool, which ensures that scale and efficiency

are addressed through the entire regeneration pipeline. As a con-
crete example, Hydra was able to accurately regenerate the data

processing environment of a 100 GB TPC-DS client database with

a workload of 131 distinct representative queries, by generating

a database summary in less than 2 minutes on a vanilla machine.

This summary can be used to statically generate a materialized

database, or more potently, to dynamically regenerate the de-

sired database during query execution. When the former option

is chosen, the static database was successfully created in less

than 11 minutes. It is important to note here that the summary

construction time is independent of the data scale – therefore,

even the exabyte-sized data scenario alluded to earlier could be

modeled in just a few minutes using Hydra!

The key contributions of Hydra are the following:

Extended Workload Coverage: Hydra incorporates a novel

LP formulation technique, region-partitioning, that can en-

code volumetric constraints with an LP of low complexity.

When compared with the grid-partitioning approach used

in DataSynth, region-partitioning reduces the LP complex-

ity by many orders of magnitude. For instance, an LP with

Series ISSN: 2367-2005 301 10.5441/002/edbt.2018.27

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.27

more than a billion variables in DataSynth is reduced to

an LP with a few thousand variables in Hydra– in fact, in

this case, the LP solver crashes on the DataSynth formula-

tion, but runs to completion in less than a minute on the

Hydra formulation. The beneficial outcome of the low LP

complexity is that it facilitates the efficient handling of

much richer query workloads.

Apart from enhancing the workload scale, Hydra also ex-

pands the database scope to include relational schemas

that have DAG-structured dependency graphs, and the

query scope to include DNF filter predicates.

Database Summary and Dynamic Regeneration: A unique

feature of our data regeneration approach is that it delivers

a database summary as the output, rather than the static

data itself. This summary is of negligible size, depending

only on the query workload and not on the database scale.

It can be used for dynamically generating data during

query execution, or for materializing static relations if

so desired. This summary-based approach eliminates the

enormous time and space overheads incurred by prior

techniques in generating and storing data before initiating

analysis.

Accuracy with Efficiency: Hydra replaces the sampling-based
approach to data regeneration in DataSynth by a determin-
istic alignment strategy. The alignment operates directly

on the database summary, and is therefore extremely ef-

ficient. Further, it does not suffer the probabilistic errors

that affect the sampling approach, and therefore delivers

better fidelity with regard to volumetric similarity.

Enhanced Evaluation: We evaluate Hydra on a diverse work-

load of 100-plus queries constructed from the complex

TPC-DS benchmark, and the results show that it can effi-

ciently regenerate databases for such workloads at various

data scales. Further, our evaluation is more comprehensive

than prior techniques, which have largely been evaluated

on simpler and small-sized query workloads operating

on modest databases. For instance, DataSynth has been

evaluated on simple TPC-H database environments that

resulted, with their formulation, in LPs with only a few

thousand variables.

Integration with CODD: CODD [8] is a graphical tool through

which database environments with desiredmeta-data char-

acteristics can be efficiently simulated without persistently

generating and/or storing their contents – i.e. a “dataless”

approach. We have integrated Hydra with CODD, thus

providing an end-to-end system that fully replicates the

client data processing environment at the vendor’s site,

and is compliant with the CODD’s “dataless” philosophy.

Organization. The remainder of this paper is organized as

follows: A brief background on the key underlying concepts is

outlined in Section 2. The Hydra architecture is presented in

Section 3, and our new region-based LP formulation in Section 4.

The database summary generator and the tuple generator are

described in Sections 5 and 6, respectively. Our experimental

results are analyzed in Section 7. Related work is reviewed in

Section 8, and our conclusions are summarized in Section 9.

2 PRELIMINARIES
In this section, we provide background information on the key

foundations – Annotated Query Plans [11] and Cardinality Con-

straints [6] – that lie under this data regeneration framework.

2.1 Annotated Query Plans
Consider a toy scenario (for ease of presentation) where the client

has the database schema shown in Figure 1a, where pk and fk
refer to primary-key and foreign-key attributes, respectively.

A sample client query on this schema is shown in Figure 1b,

with the corresponding query execution plan in Figure 1c. Note

that this execution plan has the output edge of each operator

annotated with the associated row cardinality (as evaluated dur-

ing the client’s execution) – for instance, there are 50000 rows

resulting from the join of R and (filtered) S. Such a plan is referred
to as an “Annotated Query Plan” (AQP) in [11]. The goal now is

to generate synthetic data at the vendor site such that when the

above query is executed on this data, we obtain an identical, or

very similar, AQP.

R (R_pk, S_fk, T_fk) S (S_pk, A, B) T (T_pk, C)

(a) Database Schema

select * from R, S, T

where R.S_fk = S.S_pk and R.T_fk = T.T_pk

and S.A >= 20 and S.A < 60 and T.C >= 2 and T.C < 3

(b) Example Query

◃▹

R.T_fk = T.T_pk

30000

σC ∈[2,3)

900

◃▹

R.S_fk = S.S_pk

50000

σA∈[20,60)

400

R

size = 80000

S

size = 700

T

size = 1500

(c) Annotated Query Plan (AQP)

|R | = 80000 |S | = 700 |T | = 1500

|σS .A∈[20,60)(S) | = 400 |σT .C∈[2,3)(T) | = 900

|σS .A∈[20,60)(R ◃▹ S) | = 50000

|σS .A∈[20,60)∧T .C∈[2,3)(R ◃▹ S ◃▹ T) | = 30000

(d) Cardinality Constraints (CCs)

Figure 1: Example Database Scenario

2.2 Cardinality Constraints
A unified and declarative mechanism for representing AQP data

characteristics, called cardinality constraints (CCs), was proposed
in [6]. For instance, the CCs expressing the AQP of Figure 1c are

shown in Figure 1d. The data regeneration technique takes the

schematic information and the set of CCs from the client site and

produces synthetic data that closely meets these CCs. To make

the problem tractable, it is assumed that CCs consist of filters on

only non-key attributes, and that all joins are between primary

keys and foreign keys, typically the case in data warehouses.

302

Figure 2: Hydra Architecture

3 THE HYDRA ARCHITECTURE
In this section, we present an overview of Hydra’s architecture,

along with a summary of its various components and their inter-

actions with the database engine. A pictorial view of the archi-

tecture is presented in Figure 2 – in this picture, the green boxes

represent the new components designed specifically for Hydra.

Among these, the primary components are the LP Formulator,

the Summary Generator, and the Tuple Generator, all shown with

thick borders. The other modules have been sourced from the lit-

erature, including the preprocessor (orange) from DataSynth [7],

the CODD metadata processor (yellow) [8], and the Z3 solver

(blue) [14]. (Refer [21] for complete details.)

3.1 Client Site
The information flow from the client to the vendor is as fol-

lows: At the client site, Hydra fetches the schema information (S),
and the query workload (q1,q2,q3, ...,qn) with its corresponding

AQPs (p1,p2,p3, ...,pn) obtained from the database engine. The

AQPs are converted to equivalent cardinality constraints (CCs)
using a Parser. The metadata (M) from the database catalogs is

captured with the help of CODD. In order to address client secu-

rity concerns, all this information (schema, metadata, queries and

CCs) is passed through an Anonymizer that suitably masks the

information before shipping it to the vendor. Also in this process,

non-numeric constants appearing in the queries and plans are

mapped to numbers to facilitate LP formulation at the vendor site.

Due to this mapping, the final database summary generated at the

vendor site also consists of only numeric datatypes. It is possible

to reverse this mapping to get back the original datatypes, but is

not a relevant consideration with regard to satisfying CCs.

3.2 Vendor Site
The main modules at the vendor site are as follows:

Preprocessor [7]: In this module, sourced from DataSynth, the

schema information and CCs obtained from the client are pro-

cessed to create the input for the LP Formulator. Each relation is

solved independently, and this process is initiated by first creat-

ing a view comprised of its own non-key attributes, augmented

with the non-key attributes of the relations on which it depends

through referential constraints (both directly or transitively). This

transformation results in replacing the join-expression present in

a CC with a view that covers all the attributes (non-key) featured

in the relations participating in the join-expression. As a case in

point, following views are generated for the example in Figure 1:

R_view (A, B, C) S_view (A, B) T_view (C)
Further, the last two constraints in Figure 1d can be rewritten as:

|σA∈[20,60) (R_view)| = 50000

|σA∈[20,60)∧C ∈[2,3) (R_view)| = 30000

An LP is independently formulated for each view created by

the above process. Since the LP complexity is adversely affected

by the number of attributes in the view, the view is first decom-

posed into a set of sub-views to reduce the effective complexity.

This is achieved as follows: Construct a “view-graph” by first

creating a node for each attribute, and then inserting an edge

between a pair of nodes if the corresponding attributes appear

together in one or more CCs. Further, additional edges are added

(if required) to make the view-graph to be chordal, a property re-

quired to ensure acylicity in the subsequent processing. Now, the

sub-views are identified as themaximal cliques in the view-graph.

LP Formulator and Solver: For each view, the LP Formulator

takes as input the corresponding set of subviews and applicable

CCs, and then constructs the LP. The domain corresponding to

each sub-view is partitioned into regions using a novel region-
partitioning algorithm that takes as input the different cardinality

constraints. There is one variable for each region, corresponding

to the number of tuples chosen from the region. Each cardinality

constraint is encoded as an LP constraint on these variables,

and the solution of the LP is used in deciding which tuples to

include in the sub-view. The complete details of this algorithm

are enumerated in Section 4.

Our region-partitioning strategy is in marked contrast to the

grid-partitioning strategy used in DataSynth. Grid-Partitioning

first intervalizes the domain of each attribute based on the con-

stants appearing in the CCs, and divides the domain into a grid

aligned with the interval boundaries for each attribute. If a sub-

view has n attributes, and each attribute gets divided into ℓ in-

tervals, then the domain of the sub-view is partitioned into a

grid of ℓn cells. For each cell in the grid, a variable is created

that represents the number of data rows present in that cell. In

contrast, our region-partitioning strategy divides the domain into

only the number of regions required to precisely write out each

303

cardinality constraint, and assigns one variable to each region –

this typically leads to far fewer variables than grid-partitioning.

To make the above concrete, consider a single view “Person"
with the following three selection CCs:

|age < 40 ∧ salary < 40K (Person)| = 1000

|20 ≤ age < 60 ∧ 20K ≤ salary < 60K (Person)| = 2000

|Person| = 8000

Grid-partitioning divides the domain of the view as shown in

Figure 3a. With a variable assigned to each grid cell, there is a

total of 16 variables. In contrast, the region-partitioning strategy

partitions the space into 4 regions as shown in Figure 3b, resulting

in a tally of only 4 variables.

(a) Grid-Partitioning (b) Region-Partitioning

Figure 3: Grid-Partitioning vs Region-Partitioning

The CCs of Person, expressed in terms of LP constraints, are

shown below in Figure 4a and 4b for grid-partitioning and region-

partitioning, respectively.

x9 + x10 + x13 + x14 = 1000

x6 + x7 + x10 + x11 = 2000

x1 + x2 + ... + x16 = 8000

(a) Grid-Partitioning

y1 + y2 = 1000

y2 + y3 = 2000

y1 + y2 + y3 + y4 = 8000

(b) Region-Partitioning

Figure 4: LP Constraints

The LPs are passed on to the solver, which provides one of

the feasible solutions as the output – we have used Z3 [14], a

popular SMT solver, to implement this functionality. With region-

partitioning, the LP is usually much simpler due to the smaller

number of variables. Further, as the cardinality constraints get

more complex, the differences in complexity of the LPs produced

by region-partitioning and grid-partitioning become more pro-

nounced. This effect is quantified in Section 7.

Summary Generator: This module generates the database sum-

mary from the LP solutions obtained on the views. Since parti-

tioning is carried out at a sub-view level, the LP solution, which

is expressed in terms of sub-view variables, needs to be mapped

to equivalents in the original view space. A sampling-based ap-

proach was proposed in [6] for this purpose – for example, say a

view (A,B,C) is split into a pair of sub-views (A,B) and (B,C), the
algorithm computes the distributions Prob(A,B) and Prob(C |B).
Then, each tuple is generated by first sampling a point from the

former distribution, and then sampling a point from the latter

conditioned on this outcome.

However, we have chosen not to take this approach since the

computational overheads incurred are enormous, and the sam-

pling process introduces errors in volumetric fidelity. Instead,

we have designed and implemented an alternative data-scale

free, deterministic alignment algorithm (details in Section 5),

which produces an intermediate database summary in the out-

put. This component is also responsible for ensuring that the

generated summary obeys referential integrity. Finally, summa-

rized relations from corresponding view summary are obtained.

An example database summary finally obtained from the AQP

shown in Figure 1c, along with additional two AQPs, is shown

in Figure 5. Here, entries of the type a - b in the primary key

columns (e.g. 101-250 for S_pk in table S), mean that the relation

has b−a+1 tuples with values (a, a+1, a+2,...,b) for that column,

keeping the other columns unchanged.

Figure 5: Example Database Summary

Tuple Generator: The Tuple Generator resides in the database

engine. It ensures that whenever a query is fired, data is not

fetched from the disk but instead gets generated on-demand,
using the database summary. The details of this component and

its implementation in PostgreSQL are presented in Section 6.

We note in closing that in order to ensure the execution plan

chosen at the vendor site is the same as that in the client site,

metadata matching is implemented in Hydra using CODD’s meta-

data transfer feature.

4 LP FORMULATION
An LP for a view V is constructed as follows: For each sub-view

s in V , every CC that is within its scope is formulated as an

LP constraint. Since sub-views may share common attributes,

additional consistency constraints are added to the LP to ensure

that themarginal distributions along the common set of attributes

are identical in the solutions for the sub-views.

In this section, we first present the mathematical basis under-

lying our formulation of LP constraints for a set of CCs applicable

on a sub-view. We then present an algorithm that partitions the

domain into the minimum number of regions required to capture

each CC precisely, resulting in an LP with the optimal number

of variables. Finally, we discuss the formulation of additional

consistency constraints to ensure consistency across multiple

sub-views belonging to V .

4.1 Mathematical Basis for LP Formulation
Let n denote the number of attributes in the given sub-view s ,
Di the domain of the ith attribute, and D the data universe

D1 × D2 × · · · Dn .

We are given a set of m CCs that are applicable on s . For
1 ≤ j ≤ m, each constraint Cj is a pair ⟨σj ,kj ⟩ where σj is a
selection predicate and kj is a non-negative integer equal to the

number of rows satisfying predicate σj . We assume that each

predicate is in disjunctive normal form (DNF).

304

Simple LP Formulation. Let us first consider a simple way of

formulating an LP that encodes all CCs. For each tuple t ∈ D,

assign a variable xt that denotes the number of copies of t in the

sub-view s . Then, the LP formulation shown in Figure 6 ensures

that a feasible solution satisfies all CCs, including a constraint

on the total size of s .
The problem with this formulation is that the number of vari-

ables in the resulting LP is as large as the size of the universe D.

Hence, it is infeasible to work directly with this formulation.

(1) For each t ∈ D,xt ≥ 0

(2)

[∑
t ∈D

xt

]
= k

(3) For each j, 1 ≤ j ≤ m,

∑

t :σj (t)=true

xt

 = kj
Figure 6: Simple LP formulation

Reduced LP Formulation. We can derive an LP with far fewer

variables as follows: We first note that in the simple formulation,

variables corresponding to a pair of points t1, t2 ∈ D that behave

identically with respect to a constraintCj (i.e. σj (t1) = σj (t2)) can
be combined together as (xt1 +xt2), for the purposes of satisfying
constraint Cj . If this is true that with respect to every constraint

Cj for j = 1 . . .m, σj (t1) = σj (t2), then there is no need to treat

t1 and t2 separately – instead, they can be combined into a single

region, and the variables xt1 and xt2 can be merged into a single

variable (xt1 + xt2) in every equation, leading to fewer variables

in the LP. By repeating this variable merging process recursively

until it is no further possible, we arrive at a vastly reduced LP.

We hasten to add that the above LP construction process based

on merging variables is only for illustrating the concept – the

actual algorithm employed in our system directly derives the

regions, as described in Section 4.2.

For constraint C and t ∈ D, let C(t) be an indicator variable:

C(t) =

{
true if t satisfies C
false otherwise

Definition 4.1. For a pair of points p,q ∈ D and a set of con-

straints C, we say pRCq if for each C ∈ C, C(p) = C(q).

Observation 1. RC is an equivalence relation on D.

Proof. It can be easily seen thatRC is reflexive and symmetric.

For transitivity, suppose that for p,q, r ∈ D, pRCq and qRCr .
Note that for each C ∈ C, it must be true that C(p) = C(q) and
C(q) = C(r). Therefore, it must be true that C(p) = C(r) for each
C ∈ C, showing that the relation is transitive. �

A partition of D is a set of subsets of D such that every

element x ∈ D is in exactly one of these subsets. The individual

sets in a partition are called blocks.

Definition 4.2. A set of points b is said to be valid with respect

to a set of constraints C if for any two points p,q ∈ b, pRCq.
Given a set of constraints C, a partition P of D is said to be a

valid partition if for each block b ∈ P, b is valid with respect to C.

In a valid partition of D with respect to C, any pair of points

within the same block satisfy the same set of CCs. Once we

obtain a valid partition P, the LP can be re-formulated as shown

in Figure 7. Instead of a variable for each point t ∈ D, there is

now a single variable xb for each block b ∈ P representing the

number of tuples of the sub-view that are contained in this block.

Note that the tuples in a sub-view need not be unique, therefore

xb may include duplicates in its count.

(1) For each b ∈ P,xb ≥ 0

(2)

[∑
b ∈P

xb

]
= k

(3) For each j, 1 ≤ j ≤ m,

∑

b :σj (b)=true

xb

 = kj
Figure 7: Reduced LP formulation

The total number of variables in the reduced LP shown in

Figure 7 is equal to the number of blocks in the partition P and
is potentially much smaller than the number of variables in the

original LP, shown in Figure 6. Since we desire an LP with the

smallest number of variables, we look for a valid partition of

D with the minimum number of blocks. A valid partition with

respect to C is an optimal partition if it has the smallest number

of blocks from among all valid partitions of D with respect to C.

Lemma 4.3. The quotient set ofD by RC is the (unique) optimal
partition of D with respect to C.

Proof. Let P1 denote the quotient set
1
of D by RC. By the

definition of an equivalence relation, for any block b ∈ P1, all

points in b are related to each other by RC, and hence P1 is a
valid partition.

Suppose that P1 is not the unique optimal partition. Then,

there must exist another valid partition P2 such that P2 , P1 and
|P2 | ≤ |P1 |. This implies that there exist two points p,q ∈ D
such that p and q are in different blocks in P1, but in the same

block in P2. Since p and q belong to different blocks in P1, it must

be true that p and q are not related by RC. But, in P2 points p and

q belong to the same block, which implies that P2 cannot be a
valid partition, a contradiction. �

4.2 Deriving the Optimal Partition
We now present an algorithm to derive the optimal partition of

D with respect to C. Each constraint C ∈ C is in DNF, and is ex-

pressed as the union of many smaller “sub-constraints". Each sub-

constraint is the conjunction of many per-attribute constraints,

and each per-attribute constraint is a constraint on the values

that the attribute is permitted to take. For example, the following

constraint on attributes A1 and A2:

((A1 ≤ 20) ∧ (A2 > 30)) ∨ (A1 > 50)

is divided into the basic sub-constraints:

(A1 ≤ 20) ∧ (A2 > 30) and (A1 > 50)

Algorithm 1 (Optimal Partition) takes a set of DNF constraints

as input, and returns a partition with the smallest number of

regions with respect to this set. Internally, it invokes Algorithm 2

(Valid Partition) that takes a set of sub-constraints as input and

returns a valid partition of the domain with respect to this set.

1
The quotient set is the set of equivalence classes resulting from RC on D.

305

Algorithm 1: Optimal Partition(D,C)

Input: Universe D, set of DNF constraints C
Output: An optimal partition P∗ of D subject to C

1 Generate the set of sub-constraints C′ resulting from the

constraints in C;

2 Construct a valid partition P′ of D subject to C′ using

Valid-Partition(D,C′) (Algorithm 2);

3 For each block b ∈ P′, compute the label ℓ(b), equal to the

set of all constraints in C that b satisfies. Let L denote the

set of all distinct labels from {ℓ(b)|b ∈ P′};

4 Coarsen partition P′ into P∗ as follows: For each label l ∈ L,
merge all blocks in P′ whose labels equal l into a single

block;

5 Return P∗;

Lemma 4.4. Given a set of DNF constraints C, Algorithm 1 re-
turns an optimal partition of D with respect to C.

Proof. As in the algorithm, let C′ denote the set of sub-

constraints resulting from constraints in C. From Lemma 4.7,

we know that P′ is a valid partition with respect to C′. Consider
any block b ∈ P′. Since b is valid with respect to C′, and each

constraint in C′ is stricter than a corresponding constraint in C,
b is valid with respect to C. Hence, P′ is a valid partition with

respect to C.
Next, consider that each block b∗ in P∗ was obtained by merg-

ing blocks in P′ that have the same label. For any pair of points

p,q in b∗, it is true they satisfy the same set of constraints in C,
showing that P∗ is a valid partition wrt C. Also, any two blocks

in P∗ have distinct labels (if they had the same label, they would

have been merged). Therefore, we conclude using arguments

similar to Lemma 4.3 that P∗ is an optimal partition of D with

respect to C. �

Deriving a Valid Partition for a Set of Sub-Constraints:We

now present an algorithm for deriving a valid partition with a

small number of blocks, for a set of sub-constraints C.

Definition 4.5. For a sub-constraint C and dimension i , let Ci

denote the restriction (projection) of C to dimension i . Further,

let Ci
1
=
∧
k=1...i C

k
denote the restriction of C to dimensions

1, 2, . . . , i . For instance, if C = (A1 ≥ 1) ∧ (A2 ≥ 4) ∧ (A2 ≤

5) ∧ (A3 > 6), then C2 = (A2 ≥ 4) ∧ (A2 ≤ 5), and C2

1
= (A1 ≥

1) ∧ (A2 ≥ 4) ∧ (A2 ≤ 5). For convenience, if C does not have a

constraint along dimension i , then Ci is defined to be “true”.

Our algorithm, described in Algorithm 2, proceeds iteratively,

one dimension at a time. Before processing dimension i , it has
a partition of D that is a valid partition subject to constraints

along dimensions 1 till (i−1). In processing dimension i , it refines
the current partition as follows: For each block b in the current

partition, it appropriately divides the block along dimension i if
there is a constraint C ∈ C such that there are some points in b
that satisfy constraint Ci , and some that do not.

Definition 4.6. A constraint C is said to split a block b ⊆ D
if there exist a pair of points p1,p2 ∈ b such that C(p1) = true

and C(p2) = false. If C splits b, then refining b by C partitions b
into two subsets b+(C) = {x ∈ b |C(x) = true} and b−(C) = {x ∈
b |C(x) = false}.

Lemma 4.7. Given a set of sub-constraintsC, Algorithm 2 returns
a valid partition of D with respect to C.

Algorithm 2: Valid-Partition(D,C)
Input: Universe D, set of sub-constraints C
Output: A valid partition P of D subject to set of

sub-constraints C
1 P0 = {D} // A partition with one set, D.

2 for i from 1 to n do
3 M ← Pi−1;

4 foreach C ∈ C do
5 M ′ ← ∅;

6 foreach block b ∈ M do
7 if Ci splits b then
8 Let b+ and b− result from refining b withCi ;

9 Add b+ and b− toM ′;

10 else
11 Add b toM ′;

12 M ← M ′;

13 Pi ← M ;

14 Return Pn ;

Proof. For 1 ≤ i ≤ n, let Ci
1
= {Ci

1
|C ∈ C}. We show by

induction on i that after the ith iteration of the outermost for

loop in the algorithm, Pi contains a valid partition of D with

respect to Ci
1
. Since Cn

1
= C, it follows that after n iterations, Pn

contains a valid partition of D with respect to C. We consider

i = 0 as the base case, and the set C0
1
as a set of “always true"

constraints. Hence, P0, which consists of only one element,D, is

a valid partition with respect to C0
1
.

For the inductive step, suppose that for i > 0, Pi−1 is a valid
partition ofD with respect to Ci−1

1
. For each block b ∈ Pi−1, two

cases are possible: (1) b is not split by Ci , for any C ∈ C. Then
b is valid with respect to Ci

1
, and will be retained in Pi . (2) b is

split by one more constraints Ci . The algorithm iterates through

all such constraints that split b, and partitions block b such that

every resulting block is valid with respect to each Ci , C ∈ C.
We next note that Pi is indeed a partition ofD (i.e. the union of

all blocks equalsD). To see this observe that each block b ∈ Pi−1

is either present in Pi or has been refined and all its constituent

blocks (whose union equals b) are in Pi . Thus, Pi is a valid parti-

tion with respect to Ci
1
. This proves the inductive step. �

Consistency Constraints. Since different sub-views can have

common attribute(s), additional constraints need to be added

to ensure that their distributions for the common attribute(s)

are the same. In order to do so, we may need to further refine

the partition generated from the above procedure. Specifically,

consider a pair of sub-views s1 and s2 with attribute sets A1 and
A2 respectively, such that A1 ∩ A2 , ∅. Let D

1 =
∏

i ∈A1
Di ,

and D2 =
∏

j ∈A2
Dj be the corresponding domains for s1 and

s2 respectively, and D1,2 =
∏

i ∈A1∩A2
Di . Let the partitions

obtained on D1
and D2

be P1 and P2, respectively. In order to

keep P1 and P2 consistent with each other, we need to ensure

that their region boundaries are aligned with each other, and

this is achieved by refining P1 and P2 so that they have common

boundaries along dimensions A1 ∩ A2. We consider the union

of the “split points" of P1 and P2 along dimensions A1 ∩ A2 and
further for each block in P1 (and P2), we refine this block until it

no longer crosses such a split point. Finally, we add LP constraints

that equate distributions of the common attributes in P1 and P2.

306

5 DATABASE SUMMARY GENERATOR
This component takes the LP solution for each view as the input

and generates the database summary, which as mentioned pre-

viously, can be used for dynamically generating data for query

execution, or can optionally be used to generate the materialized

database.

Recall that a variable in the LP (for a view) represents an un-

derlying block in a sub-view’s partition, and its assigned value

is the number of rows present in that block – this value is here-

after referred to generically as NumTuples. The collection of

NumTuples values represent the sub-view solutions, and these

solutions are integrated to obtain the solution for the complete

view. However, since each view is solved independently, the refer-

ential constraints that exist between the corresponding relations

may be lost in these view solutions. Therefore, they may have to

be modified to ensure global consistency. Finally, it is necessary

to extract relations from the views in order to populate the data-

base. Accordingly, the summary generator component in Hydra

is responsible for the following sequence of tasks:

(1) Constructing a solution for complete views

(2) Instantiating view summaries

(3) Making view summaries consistent wrt each other

(4) Extracting relation summaries from view summaries

5.1 Constructing Solution for the View
For integrating the sub-view solutions to obtain the collective

solution for the complete view, we first order the sub-views. Then,
we iteratively build the view-solution by aligning and merging
the next sub-view solution in the given order. Let S denote the
input list of sub-view solutions, and viewSol be the final view
solution that we wish to compute. Algorithm 3 describes the high-

level process for constructing viewSol from S, and its ordering,

aligning and merging procedures are described in the remainder

of this sub-section.

Algorithm 3: View Solution Construction

1 S← OrderSubViews(S);

2 viewSol ← ∅;

3 foreach s ∈ S do
4 viewSol , s ← Align(viewSol , s) ;

5 viewSol ← Merge(viewSol , s);

5.1.1 Sub-View Ordering. Ordering is implemented through a

greedy iterative algorithm where we can start with any sub-view

as the first choice. Subsequently, at iteration i , let the set of visited
sub-views until now be S. A sub-view s from outside this set can

be chosen to be the next in the ordering only if it satisfies the

following condition: On removing the common vertices between

s and S in the (chordal) view-graph, there should not exist any

path between the remaining vertices of s and the remaining

vertices of S. This algorithm is described in detail in [21].

5.1.2 Aligning. After obtaining the sub-view merge order as

per above, in every iteration we merge the next sub-view solution

(s) in the sequence to the current view-solution (viewSol), after
a process of alignment. The alignment algorithm is a two step

exercise, as shown in the example of Figure 8:

Solution Sorting: First, the viewSol and s solutions are each

sorted on their common set of attributes to facilitate direct

comparison of their matching ranges. For instance, the

solutions A,B and A,C in Figure 8a are each sorted on the

intervals enumerated in the common attribute A.
Row Splitting: Our addition of consistency constraints during

the LP formulation ensured that the distribution of tu-

ples along the common set of attributes is the same in

the various sub-views. Therefore it easy to see that the

sum of NumTuples values in any interval of the common

attributes is the same for the sub-view solutions under

alignment. For example, in Figure 8a, the total number of

tuples with A = [40, 60) is 30K in both the A,B and A,C
solutions. Likewise, the other entries in column A also

have matching total number of tuples across the solutions.

The align step splits the rows in these solutions such that

the corresponding rows in both solutions have the same

number of tuples. The sub-view solutions of Figure 8a are

shown in Figure 8b after undergoing the alignment pro-

cess, with both solutions now having identicalNumTuples

in the corresponding rows.

(a) Sub-view Solution

(b) View Alignment

(c) Merged View Solution

Figure 8: Align and Merge Example

5.1.3 Merging. This is the last step in the construction of the

view solution. Here we simply merge the two solutions obtained

after alignment through a “position” based join, where the phys-

ically corresponding rows in each solution are combined, with

the common attributes being represented once. For example, the

aligned solutions of Figure 8b are merge-joined using the po-

sitions (or row identifiers) to deliver the final view solution of

Figure 8c.

As discussed earlier, DataSynth adopted a sampling algorithm

for constructing the view solutions post LP solving. In marked

contrast, Hydra deterministically generates the view solutions,

facilitating us to operate purely in the summary space. There are

307

two tangible benefits of this deterministic strategy: (a) elimina-

tion of the time and space overheads due to sampling, and (b)

elimination of sampling-based errors in satisfying CCs.

5.2 Instantiating View Summaries
As shown in Figure 8c, each row in the view solution is comprised

of a series of intervals (across various attributes) and the number

of tuples in the region represented by these intervals. We now

need to decide as to how these tuples are distributed within the

attribute intervals. Our current solution is very simple: Assign

the entire cardinality to the left boundaries of the intervals. For
example, the third row in Figure 8c would result in generation of

10000 tuples all having A = 40,B = 5,C = 2 values.

Note that, in principle, we could have used a more sophisti-

cated cardinality distribution within the intervals. However, our

simple deterministic choice helps to reduce the subsequent addi-

tive errors that are incurred while ensuring referential integrity

across views (described in next subsection). This is so because

choosing values deterministically within a bucket minimizes the

likelihood of encountering an fk value that is not present in the

corresponding pk column.

5.3 Making View Summaries Consistent
Since the solution for each view is obtained independently, there

could be inconsistencies across them. For example, referring back

to the view schema shown in Section 3.2, R_view has attributes

borrowed from S_view and T_view , and its solution may fea-

ture values that are not present in the corresponding attributes

of these two views. To address this problem, we first carry out

a topological sort on the “referential dependency graph”
2
and

then iteratively make the current view consistent with its prede-

cessors. Since a topological sort is employed, Hydra can handle

dependency graphs that are DAGs unlike DataSynth which is

restricted to tree traversals.

To make a pair of views Vi and Vj consistent with each other,

whereVi is dependent onVj , we iterate over the rows in the view

solution of Vi and look for the value combination that each row

has for the attributes borrowed fromVj . If that value combination

is not present in the solution of Vj , we add a new row in its

solution with the corresponding NumTuples attribute set to 1.

This results in an additive error in the total number of tuples in

the view as compared to the original AQP at the client. But we

hasten to add that the error is a fixed number of rows, determined

by the nature of the constraints and the LP solution, and not by
the data scale. Therefore, at Big Data volumes, the discrepancy

can be expected to be minuscule, and our experiments empirically

confirm this expectation.

The inter view consistency component is present in DataSynth

as well, but since its view solutions are comprised of complete

database instantiations, and not just summaries, the time and

space overheads incurred for making the views consistent can be

large. Moreover, the additive error in DataSynth is amplified due

to its inherent sampling errors. Our experiments also capture

this distinction between the errors incurred due to referential

constraints in Hydra and DataSynth.

5.4 Constructing Relation Summaries
After constructing consistent solutions across all the views, we

next need to obtain the corresponding relation summaries. For

2
A graph where each relation is represented by a node and an edge (u, v) is added
if relation u is dependent on relation v through a referential constraint.

this, we create a summarized relation schema R̃i for each relation

Ri . This schema consists of all attributes in Ri except the primary

key attribute, and additionally, the NumTuples value for each

entry in R̃i , as sourced from the view solutions.

For the common attributes between the summarized relation

and the corresponding view solution, the value combinations

and corresponding NumTuples value are directly borrowed from

the solution. What remains are the foreign key attributes. For

filling a foreign key attribute fk, we need to first consult the view
corresponding to fk’s s target relation, say Vj . To fill the fk value

in row r of R̃i , we extract the value combination in row r of view
solution ofVi , and then project the attributes corresponding toVj
– let this be denoted by v . Now, we iterate over the solution set

of Vj and compute the cumulative sum of the cardinality entries

till v is reached. This sum provides the fk value corresponding
to the r th row of R̃i , and we thus obtain R̃i for each relation Ri .

The set of relation summaries, computed as described above,

provides the entire database summary – a sample such summary

was previously shown in Figure 5 (for simplicity, the figure shows

the PK columns instead of the number of tuples).

Like before, DataSynth again iterates over the complete instan-

tiated (consistent) views to construct the corresponding material-

ized relations. Obviously, this leads to enormous time and space

overheads in contrast to our data-scale independent summary

based approach.

6 TUPLE GENERATOR
The Tuple Generator component resides inside the database en-

gine, and needs to be explicitly incorporated in the engine code-

base by the vendor. As a proof of concept, we have implemented

it for the PostgreSQL v9.3 engine by adding a new feature called

datagen, which is included as a property for each relation in the

database. Whenever this feature is enabled for a relation, the scan

operator for that relation is replaced with the dynamic generation

operator. As a result, during query execution, the executor does

not fetch the data from the disk but is instead supplied by the

Tuple Generator in an on-demand manner, using the available

relation summary.

Each row in the relation summary has a value combination

and an associated NumTuples entry. We consider the pk values

to be the row numbers of the relation. Therefore, to get the r th
tuple of a relation R, the pk is chosen as r and the rest of the

attributes come from the relation summary. We iterate over the

rows of R̃ and take the cumulative sum of the NumTuples entries

until the sum exceeds r . Say the summation crosses the value r

in jth row of R̃. Then the rest of the values of the r th tuple are

assigned to be precisely the same as those present in the jth row

of R̃. For example, the 120th row of relation S in Figure 5, would

be ⟨120, 20, 15⟩.

Note that this form of tuple generation is expected to be ef-

ficient since the attribute value assignments are deterministic

and independent, and these expectations are confirmed in the

experiments shown in the following section.

7 EXPERIMENTS
Wehave implemented theHydra design, described in the previous

sections, in a Java tool running to over 15K lines of code. The

popular Z3 [14] solver is leveraged to compute solutions for the

LP formulations. In this section, we evaluate Hydra’s empirical

performance, using our implementation of DataSynth as the

comparative yardstick in the analysis.

308

Database Environment. The TPC-DS [1] decision-support bench-
mark database, with a default size of 100GB, is used as the baseline

in our experiments. The database is hosted on a PostgreSQL v9.3

engine [4] with the hardware platform being a vanilla HP work-

station (3.2 GHz 16 core processor, 32 GB memory, 500 GB SSD

hard drive) running Ubuntu Linux 16.04.3.

A complex queryworkload,WLc , featuring 131 distinct queries
(enumerated in [21]), was created by customizing the 99 queries

of the benchmark such that only non-key filter predicates and

PK-FK joins were retained, and all nested queries were separated

into independent sub-queries
3
. The AQPs for these queries were

generated on the PostgreSQL query processor, resulting in 351

cardinality constraints. The distribution of the cardinalities for

these CCs are shown in Figure 9, with the cardinalities measured

on a log-scale. The figure clearly indicates that a wide range of

cardinalities are present in the constraints, going from a few

tuples to almost a billion.

Figure 9: Distribution of Cardinality in CCs (WL_c)

The above constraints result in a large number of geometri-

cally overlapping regions. Hydra, due to its region-partitioning

approach, comfortably handles this scenario. In marked contrast,

DataSynth, due to its grid-partitioning construction, generates a

very large number of LP variables (in the several billion) from

the constraints, overwhelming the solver’s capabilities. We there-

fore also created an alternative simplified query workload, called

WLs , with 311 CCs, wherein the variables created by DataSynth

were less than a million, and therefore well within the solver’s

processing power.

7.1 Quality of Volumetric Similarity
We begin by investigating how closely the volumetric similarity,

with regard to operator output cardinalities, is achieved between

the client and vendor sites for theWLs workload by the Hydra

and DataSynth regenerators. This behavior is captured in Fig-

ure 10, which plots the percentage of CCs that are within a given

relative error of volumetric similarity. From the plot it is evident

that Hydra satisfies around 90 percent of the CCs with virtually

no error, and the remaining CCs are also satisfied within a rela-

tive error of less than 10%. This is in contrast to DataSynth, which

accurately satisfies around 80 percent of the CCs, but then incurs

as much as 60% relative error to achieve complete coverage of

the remaining CCs.

There are two reasons for the error-prone behavior of Data-

Synth: (1) the probabilistic sampling technique, and (2) the main-

tenance of referential integrity. While Hydra also is forced to

3
Similar to DataSynth, the restriction to non-key-based filters is because the con-

version from relations to views lose the key attributes. Likewise, only PK-FK joins

are supported since they are inherently present in the design of views.

Figure 10: Quality of Volumetric Similarity (WL_c)

insert additional tuples to maintain referential integrity, the num-

ber is substantially smaller than those injected by DataSynth.

This is because the integrity errors are amplified by the impact of

the sampling errors. This effect is quantified in Figure 11, where

the number of extra tuples inserted is plotted on a log-scale for

representative TPC-DS tables. We see here that Hydra is often an

order-of-magnitude smaller with regard to the addition of these

extra tuples as compared to DataSynth. Also, recall that integrity

errors in Hydra are independent of the data scale and therefore

are minuscule at Big Data volumes. We also show this in [21].

Figure 11: Extra tuples for Referential Integrity (WL_c)

As a final observation, it is interesting to note that DataSynth

has to contend with both negative (volumes less than desired)

and positive (volume greater than desired) relative errors, due to

its sampling strategy – in fact, about one-third of the CCs suf-

fered negative relative errors. In contrast, Hydra only generates

positive errors due to the inclusion of extra tuples for satisfying

referential integrity. From a practical standpoint, it is perhaps

preferable to have positive errors since they induce greater stress

on the data processing elements in the engine.

7.2 Scalability with Workload Complexity
We now turn our attention to evaluating the complexity of the

underlying LP that is formulated by Hydra and DataSynth. Since

LP complexity is essentially proportional to the number of vari-

ables in the problem, we compare this number for the two tech-

niques. Further, since LP complexity is, to the first degree of

approximation, independent of the database size, we present the

comparison only for the 100 GB instance.
4
The number of LP

variables for a representative set of TPC-DS relations, including

the major fact and dimension tables (catalog_sales, store_sales,
4
Of course, the database engine’s choice of query plans may change to some extent

with database size, leading to a slightly different set of CCs.

309

item) is captured, on a log-scale, in Figure 12 for theWLc com-

plex workload. We observe here that the LPs formulated using

the region-partitioning strategy in Hydra generate several orders
of magnitude fewer variables than the corresponding LPs derived

from the grid-partitioning in DataSynth. As a case in point, con-

sider the catalog_sales table – the number of variables created by

DataSynth was almost 5.5 million, which is reduced to as low as

1620 by Hydra. Even more dramatic is the change for item table,

where the number of variables is reduced from an enormous 10
11

to around 3700.

Figure 12: Number of variables in the LP (WLc)

From an absolute perspective also, the large number of vari-

ables created by DataSynth is a critical problem since, as men-

tioned previously, the LP solver crashed in handling these cases.

In marked contrast, the few thousands of LP variables generated

by Hydra were easily solvable in less than a minute. Moreover,

even when we switched to the simple workload,WLs , the LP
solution time for DataSynth was almost an hour, whereas Hydra

completed in a few seconds as shown in Figure 13.

Complex Workload (WLc) Simple Workload (WLs)
DataSynth Hydra DataSynth Hydra
crash 58 sec 50 min 13 sec

Figure 13: LP Processing Time

7.3 Scalability with Materialized Data Size
This experiment compares the data instantiation times, post LP

solution, of DataSynth and Hydra on theWLs workload. While

Hydra, in principle, due to its summary-based approach, does

not have to instantiate the data immediately, we assume in this

experiment that the vendor requires complete materialization.

The experimental results are shown in Figure 14, wherewe also

present, for comparative purposes, the performance with 10 GB

and 1000 GB databases, apart from the default 100 GB database.

We see here that there is a huge reduction in the materialization

time of Hydra at all scales. Further, even in absolute terms, Hydra

is able to output a 100 GB database in around 11 minutes, whereas

DataSynth takes 42 hours to complete the same task.

The marked difference in the efficiency of the two techniques

is attributed to the fact that DataSynth instantiates complete

views through sampling, subsequently performs several passes on
these instantiations to ensure referential integrity, and to derive

relations from them. Hydra on the other hand, after LP-solving,

constructs the database summary in just a few seconds, and then

instantiates the materialized database directly from it.

Size (in GB) DataSynth Hydra
10 4 hours 2 min

100 42 hours 11 min

1000 > 1 week 1.6 hours

Figure 14: Data Materialization Time

7.4 Scalability to Big Data Volumes
In our next experiment, we validated the ability of Hydra, thanks

to its summary-based technique, to scale to Big Data volumes.

To demonstrate this feature, we modeled an exabyte-sized (10
18

bytes) data scenario as follows: We used CODD, which is ca-

pable of modeling arbitrary metadata scenarios, to obtain the

optimizer-chosen plans at the exabyte database scale for all the

workload queries. To get AQPs for this database, we executed

the obtained plans on the 100 GB instance and scaled the in-

termediate row counts with the appropriate scale factor. Hydra

was able to formulate and solve the LPs (one per relation), and

generate the database summary in less than 2 minutes. Once
the summary is generated, the database can begin to submit the

workload queries since the data required for the execution can

be produced on-the-fly by the Tuple Generator.

7.5 Dynamism in Data Generation
Our next experiment evaluates Hydra’s ability, due to the Tu-

ple Generator and Database Summary architecture, to produce

tuples on-the-fly instead of first materializing them, and then

reading from the disk. To verify whether dynamic generation

can indeed produce data at rates that are practical for support-

ing query execution, we compared the total time that Hydra’s

tuple generator took to construct and supply tuples to the execu-

tor, while running simple aggregate queries, as compared to the

standard sequential scan from the disk.

Rel. Name Size Row count Scan time (secs)
(in GB) (in millions) Disk Dynamic

store_returns 3 29 16 8

web_sales 10 72 43 25

inventory 19 399 107 74

catalog_sales 20 144 46 48

store_sales 34 288 168 87

Figure 15: Data Supply Times

The results of this experiment are shown in Figure 15 for

the five biggest relations in the 100 GB database instance. We

see here that the tuple generator is not only competitive with

a materialized solution, but is in fact typically faster. Therefore,
using dynamic generation can prove to be a good option since it

can help to eliminate the large time and space overheads incurred

in: (1) dumping generated data on the disk, and (2) loading the

data on the engine under test.

7.6 Performance on JOB Benchmark
A legitimate concernwith regard to the above encouraging results

for Hydra is that they may be an artifact of the TPC-DS database,

and perhaps might under-perform on other datasets. To address

this concern, we consider in our final experiment, a schematically

highly different database, namely the JOB benchmark [17], which

is based on the IMDB real-world dataset. Here, we created a

310

workload of 260 queries, resulting in 523 CCs, whose cardinality

distribution is again highly varied as seen in Figure 16.

Figure 16: Cardinality distribution of CCs in JOB

We found that Hydra efficiently solved this workload as well,

with the number of variables in each view being typically in

the few thousands, and never exceeding a hundred thousand, as

shown quantitatively in Figure 17. The overall database summary

was quickly generated in around 20 seconds, and produced a

database of high fidelity that satisfied all the constraints with no

more than 2 percent relative error.

Figure 17: Number of Variables for JOB

8 RELATEDWORK
Over the past few decades, a rich corpus of literature has devel-

oped on synthetic database construction. There are two broad

streams of research on the topic, one dealing with the ab ini-
tio generation of new databases using standard mathematical

distributions (e.g. [12, 15]), and the other with regeneration of

an arbitrary existing database. In the latter category, there are

two approaches, one of which uses only schematic and statis-

tical information from the original database (e.g. [19, 22]). The

other uses both the original database and the query workload

to achieve statistical fidelity during evaluation (e.g [6, 11]) – our

work on Hydra falls into this class. In this section, we briefly

review recent literature on this spectrum of research categories.

Ab Initio Generation. Descriptive languages for the definitions
of data dependencies and column distributions were proposed

in [12, 16, 20]. For example, [12] proposed a special purpose lan-

guage called Data Generation Language (DGL) that is used by

the tool to generate synthetic data distributions by utilizing the

concept of iterators. It supports a broad range of dependencies be-

tween relations but the construction of dependent tables always

requires access to the referenced table, creating a bottleneck on

the data generation speed.

In contrast to the above, MUDD [23] and PSDG [16] generate

all related data at the same time. However, this approach can also

be rendered inefficient if the referenced tables are large in size.

MUDD proposes algorithms to parallelize the data generation

process, and to efficiently generate dense-unique-pseudo-random

sequences and derive nonuniform distributions. Both MUDD and

PSDG decouple data generation details from data description,

facilitating customization of the tool to suit user needs.

In the distributed setting, a faster way of generating references

is through recomputing since it eliminates the I/O costs incurred

to satisfy referential constraints across relations that are present

across different nodes. PDGF [20] was designed with this goal of

achieving scalability and decoupling. In PDGF, the user specifies

two XML configuration files, one for the data model and one

for the formatting instructions. The generation strategy is based

on the exploitation of determinism in pseudo-random number

generators (PRNG), which enables regeneration of the same se-

quences, hence eliminating the scan overheads. PDGF supports

the generation of data with cyclic dependencies as well, but in-

curs high computation costs for generating the associated keys.

Finally, PDGF comes with a set of fixed generators for different

datatypes and basic distribution functions.

A similar generator is Myriad [5], which implements an effi-

cient parallel execution strategy leveraged by extensive use of

PRNGs with random access support. With these PRNGs, Myriad

distributes the generation process across the compute nodes and

ensures that they can run independently from each other, without

imposing any restrictions on the data modeling language.

Finally, a rule-based probabilistic approach, based on an ex-

tension of Datalog, has been recently proposed in [9], which is

capable of generating data characterized by parametrized clas-

sical discrete distributions – however, it is not always feasible

to assign such distributions to real-world data, especially over

multivariate spaces.

Database-dependent Regeneration. DBSynth[19] is an exten-

sion to PDGF, which builds data models from an existing database

by extracting schema information, and using sampling to con-

struct histograms and dictionaries of text-valued data. Further, if

the textual data contains multiple words, Markov chain genera-

tors are used to analyze the word combination frequencies and

probabilities. Finally, after the model construction is complete,

PDGF is invoked to generate the corresponding data.

Like DBSynth, RSGen [22] takes a metadata dump, including

1-D histograms, as the input, and generates database tables along

with a loading script as the output. It uses a bucket based model

at its core, which is able to generate trillions of records with

minimum memory footage. However, the proposed technique

works well only for queries with only a single range predicate.

Further, due to the inaccurate statistical models in the query

optimizer, the volumetric similarity is poor for queries involving

predicates on correlated attributes.

UpSizeR [24] is a graph-based tool that uses attribute correla-

tions extracted from an existing database to generate an equiva-

lent synthetic database. A derivative work, Rex [13] produces an

extrapolated database given an integer scaling factor and the orig-

inal database, while maintaining referential constraints and the

distributions between the consecutive linked tables. Dscaler [26]

311

addresses the problem of generating a non-uniformly
5
scaled ver-

sion of a database using fine-grained, per-tuple correlations for

key attributes, but such information is typically hard to come by.

Moreover, all these techniques only generate the key attributes,

whereas the non-key values are sampled from the original data-

base using these key values. Hence, the approach becomes imprac-

tical in Big Data and security-conscious environments. Finally,

Dscaler fails to retain accuracy for some common query classes.

Query-dependent Regeneration. Apart from the above tech-

niques, another line of work [6, 10, 11, 18] is based on workload

dependence (as in the case of Hydra). Here the aim is to gener-

ate a database given a workload of queries such that volumetric

similarity is achieved on these queries. In particular, RQP [10]

gets a query and a result as input, and returns a possible data-

base instance that could have produced the result for that query.

The idea of using cardinalities from a query plan tree was first

introduced in QAGen [11]. They start by constructing a symbolic
database6, and then translate the input AQPs to constraints over

the symbols in the database. Subsequently, a constraint satisfac-

tion program (CSP) is invoked to identify values for symbols that

satisfy all the constraints.

On the positive side, these generators are capable of handling

complex operators as they use a general CSP, but the performance

cost is huge since the number of CSP calls also increases with

the database size. Further, it requires operating on a symbolic

database of matching size to the original database, and processing

of the entire database during the algorithm execution. This makes

it impractical for BigData environments. Finally, QAGen supports

only one query plan in the input. This limitation was addressed

in a follow-up tool called MyBenchmark [18], which creates a

symbolic database on a per query basis and at the end tries to

heuristically merge the various databases into a small number

of databases. Clearly, generating a database on a per query basis

has enormous time and space overheads, and further, a single

database is not guaranteed in the output.

DataSynth [6] identified the declarative property of cardinality

constraints and its ability to specify data characteristics. Given

a large number of cardinality constraints as input, the paper

proposed algorithms based on the LP solver and graphical models

to instantiate tables that satisfy those constraints. However, it

suffers from high LP complexity, data scale dependencies, and

inaccuracies with regard to volumetric similarity, as we have

discussed in this paper. Hydra materially extends the DataSynth

approach by adding dynamism, scale and functionality.

9 CONCLUSIONS
The ability to synthetically regenerate data that accurately con-

forms to the volumetric behavior on queries at client sites is of

crucial importance to database vendors, and will become even

more so with the advent of Big Data applications. In this paper,

we have proposed Hydra, a data regeneration tool that takes

a substantial step forward towards achieving this goal. Specif-

ically, by reworking the basic LP problem formulation into a

region-based variable assignment, Hydra improves on the state-

of-the-art DataSynth’s performance by orders of magnitude with

regard to problem complexity, data materialization time, and

scalability to large volumes. Secondly, by using a deterministic

alignment technique for database consistency, it provides far

5
In non-uniform scaling, individual tables are scaled by different factors.

6
A symbolic database is similar to a regular database, but its attribute values are

symbols (variables), not constants.

better accuracy in meeting volumetric constraints as compared

to the probabilistic approach employed in DataSynth. Finally, its

summary-based framework organically supports the dynamic

regeneration of streaming data sources, an essential pre-requisite

for efficiently testing contemporary deployments.

In our future work, we plan to focus on covering a richer set

of query operators, such as grouping functions, within the Hydra

framework. Also, we would like to investigate how to leverage

additional summary information (such as value-based correla-

tions) that the client might be willing to provide for achieving

stronger fidelity with the original database.

Acknowledgements. We thank the anonymous reviewers for

their expert and constructive comments on thematerial presented

here. We also thank Huawei Technologies India Pvt. Ltd. and the

members of the Database Systems Lab at IISc for their valuable

feedback and support in this work.

REFERENCES
[1] TPC-DS. http://www.tpc.org/tpcds/.

[2] TPC-H. http://www.tpc.org/tpch/.

[3] USE PLAN SQL Server. https://technet.microsoft.com/en-us/library/

ms186954(v=sql.105).aspx.

[4] PostgreSQL. http://www.postgresql.org/docs/9.3/static/release.html.

[5] A. Alexandrov, K. Tzoumas and V. Markl. Myriad: Scalable and Expressive

Data Generation. PVLDB, 5(12), 2012.
[6] A. Arasu, R. Kaushik and J. Li. Data generation using declarative constraints.

Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, 2011.
[7] A. Arasu, R. Kaushik and J. Li. DataSynth: Generating synthetic data using

declarative constraints. PVLDB, 4(12), 2011.
[8] S. Ashoke and J. R. Haritsa. CODD: a dataless approach to big data testing.

PVLDB, 8(12), 2015.
[9] V. Barany, B. Cate, B. Kimelfeld, D. Olteanu and Z. Vagena. Declarative Prob-

abilistic Programming with Datalog. Proc. of the 19th Intl. Conf. on Database
Theory, 2016.

[10] C. Binnig, D. Kossmann and E. Lo. Reverse Query Processing. Proc. of the 23rd
Intl. Conf. on Data Engineering, 2007.

[11] C. Binnig, D. Kossmann, E. Lo and M. Tamer Özsu. QAGen: generating query-

aware test databases. Proc. of the ACM SIGMOD Intl. Conf. on Management of
Data, 2007.

[12] N. Bruno and S. Chaudhuri. Flexible database generators. Proc. of the 31st Intl.
Conf. on Very Large Data Bases, 2005.

[13] T. S. Buda, T. Cerqueus, J. Murphy and M. Kristiansen. ReX: Extrapolating

Relational Data in a Representative Way. Proc. of the British Intl. Conf. on
Databases, 2015.

[14] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. Proc. of the Intl.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems,
2008.

[15] J. Gray, P. Sundaresan, S. Englert, K. Baclawski and P. J. Weinberger. Quickly

Generating Billion-record Synthetic Databases. Proc. of the ACM SIGMOD Intl.
Conf. on Management of Data, 1994.

[16] J. E. Hoag and C. W. Thompson. A parallel general-purpose synthetic data

generator. ACM SIGMOD Record, 2007.
[17] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper and T. Neumann. How

Good Are Query Optimizers, Really? PVLDB, 9(3), 2015.
[18] E. Lo, N. Cheng, W. W. K. Lin, W. Hon and B. Choi. MyBenchmark: generating

databases for query workloads. The VLDB Journal, 23(6), 2014.
[19] T. Rabl, M. Danisch, M. Frank, S. Schindler and H. Jacobsen. Just Can’T

Get Enough: Synthesizing Big Data. Proc. of the ACM SIGMOD Intl. Conf. on
Management of Data, 2015.

[20] T. Rabl, M. Frank, H. M. Sergieh and H. Kosch. A Data Generator for Cloud-

scale Benchmarking. Proc. of the 2nd TPC Technology Conference on Performance
Evaluation, Measurement and Characterization of Complex Systems, 2010.

[21] A. Sanghi, R. Sood, J. R. Haritsa and S. Tirthapura. Scalable and Dynamic

Workload Dependent Data Regeneration. Tech. Report TR-2017-01, DSL/CDS,
IISc, 2017, dsl.cds.iisc.ac.in/publications/report/TR/TR-2017-01.pdf.

[22] E. Shen and L. Antova. Reversing statistics for scalable test databases genera-

tion. Proc. of the 6th Intl. Workshop on Testing Database Systems, 2013.
[23] J. M. Stephens and M. Poess. MUDD: A Multi-dimensional Data Generator.

Proc. of the 4th Intl. Workshop on Software and Performance, 2004.
[24] Y. C. Tay, B. T. Dai, D. T. Wang, E. Y. Sun, Yong Lin and Yuting Lin. UpSizeR:

Synthetically Scaling an Empirical Relational Database. Inf. Syst. 38(8), 2013.
[25] R. S. Trivedi, I. Nilavalagan and J. R. Haritsa. Codd: Constructing dataless

databases. Proc. of the 5th Intl. Workshop on Testing Database Systems, 2012.
[26] J. W. Zhang and Y. C. Tay. Dscaler: Synthetically scaling a given relational

database. PVLDB, 9(14), 2016.

312

	Scalable and Dynamic Regeneration of Big Data VolumesAnupam Sanghi, Raghav Sood, Jayant Haritsa, Srikanta Tirthapura

