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ABSTRACT
In the last decade, many business applications have moved into the
cloud. In particular, the “database-as-a-service” paradigm has be-
come mainstream. While existing multi-tenant data management
systems focus on single-tenant query processing, we believe that
it is time to rethink how queries can be processed across multiple
tenants in such a way that we do not only gain more valuable
insights, but also at minimal cost. As we will argue in this paper,
standard SQL semantics are insufficient to process cross-tenant
queries in an unambiguous way, which is why existing systems use
other, expensive means like ETL or data integration instead. We
first propose MTSQL, an extension to standard SQL, which fixes
the ambiguity problem. Next, we present MTBase, a query pro-
cessing middleware that efficiently processes MTSQL on top of
SQL. As we will see, there is a canonical, provably correct, rewrite
algorithm from MTSQL to SQL, which may however result in
poor query execution performance, even on high-performance
database products. We further show that with carefully-designed
optimizations, execution times can be reduced in such ways that
the difference to single-tenant queries becomes marginal.

1 INTRODUCTION
Indisputably, cloud computing is one of the fastest growing busi-
nesses related to the field of computer science. Cloud providers
promise good elasticity, high availability and a fair pay-as-you-
go pricing model to their tenants. Moreover, corporations are
no longer required to rely on on-premise infrastructure which is
typically costly to acquire and maintain. While it is still an open re-
search question whether and how these good promises can be kept
with regard to databases [19, 32], all the big players, like Google
[30], Amazon [8], Microsoft [34] and recently Oracle [38], have
launched their own Database-as-a-Service (DaaS) cloud products.

All these products host massive amounts of data from multiple
clients and are therefore multi-tenant. However, as pointed out by
Chong et al. [17], the term multi-tenant database is ambiguous
and can refer to a variety of DaaS schemes with different degrees
of logical data sharing between tenants. On the other hand, as
argued by Aulbach et al. [11], multi-tenant databases not only
differ in the way how tenants logically share information, but also
how information is physically separated. We conclude that the
multi-tenancy spectrum consists of four different schemes: First,
there are DaaS products that offer each tenant her proper data-
base while relying on shared resources (SR), i.e. hardware (e.g.
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CPU, network, storage) and/or software (e.g. buffer pools, system
tables, system users, etc.). Examples include SAP HANA [42],
SqlVM [36], RelationalCloud [35], Snowflake [18] and Oracle’s
multitenant container database (CDB) [40]. Next, there are sys-
tems that share databases (SD), but each tenant gets her own set of
tables within such a database, as for instance Azure SQL DB [20].

Finally, there are the two schemes where tenants not only share
a database, but also the table layout (schema). Either, as for exam-
ple in Apache Phoenix [9], tenants still have their private tables,
but these tables share the same (logical) schema (SS), or the data
of different tenants is consolidated into shared tables (ST) which
is hence the layout with the highest degree of physical and logi-
cal sharing. Prominent examples for ST include Oracle’s Virtual
Private Database [3] as well as different Microsoft Azure DaaS
offerings [33, 34]. SS and ST layouts are not only used in DaaS,
but also in Software-as-a-Service (SaaS) platforms, as for exam-
ple in Salesforce [44]. The main reason why all these commercial
systems prefer ST over SS is cost [11]. Moreover, if the number of
tenants exceeds the number of tables a database can hold, which
is typically a number in the range of ten thousands, SS becomes
prohibitive. Conversely, ST databases can easily accommodate
hundred thousands to even millions of tenants.

An important feature of multi-tenant databases, which, to the
best of our knowledge, no DaaS or SaaS natively supports today,
is cross-tenant query processing, i.e. combining data of different
tenants and query this unified data set as if it was single-tenant,
using SQL. In order to illustrate that cross-tenant query processing
is indeed a highly relevant requirement, let us have a look at one
of the many initiatives to democratize the use of personal data, the
Health Data Cooperative (HDC) [27]. In HDC, all patient data is
stored in a single, multi-tenant SaaS database, each patient being
a tenant managing her own data. For clinical studies, however, it
is essential to be able to run queries over a cohort of patients who
give their consent, or, in other words enable cross-tenant query
processing. Clearly, the health data use case has also another big
challenge, which is data privacy. This aspect, despite being out of
the scope of this paper, is considered essential future work.

There are several existing approaches to cross-tenant query
processing which are summarized in Figure 1. The first approach
is data warehousing [29] where data is extracted from several data
sources (tenant databases/tables), transformed into one common
format and finally loaded into a new database where it can be
queried by the client. This approach has high integration trans-
parency in the sense that once the data is loaded, it is in the
expected format as required by the client and she can ask any
query she wants, using plain SQL. Moreover, as all data is in
a single place, queries can be optimized. On the down-side of
this approach – well-known and argued by many [10, 14, 37] –
are costs in terms of both, developing and maintaining such ETL
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Figure 1: Cross-tenant query processing systems

pipelines, as well as maintaining a separate copy of the data. An-
other disadvantage is data staleness in the presence of frequent
updates.

Federated Databases [26, 31] reduce some of these costs by
integrating data on demand, i.e. there is no data copying. How-
ever, maintenance costs are still significant as for every new data
source, a new integrator/wrapper has to be developed. As data
resides in different places (and different formats), queries can only
be optimized to a very small extent (if at all), which is why the
degree of integration transparency is considered sub-optimal. Fi-
nally, systems like SAP HANA [42] and Salesforce [44], which are
mainly tailored towards single-tenant queries, offer some degree
of cross-tenant query processing, but only through their applica-
tion logic, not natively. This means that the set of queries that can
be asked is limited, accounting for low integration transparency.

We believe that the reason why none of these previous works
uses a native approach, i.e. SQL plus transparent rewriting, for
cross-tenant query processing is that there is an ambiguity prob-
lem.1 Consider, for instance, the ST database in Figure 2, which
we are going to use as a running example throughout the paper.
Further assume that we would like to query the joint dataset of
tenants 0 and 1: As shown on the left, we might want to join
Employees with Roles. Joining on role_id alone is not e-
nough as this would also join Alice with executive, which
does not correspond to the expected output because Alice is a pro-
fessor, and only a professor. In this case, a rewrite algorithm would
have to add the tenant-ID ttid to the join predicate. On the other
hand, joining the Employees table with itself on E1.age =
E2.age, as illustrated on the right, does not require ttid to be
present in the join predicate because it actually makes sense to
include results like (Alice, Ed) because they are indeed the
same age.

An additional challenging fact is that different tenants might
store their data in different units. In our example, tenant 0 might
store her employees’ salaries in a different currency than tenant 1.
If this is the case, computing the average salary across all te-
nants clearly involves some value conversions that should, ideally,
happen without the client noticing or even worrying about.

This paper presents MTSQL as a solution to these ambigu-
ity problems, following a native approach. MTSQL extends the
SQL API and provides additional data definition syntax and cor-
responding semantics specifically-suited for cross-tenant query

1Note, however, that SQL plus transparent rewriting works for single-tenant query
processing in a multi-tenant system. Apache Phoenix [9] and Oracle’s Virtual Private
Database [3] do exactly that.

Figure 2: Multi-tenant database in basic layout (ST), illustrat-
ing the ambiguity problem in cross-tenant queries

processing. It enables high integration transparency because once
the schema is defined and the database connection established, any
client, with any desired data format, can ask any query at any time
and do so by using nothing else but plain SQL. Moreover, as data
resides in a single database (SS or ST), queries can be aggressively
optimized with respect to both, standard SQL semantics and addi-
tional MTSQL semantics. As MTSQL adopts the single-database
layout, it is also very cost-effective, especially if used on top of
ST. Also, data conversion only happens as needed, which perfectly
fits the cloud’s pay-as-you-go cost model and thus makes MT-
SQL an attractive option to complement existing DaaS offerings.
Specifically, the paper makes the following contributions:

• It defines the syntax and semantics of MTSQL, a database
language that extends SQL and solves the ambiguity prob-
lem for cross-tenant query processing.
• It presents the design and implementation of MTBase, a

database middleware that executes MTSQL on top of any
shared-table multi-tenant database.
• It studies MTSQL-specific optimizations for query execu-

tion in MTBase.
• It extends the well-known TPC-H benchmark in order

to run and evaluate MTSQL workloads, resulting in new
benchmark called MT-H.
• It evaluates the performance and the implementation cor-

rectness of MTBase with MT-H, concluding with satisfac-
tory results.

The rest of this paper is organized as follows: Section 2 defines
MTSQL, while Section 3 gives an overview on MTBase. Section 4
discusses the MTSQL-specific optimizations which are validated
in Section 5. Section 6 shortly summarizes lines of related work,
specifically focusing on the relation of MTSQL to data integra-
tion as well as data privacy, whereas the paper is concluded in
Section 7.

2 MTSQL
In order to model the specific aspects of cross-tenant query pro-
cessing in multi-tenant databases, we developed MTSQL, which
will be described in this section. MTSQL extends SQL in two
ways: First, it extends the SQL interface with two additional pa-
rameters, C and D. C is the tenant ID (or ttid for short) of the
client who submits a statement and hence determines the format
in which the result must be presented. The data set, D, is a set of
ttids that refer to the tenants whose data the client wants to query.
Secondly, MTSQL extends the syntax and semantics of SQL, as
well as its Data Definition Language (DDL), Data Manipulation

14



Language (DML) and Data Control Language (DCL, consists of
GRANT and REVOKE statements).

As mentioned in the introduction, there are several ways how a
multi-tenant database can be laid out: Figure 2 shows an example
of the ST scheme, also referred to as basic layout in related work
[11] where tenants’s data is consolidated using the same tables.
Meanwhile, there also exists the SS scheme, also referred to as
private table layout, where every tenant has her own set of tables.
In that scheme, data ownership is defines as part of the table name
(e.g. Roles_1, Roles_2, ...) while in ST, records are explicitly
annotated with the ttid of their data owner, using an extra meta
column in the table which is invisible to the client.

As these two approaches are semantically equivalent, the MT-
SQL semantics that we are about to define, apply to both. In the
case of the SS, applying a statement s with respect to D simply
means to apply s to the logical union of all private tables owned
by a tenant in D. In SS, s is applied to tables filtered according to
D. In order to keep the presentation simple, the rest of this paper
assumes an ST scheme, but sometimes defines semantics with
respect to SS if that makes the presentation easier to understand.

2.1 MTSQL API
MTSQL needs a way to incorporate the additional parameters C
and D. As C is the ttid of the tenant that issues a statement, we
assume it is implicitly given by the SQL connection string. ttids
are not only used for identification and access control, but also
for data ownership. While this paper uses integers for simplicity
reasons, ttids can have any data type, in particular they can also
be database user names.

SET SCOPE = "IN (1,3,42)";

Listing 1: Simple SCOPE expression using IN

SET SCOPE = "FROM Employees WHERE E_salary > 180K";

Listing 2: Complex SCOPE expression with sub-query

D is defined using the MTSQL-specific SCOPE runtime para-
meter on the SQL connection. This parameter can be set in two
different ways: Either, as shown in Listing 1, as simple scope with
an IN list stating the set of ttids that should be queried, or as
in Listing 2, as a sub-query with a FROM and a WHERE clause
(complex scope). The semantics of the latter is that every tenant
that owns at least one record in one of the tables mentioned in
the FROM clause that satisfies the WHERE clause is part of D. The
SCOPE variable defaults to {C}, which means that by default
a client processes only her own data. Defining a simple scope
with an empty IN list, on the other hand, makes D include all the
tenants present in the database.

Making C and D part of the connection allowed for a clear
separation between the end users of MTSQL (for which ttids
do not make much sense and hence remain invisible) and adminis-
trators/programmers that manage connections (and are aware of
ttids).

2.2 Data Definition Language
DDL statements are issued by a special role called the data mod-
eller. In a multi-tenant application, this would be the SaaS provider
(e.g. a Salesforce administrator) or the provider of a specific ap-
plication. However, the data modeller can delegate this privilege
to any tenant she trusts using a GRANT statement, as will be de-
scribed in Section 2.3.

There are two types of tables in MTSQL: tables that contain
common knowledge shared by everybody (like the Regions
table in TPC-H [43]) and those that contain data of a specific
tenant (i.e. Employees and Roles in Figure 2). More formally,
we define the table generality of Regions as global and the one
of Employees as tenant-specific. In order to process queries
across tenants, MTSQL needs a way to distinguish whether an
attribute is comparable (can be directly compared against attribute
values of other tenants), convertible (can be compared against
attribute values of other tenants after applying a well-defined
conversion function) or tenant-specific (it does semantically not
make sense to compare against attribute values of other tenants).
An overview of these types of attribute comparability, together
with examples from Figure 2, is shown in Table 1.

type description examples

comparable can be directly compared to and
aggregated with other values E_age, R_name

convertible
other values need to be converted
to the format of the current tenant
before comparison or aggregation

E_salary

tenant-specific values of different tenants cannot
be compared with each other E_role_id, R.role_id

Table 1: Overview on attribute comparability in MTSQL

2.2.1 CREATE TABLE Statement. The MTSQL-specific
keywords for creating (or altering) tables are GLOBAL,
SPECIFIC, COMPARABLE and CONVERTIBLE. An example
of how they can be used is shown in Listing 3. Note that
SPECIFIC can be used for tables and attributes. Moreover, using
these keywords is optional as we define that tables are global by de-
fault, attributes of tenant-specific tables default to tenant-specific
and those of global tables to comparable.2

1 CREATE TABLE Employees SPECIFIC (
2 E_emp_id INTEGER NOT NULL SPECIFIC,
3 E_name VARCHAR(25) NOT NULL COMPARABLE,
4 E_role_id INTEGER NOT NULL SPECIFIC,
5 E_salary VARCHAR(17) NOT NULL CONVERTIBLE

@currencyToUniversal @currencyFromUniversal,
6 E_age INTEGER NOT NULL COMPARABLE,
7 CONSTRAINT pk_emp PRIMARY KEY (E_emp_id),
8 CONSTRAINT fk_emp FOREIGN KEY (E_role_id) REFERENCES Roles (

R_role_id)
9 );

Listing 3: Exemplary MTSQL CREATE TABLE statement,
MT-specific keywords marked in bold

2.2.2 Conversion Functions. Cross-tenant query process-
ing requires the ability to execute comparison predicates on com-
parable and convertible attribute. While comparable attributes
can be directly compared to each other, convertible attributes, as
their name indicates, have to be converted first, using conversion
functions. Each tenant has a pair of conversion functions for each
attribute to translate from and to a well-defined universal format.
More formally, a conversion function pair is defined as follows:

Definition 2.1. (toUniversal : X × T → X , f rom-
Universal : X ×T → X ) is a valid MTSQL conversion function
pair for attribute A, where T is the set of tenants in the database
and X is the domain of A, if and only if:

(i) There exists a universal format for attribute A:3

imaдe (toUniversal (·, t1)) = imaдe (toUniversal (·, t2))
= . . . = imaдe (toUniversal (·, t |T | ))

(ii) For every tenant t ∈ T , the partial functions toUniversal (·, t )
and f romUniversal (·, t ) are bijective functions.

2Global tables (shared among all tenants!) can only have comparable attributes
anyway.
3imaдe (f ) denotes the mathematical image, i.e. the range of function f .
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(iii) f romUniversal is the inverse of toUniversal : ∀t ∈ T ,
x ∈ X : f romUniversal (toUniversal (x , t ), t ) = x

These three properties imply the following two corollaries that
we are going to need later in this paper:

COROLLARY 1. toUniversal and f romUniversal are equality
preserving: ∀t ∈ T : toUniversal (x , t ) = toUniversal (y, t ) ⇔
x = y ⇔ f romUniversal (x , t ) = f romUniversal (y, t )

COROLLARY 2. Values from any tenant ti can be converted
into the representation of any other tenant tj by first applying
toUniversal (·, ti ), followed by f romUniversal (·, tj ) while
equality is preserved:
∀ti , tj ∈ T : x = y ⇔f romUniversal (toUniversal (x , ti ), tj )

=f romUniversal (toUniversal (y, ti ), tj )

The reason why we opted for a two-step conversion through
universal format is that it allows each tenant ti to define her share
of the conversion function pair, i.e. toUniversal (·, ti ) and f rom-
Universal (·, ti ), individually without the need of a central author-
ity. Moreover, this design greatly reduces the overall number of
partial conversion functions as we need at most 2 · |T | partial
function definitions, compared to |T |2 functions in the case where
we would define a direct conversion for every pair of tenants.

1 CREATE FUNCTION phoneToUniversal (VARCHAR(17), INTEGER) RETURNS
VARCHAR(17)

2 AS 'SELECT SUBSTRING($1, CHAR_LENGTH(PT_prefix)+1) FROM
Tenant, PhoneTransform WHERE T_tenant_key = $2 AND
T_phone_prefix_key = PT_phone_prefix_key;'

3 LANGUAGE SQL IMMUTABLE;

Listing 4: Converting a phone number to universal form
(without prefix), PostgreSQL syntax

1 CREATE FUNCTION phoneFromUniversal (VARCHAR(17), INTEGER)
RETURNS VARCHAR(17)

2 AS 'SELECT CONCAT(PT_prefix, $1) FROM Tenant, PhoneTransform
WHERE T_tenant_key = $2 AND T_phone_prefix_key =
PT_phone_prefix_key;'

3 LANGUAGE SQL IMMUTABLE;

Listing 5: Converting to a specific phone number format,
PostgreSQL syntax

Listings 4 and 5 show an example of such a conversion func-
tion pair. These functions are used to convert phone numbers with
different prefixes, like “+”, “00” or any other specific county exit
code4, and the universal format is a phone number without pre-
fix. In this example, converting phone numbers simply means to
lookup the tenant’s prefix and then either prepend or remove it, de-
pending whether we convert from or to the universal format. Note
that the exemplary code also contains the keyword IMMUTABLE
to state that for a specific input the function always returns the
same output, which is an important hint for the query optimizer.
While this keyword is PostgreSQL-specific, some other vendors,
but by far not all, offer a similar syntax.

It is important to mention that the equality-preserving property
as mentioned in Corollary 1 is a minimal requirement for conver-
sion functions to make sense in terms of producing coherent query
results among different clients. There are, however conversion
functions that exhibit additional properties, for example:

• order-preserving with respect to tenant t :
x < y ⇔ toUniversal (x , t ) < toUniversal (y, t )

4The country exit code is a sequence of digits that you have to dial in order to inform
the telco system that you want to call a number abroad. A full list of country exit
codes can be found on http://www.howtocallabroad.com/codes.html.

• homomorphic with respect to tenant t and function h:
toUniversal (h(x1,x2, ...), t ) =

h(toUniversal (x1, t ), toUniversal (x2, t ), ...)

We will call a conversion function pair fully-order-preserving
if toUniversal and f romUniversal are order-preserving with re-
spect to all tenants. Consequently, a conversion function pair can
also be fully-h-preserving.

Listings 6 and 7 show an exemplary conversion function pair
used to convert currencies (with USD as universal format). These
functions are not only equality-preserving, but also fully-SUM-
preserving: as the currency conversion is nothing but a multipli-
cation with a constant factor5 from CurrencyTransform, it
does not matter in which format we sum up individual values
(as long as they all have that same format). As we will see, such
special properties of conversion functions are another crucial in-
gredient for query optimization.

1 CREATE FUNCTION currencyToUniversal (DECIMAL(15,2), INTEGER)
RETURNS DECIMAL(15,2)

2 AS 'SELECT CT_to_universal*$1 FROM Tenant, CurrencyTransform
WHERE T_tenant_key = $2 AND T_currency_key =

CT_currency_key;'
3 LANGUAGE SQL IMMUTABLE;

Listing 6: Converting a currency to universal form (USD),
PostgreSQL syntax

1 CREATE FUNCTION currencyFromUniversal (DECIMAL(15,2), INTEGER)
RETURNS DECIMAL(15,2)

2 AS 'SELECT CT_from_universal*$1 FROM Tenant,
CurrencyTransform WHERE T_tenant_key = $2 AND
T_currency_key = CT_currency_key;'

3 LANGUAGE SQL IMMUTABLE;

Listing 7: Converting from USD to a specific currency,
PostgreSQL syntax

The conversion function examples shown in Listings 4 to 7
assume the existence of tables holding additional conversion infor-
mation (CurrencyTransmform and PhoneTransform) as
well as a table with references into these tables (named Tenants
table). The way how a tenant can define her portion of the con-
version functions is then simply to choose a specific currency and
phone format as part of an initial setup procedure. However, this
is only one possible implementation. MTSQL does not make any
assumptions or restrictions on the implementation of conversion
function pairs themselves, as long as they satisfy the properties
given in Definition 2.1.

MTSQL is not the first work that talks about conversion func-
tions. In fact, there is an entire line of work that deals with data
integration and in particular with schema mapping techniques
[11, 23, 25]. These works mention and take into account conver-
sion functions, like for example a multiplication or a division by a
constant. More complex conversion functions, including regular-
expression-based substitutions and other arithmetic operations,
can be found in Potter’s Wheel [41] where conversion is referred
to as value translation. All these different conversion functions
can potentially also be used in MTSQL which is, to the best of our
knowledge, the first work that formally defines and categorizes
conversion functions according to their properties.

2.2.3 Integrity Constraints. MTSQL allows for global in-
tegrity constraints that every tenant has to adhere to (with respect
to the entirety of her data) as well as tenant-specific integrity
constraints (that tenants can additionally impose on their own

5We are aware of the fact that currency conversion is not at all constant, but depends
on rapidly changing exchange rates. However, we want to keep the examples as
simple as possible in order to illustrate the underlying concepts. However, the general
ideas of this paper also apply to temporal databases.
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data). An example of a global referential integrity constraint is
shown in the end of Listing 3. This constraint means that for
every tenant, for each entry of E_role_id, a corresponding
entry R_role_id has to exist in Roles and must be owned
by that same tenant. Consider for example employee John with
R_role_id 0. The constraint implies that their must be a role 0
owned by tenant 0, which in that case is PhD student. If the con-
straint were only tenant-specific for tenant 1, John would not link
to roles and E_role_id 0 would just be an arbitrary numer-
ical value. In order to differentiate global from tenant-specific
constraints, the scope is used.6

2.2.4 Other DDL Statements. CREATE VIEW statements
look the same as in plain SQL. As for the other DDL statements,
anyone with the necessary privilege can define global views on
global and tenant-specific tables. Tenants are allowed to create
their own, tenant-specific views (using the default scope). The
selected data has to be presented in universal format if it is a
global view and in the tenant-specific format otherwise. DROP
VIEW, DROP TABLE and ALTER TABLE work the same way
as in plain SQL.

2.3 Data Control Language
Let us have a look at the MTSQL GRANT statement:

GRANT <privileges> ON <database|table> TO <ttid>;

Listing 8: MTSQL GRANT syntax

As in plain SQL, this grants some set of access privileges
(READ, INSERT, UPDATE and/or DELETE) to the tenant iden-
tified by ttid. In the context of MTSQL, however, this means
that the privileges are granted with respect to C. Consider the
following statement:

GRANT READ ON Employees TO 42;

Listing 9: Example of an MTSQL GRANT statement

In the private table layout, if C is 0, then this would
grant tenant 42 read access to Employees_0, but ifC is 1, tenant
42 would get read access to Employees_1 instead. If a grant
statement grants to ALL, then the grant semantics also depend
on D, more concretely if D = {7, 11, 15} the privileges would be
granted to tenants 7, 11 and 15.

By default, a new tenant that joins an MTSQL system is granted
the following privileges: READ access to global tables, READ,
INSERT, UPDATE, DELETE, GRANT and REVOKE on his own
instances of tenant-specific tables. In our example, this means that
a new tenant 111 can read and modify data in Employees_111
and Roles_111. Next, a tenant can start asking around to get
privileges on other tenants’ tables or also on global tables. The
REVOKE statement, as in plain SQL, simply revokes privileges
that were granted with GRANT.

2.4 Query Language
Just as in FlexScheme [11, 12], queries themselves are written
in plain SQL and have to be filtered according to D. Whereas in
FlexScheme D always equals {C} (a tenant can only query her
own data), MTSQL allows cross-tenant query processing, which
means that the data set can include other tenants than C and can
in particular contain more than one element. As mentioned in the

6Remembering that an empty IN list refers all tenants, this is exactly what is used to
indicate a global constraint. Additionally, all constraints created as part of a CREATE
TABLE statement are global as well.

introduction, this creates some new challenges that have to be
handled with special care.

2.4.1 Client Presentation. As soon as tenants can query
other tenants’ data, the MTSQL engine has to be make sure to
deliver results in the proper format. For instance, looking again at
Figure 2, if tenant 0 queries the average salary of all employees of
tenant 1, then this should be presented in USD because tenant 0
stores her own data in USD and expects other data to be in USD
as well. Consequently, if tenant 1 would ask that same query, the
result would be returned as is, namely in EUR.

2.4.2 Comparisons. Consider a join of Roles and
Employees on role_id. As long as the dataset size is only
one, such a join query has the same semantics as in plain SQL (or
FlexScheme). However, as soon as tenant 1, for instance, asks this
query with D = {0, 1}, the join has to take the ttids into account.
The reason for this is that role_id is a tenant-specific attribute
and should hence only be joined within the same tenant in order
to prevent semantically wrong results like John being an intern
(although tenant 0 does not have such a role) or Nancy being
a professor (despite the fact that tenant 1 only has roles intern,
researcher and executive).

Comparison or join predicates containing comparable and con-
vertible attributes, on the other hand, just have to make sure that
all data is brought into universal format before being compared.
For instance, if tenant 0 wants to get the list of all employees (of
both tenants) that earn more than 100K USD, all employee salaries
have to be converted to USD before executing the comparison.

Finally, MTSQL does not allow to compare tenant-specific
with other attributes. For instance, we see no way how it could
make sense to compare E_role_id to something like E_age or
E_salary.

2.5 Data Manipulation Language
MTSQL DML works the same way as in FlexScheme [11, 12]
if D = {C}. Otherwise, if D , {C}, the semantics of a DML
statement are defined such that it is applied to each tenant in
D separately. Constants, WHERE clauses and sub-queries are in-
terpreted with respect to C, exactly the same way as for queries
(c.f. Section 2.4). This implies that executing UPDATE or INSERT
statements might involve value conversion to the proper tenant
format(s).

3 MTBASE
Based on the concepts described in the previous section, we imple-
mented MTBase, an open-source MTSQL engine [1]. As shown
in Figure 3, the basic building block of MTBase is an MTSQL-to-
SQL translation middleware sitting between a traditional DBMS
and the client. In fact, as it communicates to the DBMS (and to
the client) by the means of pure SQL, MTBase works in conjunc-
tion with any off-the-shelve DBMS. For performance reasons,
the proxy maintains a cache of MT-specific meta data, which
is persisted in the DBMS along with the actual user data. Con-
version functions are implemented as UDFs that might involve
additional meta tables, both of which are also persisted in the
DBMS. MTBase implements the basic data layout, which means
that data ownership is implemented as an additional (meta) ttid
column in each tenant-specific table as illustrated in Figure 2).
There are some dedicated meta tables: Tenant stores each te-
nant’s privileges and conversion information and Schema stores
information about table and attribute comparability. Additional
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meta tables can (but do not have to) be used to implement conver-
sion function pairs, as for example CurrencyTransform and
PhoneTransform shown in Listings 4 to 7.

While the rewrite module was implemented in Haskell and
compiled with GHC [6], the connection handling and the meta
data cache maintenance was written in Python (and run with the
Python2 interpreter) [4]. Haskell is handy because we can make
full use of pattern matching and additive data types to imple-
ment the rewrite algorithm in a quick and easy-to-verify way, but
any other functional language, like e.g. Scala [5], would also do
the job. Likewise, there is nothing fundamental in using Python,
any other framework that has a good-enough abstraction of SQL
connections, e.g. JDBC [7], could be used.

Upon opening a connection at the middleware, the client’s ttid ,
C, is derived from the connection string and used throughout
the entire lifetime of that connection. Whenever a client sends
a MTSQL statement s, first if the current scope is complex, a
SQL query qs is derived from this scope and evaluated at the
DBMS in order to determine the relevant dataset D. After that, D
is compared against privileges ofC in the Tenant table and ttids
in D without the corresponding privilege are pruned, resulting in
D ′. Next, C, D ′ and s are input into the rewrite algorithm which
produces a rewritten SQL statement s ′ which is then sent to the
DBMS before relaying the result back to the client. Note that in
order to guarantee correctness in the presence of updates, qs and
s ′ have to be executed within the same transaction and with a
consistency level at least repeatable-read [13] (even if the client
does not impose any transactional guarantees). If s is a DDL
statement, the middleware also updates the MT-Specific meta
information in the DBMS and the cache.

The rest of this section explains the MTSQL-to-SQL rewrite
algorithm in its canonical form and proves its correctness with
respect to Section 2.4, while Section 4 shows how to optimize the
rewritten queries such that they can be run on the DBMS with
reasonable performance.

3.1 Canonical Query Rewrite Algorithm
Our proposed canonical MTSQL-to-SQL rewrite algorithm works
top-down, starting with the outer-most SQL query and recursively
rewriting sub-queries as they come along. For each sub-query,
the SQL clauses are rewritten one-by-one. The algorithm makes
sure that for each sub-query the following invariant holds: the
result of the sub-query is filtered according to D ′ and presented
in the format required by C. Note that this invariant also helps to
formally prove the correctness of the rewrite algorithm as we will
show in Section 3.2.

The pseudo code of the general rewrite algorithm for rewriting
a (sub-) query is shown in Algorithm 1. Note that FROM, GROUP
BY, ORDER BY and HAVING clause can be rewritten without any

additional context while SELECT and WHERE need the whole
query as an input because they might need to check the FROM
for additional information, for instance they must know to which
original tables certain attributes belong.

1: Input: C: ttid , D: set of ttids, Q: MTSQL query
2: Output: SQL query
3: function REWRITEQUERY(C,D,Q)
4: new-select ← rewriteSelect(C,D,Q)
5: new-f rom ← rewriteFrom(C,D,Q .from())
6: new-where ← rewriteWhere(C,D,Q)
7: new-дroup-by ← rewriteGroupBy(C,D,Q .groupBy())
8: new-order -by ← rewriteOrderBy(C,D,Q .orderBy())
9: new-havinд ← rewriteHaving(C,D,Q .having())

10: return new Query (new-select , new-f rom, new-where,
new-дroup-by, new-order -by, new-havinд)

Algorithm 1: Canonical Query Rewrite Algorithm

In the following, we will look at the rewrite functions for the
different SQL clauses. Because of space constraints, we only pro-
vide the high-level ideas and illustrate them with suitable minimal
examples. However, we strongly encourage the interested reader
to check-out the Haskell code [2] which in fact almost reads like
a mathematical definition of the rewrite algorithm.

SELECT The rewritten SELECT clause has to present every
attribute a in C’s format, which, if a is convertible, is achieved by
two calls to the conversion function pair of a as can be seen in the
examples of Listing 10 where --> simply denotes rewriting. If a
is part of compound expression (as in line 6), it has to be converted
before the functions (in that case AVG) are applied. Note that in
order to make a potential super-query work correctly, we also
rename the result of the conversion, either by the new name that it
got anyway (as in line 6) or by the name that it had before (as in
line 3). Rewriting a star expression (line 9) in the uppermost query
also needs special attention, in order not to provide the client with
confusing information, like ttids which should stay invisible.

1 -- Rewriting a simple select expression:
2 SELECT E_salary FROM Employees; -->
3 SELECT currencyFromUniversal(currencyToUniversal(E_salary, ttid)

, C) as salary FROM Employees;
4 -- Rewriting an aggregated select expression
5 SELECT AVG(E_salary) as avg_sal FROM Employees; -->
6 SELECT AVG(currencyFromUniversal(currencyToUniversal(E_salary,

ttid), C)) as avg_sal FROM Employees;
7 -- Rewriting star expression, hiding irrelevant info
8 SELECT * FROM Employees; -->
9 SELECT E_name, E_salary, E_age FROM Employees;

Listing 10: Examples for Rewriting SELECT clause

WHERE There are essentially three steps that the algorithm has
to perform in order to create a correctly rewritten WHERE clause
(as shown in Listing 11). First, conversion functions have to be
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added to each convertible attribute in each predicate in order make
sure that comparisons are executed in the correct (client) format
(lines 2 to 6). This happens the same way as for a SELECT clause.
Notably, all constants are always in C’s format because it is C
who asks the query. Second, for every predicate involving two or
more tenant-specific attributes, additional predicates on
ttid have to be added (line 9), unless if the attributes are part of
the same table, which means they are owned by the same tenant
anyway. Predicates that contain tenant-specific together
with other attributes cause the entire query to be rejected as was
required in Section 2.4.2. Last, but not least, for every base table in
the FROM clause, a so-called D-filter has to be added to the WHERE
clause (line 12). This filter makes sure that only the relevant data
(data that is owned by a tenant in D ′) gets processed.

1 -- Comparison with a constant:
2 .. FROM Employees WHERE E_salary > 50K -->
3 .. WHERE currencyFromUniversal(currencyToUniversal(E_salary,ttid

),C) > 50K) ..
4 -- General comparison:
5 .. FROM Employees E1, Employees E2 WHERE E1.E_salary > E2.

E_salary -->
6 .. WHERE currencyFromUniversal(currencyToUniversal(E1.E_salary,

E1.ttid),C) > currencyFromUniversal(currencyToUniversal(E1.
E_salary,E1.ttid),C) ..

7 -- Extend with predicate on ttid
8 .. FROM Employees, Roles WHERE E_role_id = R_role_id -->
9 .. FROM Employees, Roles WHERE E_role_id = R_role_id AND

Employees.ttid = Roles.ttid ..
10 -- Adding D-filters for D' = {3,7}
11 .. FROM Employees E, Roles R .. -->
12 .. WHERE E.ttid IN (3,7) AND R.ttid IN (3,7) ..

Listing 11: Examples for Rewriting WHERE clause

FROM All tables referred by the FROM clause are either base
tables or temporary tables derived from a sub-query. Rewriting the
FROM clause simply means to call the rewrite algorithm on each
referenced sub-query as shown in Algorithm 2. A FROM table
might also contain a JOIN of two tables (sub-queries). In that
case, the two sub-queries are rewritten and then the join predicate
is rewritten in the exact same way like any WHERE.

Notably, this algorithm preserves the desired invariant for
(sub-) queries: the result of each sub-query is in client format and
filtered according to D ′, and, due to the rewrite of the SELECT
and the WHERE clause of the current query, base tables, as well as
joins, are also presented in client format and filtered by D. We con-
clude that the result of the current query therefore also preserves
the invariant.

1: Input: C: ttid , D: set of ttids,
2: FromClause: MTSQL FROM clause
3: Output: SQL FROM clause
4: function REWRITEFROM(C,D, FromClause)
5: res ← extractBaseTables (FromClause )
6: for all q ∈ extractSubQueries (FromClause ) do
7: res ← res ∪ { rewriteQuery (C,D,q)}

8: for all (q1,q2, cond ) ∈ extractJoins (FromClause ) do
9: q′1 ← rewriteQuery (C,D,q1)

10: q′2 ← rewriteQuery (C,D,q2)
11: cond ′ ← rewriteWhere (C,D, cond )
12: res ← res ∪ { createJoin (q′1,q

′
2, cond

′))}
return res

Algorithm 2: Rewrite Algorithm for FROM clause

GROUP-BY, ORDER-BY and HAVING HAVING and
GROUP-BY clauses are basically rewritten the same way like the
expressions in the SELECT clause. Some DBMSs might throw a

warning stating that grouping by a comparable attribute a is am-
biguous because the way we rewrite a in the WHERE clause and
rename it back to a, we could actually group by the original or by
the converted attribute a. However, the SQL standard clearly says
that in such a case, the result should be grouped by the outer-more
expression, which is exactly what we need. ORDER-BY clauses
need not be rewritten at all.

SET SCOPE Simple scopes do not have to be rewritten at all.
The FROM and WHERE clause of a complex scope are rewritten
the same way as in a sub-query. In order to make it a valid SQL
query, the rewrite algorithm adds a SELECT clause that projects
on the respective ttids as shown in Listing 12.

1 SET SCOPE = "FROM Employees WHERE E_salary > 180K"; -->
2 SELECT ttid FROM Employees WHERE currencyFromUniversal(

currencyToUniversal(E_salary,ttid),C) > 180K;

Listing 12: Rewriting a complex SCOPE expression

3.2 Algorithm Correctness
PROOF. We prove the correctness of the canonical rewrite algo-

rithm with respect to Section 2.4 by induction over the composable
structure of SQL queries and by showing that the desired invariant
(the result of each sub-query is filtered according to D ′ and pre-
sented in the format required byC) holds: First, as a base, we state
that adding the D-filters in the WHERE clause and transforming
the SELECT clause to client format for every base table in each
lowest-level sub-query ensures that the invariant holds. Next, as
an induction step, we state that the way how we rewrite the FROM
clause, as it was described earlier, preserves that property. The
top-most SQL query is nothing but a composition of sub-queries
(and base tables) for which the invariant holds. This means that
the invariant holds for the entire query, which is hence guaranteed
to deliver the correct result. �

3.3 Rewriting DDL and DML Statements
Rewriting DDL and DML statements is very similar to rewriting
queries, in fact, predicates are rewritten in exactly the same way.
The remaining questions are how to rewrite tenant-specific refe-
rential integrity constraints (using check constraints) and how to
apply DML statements to a dataset D , {C} (by executing the
proper value transformations separately for each client). While
the semantics and the intuition how to implement them should be
clear, we refer again to the extended version of this paper [15] for
further examples and explanations.

4 OPTIMIZATIONS
As we have seen, there is a canonical rewrite algorithm that cor-
rectly rewrites MTSQL to SQL. However, we will show in Sec-
tion 5 that the rewritten queries often execute very slowly on the
underlying DBMS. The main reason for this is that the pure rewrit-
ten queries call two conversion functions on every transformable
attribute of every record that is processed, which is extremely
expensive. Luckily, the execution costs can be reduced dramati-
cally when applying the optimization passes that we describe in
this section. As we assume the underlying DBMS to optimize
query execution anyway, we focus on optimizations that a DBMS
query optimizer cannot do (because it needs MT-specific context)
or does not do (because an optimization is not frequent enough
outside the context of MTBase). We differentiate between seman-
tic optimizations, which are always applied because they never
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make a query slower and cost-based optimizations which are only
applied if the predicted costs are smaller than in the original query.

1 -- dropping D-filter if D is the empty scope:
2 SELECT E_age FROM Employees WHERE E_ttid IN (1,2); -->
3 SELECT E_age FROM Employees;
4 -- dropping ttid from join predicate if |D| = 1:
5 SELECT E_age, R_name FROM Employees, Roles WHERE E_role_id =

R_role_id AND E_ttid = R_ttid AND E_ttid IN (2) AND R_ttid
IN (2); -->

6 SELECT E_age, R_name FROM Employees, Roles WHERE E_role_id =
R_role_id AND E_ttid IN (2) AND R_ttid IN (2);

7 -- dropping conversion functions if D = {C}:
8 SELECT currencyFromUniversal(currencyToUniversal(E_salary,

E_ttid),0) AS E_salary FROM Employees; -->
9 SELECT E_salary FROM Employees;

Listing 13: Examples for trivial semantic optimizations

4.1 Trivial Semantic Optimizations
There are a couple of special cases for C and D that allow to save
conversion function calls, join predicates and/or D-filters. First, if
D includes all tenants, that means that we want to query all data
and hence D-filters are no longer required as shown in line 3 of
Listing13. Second, as shown in line 6, if |D | = 1, we know that all
data is from the same tenant, which means that including ttid in
the join predicate is no longer necessary. Last, if we know that a
client queries her own data, i.e. D = {C} corresponds to the default
scope, we know that even convertible attributes are already in the
correct format and can hence remove the conversion function calls
(line 9).

4.2 Other Semantic Optimizations
There are a couple of other semantic optimizations that can be
applied to rewritten queries. While client presentation push-up
and conversion push-up minimize the number of conversions by
delaying conversion to the latest possible moment, aggregation
distribution takes into account specific properties of conversion
functions (as mentioned in Section 2.2.2). If conversion functions
are UDFs written in SQL it is also possible to inline them. This
typically gives queries an additional speed up.

1 -- before optimization
2 SELECT Dom.name1, Dom.sal1 as sal, COUNT(*) as cnt FROM (
3 SELECT E1.name as name1, currencyFromUniversal(

currencyToUniversal(E1.E_salary, E1.E_ttid), C) as sal1
4 FROM Employees E1, Employees E2
5 WHERE currencyFromUniversal(currencyToUniversal(E1.E_salary,

E1.E_ttid), C) >
6 currencyFromUniversal(currencyToUniversal(E2.E_salary, E2.

E_ttid), C)
7 ) as Dom GROUP BY Dom.name1, sal, cnt ORDER BY cnt;
8 -- after optmimization
9 SELECT Dom.name1, currencyFromUniversal(Dom.sal1, C) as sal,

COUNT(*) as cnt FROM (
10 SELECT E1.name as name1, currencyToUniversal(E1.E_salary, E1.

E_ttid) as sal1
11 FROM Employees E1, Employees E2
12 WHERE currencyToUniversal(E1.E_salary, E1.E_ttid) >

currencyToUniversal(E2.E_salary, E2.E_ttid)
13 ) as Dom GROUP BY Dom.name1, sal, cnt ORDER BY cnt;

Listing 14: Example for client presentation push-up

4.2.1 Client Presentation and Conversion Push-Up. As
conversion function pairs are equality-preserving, it is possible
in some cases to defer conversions to later, for example to the
outermost query in the case of nested queries. While client presen-
tation push-up converts everything to universal format and defers
conversion to client format to the outermost SELECT clause, con-
version push-up pushes this idea even more by also delaying the
conversion to universal format as much as possible. Both optimiza-
tions are beneficial if the delaying of conversions allows the query
execution engine to evaluate other (less expensive) predicates first.
This means that, once the data has to be converted, it is already

more filtered and therefore the overall number of (expensive) con-
version function calls becomes smaller (or, in the worst case, stays
the same). Naturally, if we delay conversion, this also means that
we have to propagate the necessary ttids to the outer-more queries
and keep track of the current data format.

Listing 14 shows a query that ranks employees according to the
fact how many salaries of other employees their own salary domi-
nates. With client presentation push-up, salaries are compared in
universal instead of client format, which is correct because of the
equality-preserving property (c.f. Corollary 1) and saves half of
the function calls in the sub-query.

Conversion push-up, as shown in Listing 15, reduces the num-
ber of function calls dramatically: First, as it only converts salaries
in the end, salaries of employees aged less than 45 do not have
to be considered at all. Second, the WHERE clause converts the
constant (100K) instead of the attribute (E_salary). As the
outcome of conversion functions is immutable (c.f. Section 2.2.2)
and C is also constant, the conversion functions have to be called
only once per tenant and are then cached by the DBMS for the
rest of the query execution, which becomes much faster as we will
see in Section 5.

1 -- before optimization
2 SELECT AVG(X.sal) FROM (
3 SELECT currencyFromUniversal(currencyToUniversal(E_salary,

E_ttid), C) as sal
4 FROM Employees WHERE E_age >= 45 AND
5 currencyFromUniversal(currencyToUniversal(E_salary, E_ttid), C

) > 100K) as X;
6 -- after optimization
7 SELECT AVG(currencyFromUniversal(currencyToUniversal(X.sal, X.

sal_ttid),C)) FROM (
8 SELECT E_salary as sal, E_ttid as sal_ttid
9 FROM Employees WHERE E_age >= 45 AND

10 E_salary > currencyFromUniversal(currencyToUniversal(100K,
E_ttid), C) as X);

Listing 15: Example for conversion push-up

4.2.2 Aggregation Distribution. Many analytical queries
contain aggregation functions, some of which aggregate on con-
vertible attributes. The idea of aggregation distribution is to aggre-
gate in two steps: First, aggregate per tenant in that specific tenant
format (requires no conversion) and second, convert intermediary
results to universal (one conversion per tenant), aggregate those
and convert the final result to client format (one additional conver-
sion). This simple idea reduces the number of conversion function
calls for N records and T different data owners of these records
from (2N ) to (T + 1). This is significant because T is typically
much smaller than N (and cannot be greater).

Compared to pure conversion push-up, which works for any
conversion function pair, the applicability of aggregation distri-
bution depends on further algebraic properties of these functions.
Gray et al. [24] categorize numerical aggregation functions into
three categories with regard to their ability to distribute: distribu-
tive functions, like COUNT, SUM, MIN and MAX distribute with
functions F (for partial) and G (for total aggregation). For COUNT
for instance, F is COUNT and G is SUM as the total count is the
sum of all partial counts. There are also algebraic aggregation
functions, e.g. AVG, where the partial results are not scalar values,
but tuples. In the case of AVG, this would be the pairs of a partial
sums and partial counts because the total average can be computed
from the sum of all sums, divided by the sum of all counts. Finally,
holistic aggregation functions cannot be distributed at all.

We would like to extend the notion of Gray et al. [24] and
define the distributability of an aggregation function a with respect
to a conversion function pair ( f rom, to). Table 2 shows some
examples for different aggregation and conversion functions. First
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to (x ) = c · x to (x ) = a · x + b to = order-
preserving

to = equality-
preserving

COUNT 3 3 3 3

MIN 3 3 3 5

MAX 3 3 3 5

SUM 3 3 5 5

AVG 3 3 5 5

Holistic 5 5 5 5

Table 2: Distributability of different aggregation functions
over different categories of conversion functions

of all, we want to state that, as all conversion functions have
scalar values as input and output, they are always fully-COUNT-
preserving, which means that COUNT can be distributed over all
sorts of conversion functions. Next, we observe that all order-
preserving functions preserve the minimum and the maximum
of a given set of numbers, which is why MIN and MAX distribute
over the first three categories of conversion functions displayed
in Table 2. We further notice that if to (and consequently also
f rom) is a multiplication with a constant (first column of Table 2),
to is fully- MIN-, fully-MAX- and fully-SUM-preserving, which is
why these aggregation functions distribute. As SUM and COUNT
distribute, AVG, an algebraic function, distributes as well.

Finally looking at the second column of Table 2, we see that
even linear functions are SUM- and AVG-preserving. To see why,
we can think about computing the average over all tenants as a
weighted average of partial (per-tenant) averages for AVG and mul-
tiply these partial averages with the partial counts to reconstruct
the total sum [15, Appendix B].

1 -- before optimization
2 SELECT SUM(currencyFromUniversal(currencyToUniversal(E_salary,

E_ttid), C)) as sum_sal FROM Employees
3 -- after optimization
4 SELECT currencyFromUniversal(SUM(t.E_partial_salary), C) as

sum_sal FROM (SELECT currencyToUniversal(SUM(E_salary),
E_ttid) as E_partial_salary FROM Employees GROUP BY E_ttid)
as t;

Listing 16: Example for conversion function distribution
We conclude this subsection by observing that the conversion

function pair for phone format (c.f. Listings 4 and 5) is not even
order-preserving and does therefore not distribute while the pair
for currency format (c.f. Listings 6 and 7) distributes over all
standard SQL aggregation functions. An example of how this can
be used is shown in Listing 16.

1 -- before optimization
2 SELECT currencyFromUniversal(currencyToUniversal(E_salary,

E_ttid), C)) as E_salary FROM Employees
3 -- after optimization
4 SELECT (C1.CT_from_universal * C2.CT_to_universal * E_salary) as

E_salary
5 FROM Employees, Tenant T1, Tenant T2, CurrencyTransform1,

CurrencyTransform2
6 WHERE T1.T_tenant_key = C AND T1.T_currency_key =

CurrencyTransform1.CT_currency_key AND
7 T2.T_tenant_key = E_ttid AND T2.T_currency_key =

CurrencyTransform2.CT_currency_key

Listing 17: Example for function inlining

4.2.3 Function Inlining. As explained in Section 2.2.2, there
are several ways how to define conversion functions. However, if
they are defined as a SQL statement (potentially including lookups
into meta tables), they can be directly inlined into the rewritten
query in order to save calls to UDFs. Function inlining typical-
ly also enables the query optimizer of the underlying DBMS to
optimize much more aggressively. In WHERE clauses, conversion
functions could simply be inlined as sub-queries, which, however
often results in sub-optimal performance as calling a sub-query on
each conversion is not much cheaper than calling the correspond-
ing UDF. For SELECT clauses, the SQL standard does anyway
not allow to inline as a sub-query as this can result in attributes

not being contained neither in an aggregate function nor in the
GROUP BY clause, which is why most commercial DBMS reject
such queries (while PostgreSQL, for instance executes them any-
way). This is why the proper way to inline functions is by using
a join as shown in Listing 17. Our results in Section 5 suggest
that function inlining, though producing complex-looking SQL
queries, results in very good query execution performance.

It is important to mention that function inlining should only
happen after the other semantic optimization passes because these
other passes are able to reduce the number of required UDF calls,
while function inlining can only make a UDF call faster. Further-
more, it is important to understand that, while some clever query
optimizers do indeed inline UDF calls already, none of the query
optimizers that we looked at seems to perform client presentation
and conversion push-up, let alone aggregation distribution, de-
spite the fact that the foundation for these transformations [24, 28]
have been established already more than 20 years ago.

5 EXPERIMENTS AND RESULTS
This section presents the evaluation of MTBase using an extension
from the well-known TPC-H benchmark [43], called MT-H [15].
We first evaluated the benefits of different optimization steps from
Section 4 and found that the combination of all of these steps
brings the biggest benefit. Second, we analyzed how MTBase
scales with an increasing number of tenants. With all optimizations
applied and for a dataset of 100 GB on a single machine, MTBase
scales up to thousands of tenants with very little overhead. We
also validated result correctness as explained in Section 5.1 and
can report only positive results.

5.1 MT-H Benchmark
MT-H uses the same database schema as TPC-H, but considers the
Customer, Order, and Lineitem tables tenant-specific and
the remaining tables global. Attributes C_acctbal,
O_totalprice, and L_extendedprice are considered con-
vertible with respect to the conversion functions of Listings 6
and 7 and C_phone with respect to Listings 4 and 5. While
C_custkey, O_orderkey, O_custkey,L_orderkey are
tenant-specific, all remaining attributes are comparable. A de-
tailed description on this benchmark, including the validation of
query results, can be found in our technical report [15].

5.2 Setup
In our experiments, we used the following two setups: The first set-
up is a PostgreSQL 9.6 Beta installation, running on Debian Linux
4.1.12 on a 4x16 Core AMD Opteron 6174 processor with 256
GB of main memory. The second installation runs a commercial
database (which we will call System C) on a commercial operating
system and on the same processor with 512 GB of main memory.
Although both machines have enough secondary storage capacity
available, we decided to configure both database management
systems to use in-memory backed files in order to achieve the best
performance possible. Moreover, we configured the systems to
use all available threads, which enabled intra-query parallelism.

5.3 Workload and Methodology
As the MT-H benchmark has a lot of parameters and in order to
make things more concrete, we worked with the following two
scenarios: Scenario 1 handles the data of a business alliance of
a couple of small to mid-sized enterprises, which means there
are 10 tenants with s f = 1 and each of them owns more or less
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Level Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

tpch-0.1G 2.6 0.11 0.27 0.35 0.15 0.29 0.18 0.14 0.59 0.36 0.081 0.37 0.26 0.27 0.77 0.12 0.081 0.89 0.12 0.13 0.57 0.081
canonical 84 1.0 0.55 0.65 0.32 1.0 0.29 0.36 4.9 0.91 0.37 0.55 0.63 0.98 3.1 1.2 0.49 1.7 0.3 2.8 0.66 2.0
o1 2.7 1.0 0.43 0.61 0.22 0.43 0.23 0.56 3.8 0.76 0.37 0.55 0.92 0.56 0.91 1.2 0.48 1.6 0.3 2.8 0.66 0.085
o2 2.7 1.0 0.42 0.61 0.22 0.43 0.22 0.57 3.9 0.76 0.38 0.55 0.89 0.56 0.96 1.2 0.5 1.7 0.3 2.8 0.67 0.085
o3 2.7 1.0 0.43 0.61 0.22 0.43 0.23 0.56 3.9 0.76 0.37 0.55 0.92 0.56 0.91 1.2 0.48 1.6 0.3 2.8 0.66 0.085
o4 2.7 1.0 0.43 0.62 0.22 0.43 0.23 0.61 4.1 0.78 0.39 0.56 0.9 0.57 1.0 1.2 0.51 1.7 0.31 3.1 0.67 0.085
inl-only 2.7 1.0 0.42 0.65 0.22 0.43 0.22 0.57 3.8 0.76 0.37 0.55 0.92 0.56 0.92 1.2 0.48 1.6 0.3 2.8 0.66 0.085

Table 3: Response times [sec] of 22 TPC-H queries for MTBase-on-PostgreSQL with, s f = 1, T = 10, ρ = uniform, C = 1,
D = {1}, for different levels of optimizations, versus TPC-H with s f = 0.1

Level Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

tpch-0.1G 2.6 0.11 0.27 0.35 0.15 0.29 0.18 0.14 0.59 0.36 0.081 0.37 0.26 0.27 0.77 0.12 0.081 0.89 0.12 0.13 0.57 0.081
canonical 87 1.0 0.5 0.6 0.28 1.0 0.26 0.37 4.9 0.89 0.37 0.56 0.65 1.0 3.2 1.2 0.49 1.6 0.31 2.8 0.66 2.0
o1 87 1.0 0.5 0.69 0.33 1.0 0.27 0.38 5.2 0.9 0.39 0.56 0.92 1.0 3.1 1.2 0.51 1.6 0.32 3.1 0.68 2.0
o2 87 1.0 0.5 0.61 0.28 1.0 0.27 0.38 5.2 0.9 0.39 0.57 0.91 1.0 3.1 1.2 0.51 1.6 0.32 3.1 0.67 1.3
o3 32 1.0 0.45 0.63 0.28 0.44 0.24 0.37 4.3 0.83 0.38 0.56 0.91 1.1 1.9 1.3 0.51 1.6 0.32 3.1 0.67 1.3
o4 14 1.0 0.48 0.62 0.22 0.44 0.23 0.57 3.9 0.93 0.38 0.56 0.89 0.73 1.3 1.2 0.49 1.6 0.3 2.8 0.66 0.27
inl-only 45 1.0 0.47 0.61 0.27 0.64 0.24 0.58 4.2 0.94 0.37 0.55 0.91 0.73 2.2 1.2 0.48 1.7 0.3 2.8 0.66 0.27

Table 4: Response times [sec] of 22 TPC-H queries for MTBase-on-PostgreSQL with, s f = 1, T = 10, ρ = uniform, C = 1,
D = {2}, for different levels of optimizations, versus TPC-H with s f = 0.1

Level Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

tpch-1G 26 1.2 4.5 1.4 1.5 2.9 3.7 1.3 9.5 2.2 0.38 3.9 8.4 2.7 5.9 1.2 0.54 10 0.3 2.4 4.8 0.47
canonical 870 1.1 6.5 1.5 3.4 8.7 3.7 1.7 19 11 0.36 4.1 4.9 7.3 28 1.2 0.57 12 0.32 2.6 5.8 20
o1 860 1.1 6.5 1.5 3.4 8.7 3.7 1.7 19 11 0.36 4.1 4.9 7.3 28 1.2 0.62 12 0.33 2.7 5.9 20
o2 870 1.1 6.5 1.5 3.4 8.6 3.7 1.7 19 11 0.35 4.1 4.9 7.2 28 1.2 0.57 12 0.32 2.6 5.8 13
o3 310 1.1 5.5 1.5 3.1 3.1 3.4 1.6 11 10 0.36 4.1 4.9 7.3 12 1.2 0.55 12 0.32 2.6 5.9 13
o4 130 1.1 3.7 1.5 1.7 3.1 3.4 1.4 11 4.6 0.38 4.1 4.9 4.4 9.1 1.2 0.59 12 0.32 2.6 5.7 2.2
inl-only 450 1.1 4 1.6 1.8 5.1 3.5 1.4 14 4.9 0.39 4.1 4.8 4.4 19 1.2 0.55 12 0.32 2.6 5.8 2.3

Table 5: Response times [sec] of 22 TPC-H queries for MTBase-on-PostgreSQL with s f = 1, T = 10, ρ = uniform, C = 1,
D = {1, 2, ...10}, for different levels of optimizations, versus TPC-H with s f = 1

the same amount of data (ρ =uniform). Scenario 2 simulates the
HDC use case [27] and hence needs to be is a huge database
(s f = 100) of medical records coming from thousands of tenants,
like hospitals and private practices. Some of these institutions
have vast amounts of data while others only handle a couple of
patients (ρ=zipf). A research institution wants to query the entire
database (D={1,2,...,T}) in order to gather new insights for the
development of a new treatment. We looked at this scenario for
different numbers of T .

In order to evaluate the overhead of cross-tenant query process-
ing in MTBase compared to single-tenant query processing, we
also measured the standard TPC-H queries with different scaling
factors. When D was set to all tenants, we compared to TPC-H
with the same scaling factor as MT-H. For the cases where D had
only one tenant (out of ten), we compared with TPC-H with a
scaling factor ten times smaller.

Every query run was repeated three times in order to ensure
stable results. We noticed that three runs are needed for the re-
sponse times to converge (within 2%). Thus we always report the
last measured response time for each query with two significant
digits.

All experiments were executed with both setups (PostgreSQL
and System C). Whereas the major findings were the same on
both systems, PostgreSQL optimizes conversion functions (UDFs)
much better by caching their results. System C, on the other hand
does not allow UDFs to be defined as deterministic and hence
cannot cache conversion results. This eliminates the effect of con-
version push-up when applied to comparison predicates where we
convert the constant instead of the attribute (c.f. Listing 15). This
being said, the rest of this section only reports results on Post-
greSQL while we encourage the interested reader to also consult
our additional results [15] to confirm that the main conclusions
drawn from the PostgreSQL experiments generalize.

opt level optimization passes
canonical none
o1 trivial optimizations

o2
o1 + client presentation push-up
+ conversion push-up

o3 o2 + conversion function distribution
o4 o3 + conversion function inlining
inl-only o1 + conversion function inlining

Table 6: Different optimization levels for evaluation

5.4 Benefit of Optimizations
In order to test the benefit of the different combinations of opti-
mizations applied, we tested Scenario 1 with different optimiza-
tion levels as shown in Table 6. From o1 to o4 we added optimiza-
tions incrementally, while the last optimization level (inl-only)
only applied trivial optimizations and function inlining in order to
test whether the other optimizations are useful at all.

Table 3 shows the MT-H queries for different optimization lev-
els and Scenario 1 (s f = 1,T = 10) where client 1 queries her own
data. As we can see, in that case, applying trivial optimizations
in o1 is enough because these already eliminate all conversion
functions and joins and only the D-filters remain. Executing these
filters seems to be very inexpensive because most response times
of the optimized queries are close to the baseline, TPC-H with
s f = 0.1. Queries 2, 11 and 16 however, take roughly ten times
longer than the baseline. This is not surprising when taken into
account that these queries only operate on shared tables which
have ten times more data than in TPC-H. The same effect can be
observed in Q09 where a significant part of the joined tables are
shared.

Table 4 shows similar results, but for D = 2, which means
that now conversion functions can no longer be optimized away.
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(b) MT-H Query 6
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Figure 4: Response times (relative to TPC-H) of o4 and inlining-only optimization levels for selected MT-H queries, s f = 100,
T scaling from 1 to 100,000 on a log-scale, MTBase-on-PostgreSQL

While most of the queries show a similar behaviour than in the
previous experiment, for the ones that involve a lot of conversion
functions (i.e. queries 1, 6 and 22), we see how the performance
becomes better with each optimization pass added. We also notice
that while function inlining is very beneficial in general, it is even
more so when combined with the other optimizations.

Finally, Table 5 shows the results where we query all data, i.e.
D = {1, 2, ..., 10}. This experiment involves even more conversion
functions from all the different tenant formats into universal. In
particular, when looking again at queries 1, 6 and 22, we observe
the great benefit of conversion function distribution (added with
optimization level o3), which, in turn, only works as great in
conjunction with client and conversion function push-up because
aggregation typically happens in the outermost query while con-
version happens in the sub-queries. Overall, o4, which contains
all optimization passes that MTBase offers, is the clear winner.

5.5 Cross-Tenant Query Processing at Large
In our final experiment, we evaluated the cost of cross-tenant
query processing up to thousands of tenants. More concretely, we
measured the response time of conversion-intensive MT-H queries
(queries 1, 6 and 22) for a varying number of tenants between 1
and 100,000, for a large dataset where s f = 100 and for the best
optimization level (o4) as well as for inlining-only. The obtained
results were then compared to plain TPC-H with s f = 100, as
shown in Figure 4. First of all, we notice that the cost overhead
compared to single-tenant query-processing (TPC-H) stays below
a factor of 2 and in general increases very moderately with the
number of tenants. An interesting artifact can be observed for
query 22 where MT-H for one tenant executes faster than plain
TPC-H. The reason for this is a sub-optimal optimization decision
in PostgreSQL: one of the most expensive parts of query 22,
namely to find customers with a specific country code, is executed
with a parallel scan in MT-H while no parallelism is used in the
case of TPC-H.

6 RELATED WORK
MTBase builds heavily on and extends a lot of related work. This
section gives a brief summary of the most prominent lines of work
that influenced our design.

Data Integration Data integration (DI) is generally about find-
ing schema and data mappings between the original schemas of
different data sources and a target schema specified by the client
application [23, 25, 41]. As such, DI techniques are applicable
to the entire spectrum of multi-tenant databases because even if
tenants use different schemas or databases, these techniques can
identify correlations and hence extract useful information. Our
work embraces and builds on top of the latest DI work, solving

the DI problem very efficiently for a specific case (SS and ST).
More concretely, we automatically determine join predicates from
schema meta data and optimize conversion functions similar to
those used in DI by thoroughly analyzing and exploiting their
algebraic properties. In addition, instead of translating data into a
specific client format (and update periodically), we convert it to
any required client format efficiently and just-in-time.

Database Federation: DI is often combined with database federa-
tion [26, 31], which means that there exist small program modules
(called integrators, mediators or simply wrappers) to map data
from different sources (possibly not all of them SQL databases)
into one common format. While data federation generalizes well
across the entire spectrum of multi-tenant databases, maintaining
such wrapper architectures is expensive, both in terms of code
maintenance and update processing. Conversely, MTSQL enables
cross-tenant query processing in a more efficient and flexible way
in the context of SS and ST databases.

Data Warehousing: Another approach how data integration can
happen is during extract-transform-load (ETL) operations from
different (OLTP) databases into a data warehouse [29]. Data
warehouses have the well-known drawbacks that there are costly
to maintain and that the data is possibly outdated [10, 14, 37].
Meanwhile, MTBase was specifically designed to work well in
the context of integrated OLTP/OLAP systems, also known as
hybrid transaction-analytical processing (HTAP) systems, and
could therefore be advocated as in-situ or just-in-time data inte-
gration. Another interesting approach to just-in-time, respectively
on-demand data integration, are lenses [45] which allow to speed
up ETL processes by lowering the result accuracy to the specific
level required by the application.

Shared-resources (SR) systems: In related work, this approach
is also often called database virtualization or database as a ser-
vice (DaaS) when it is used in the cloud context. Important lines of
work in this domain include (but are not limited to) SqlVM/Azure
SQL DB [20, 36], RelationalCloud [35], SAP-HANA [42], Snowflake
[18] and Oracle’s multitenant container database (CDB) [40],
most of which is well summarized in [22]. MTBase complements
these systems by providing a platform that can accommodate
more, but typically smaller tenants.

Shared-databases (SD) systems: This approach, while appear-
ing in the spectrum of multi-tenant databases by Chong et al. [17],
is rare in practice. Sql Azure DB [20] seems to be the only product
that has an implementation of this approach. However, even Mi-
crosoft strongly advises against using SD and instead recommends
to either use SR or ST [34].
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Shared-tables (ST) systems: Work in that area includes Sales-
force [44], Apache Phoenix [9], FlexScheme [11, 12] and Azure
SQL Database [34]. Their common idea, as in MTSQL, is to use
an invisible tenant identifier to identify which records belong to
which tenant and rewrite SQL queries in order to include filters
on this ttid. MTSQL extends these systems by providing the
necessary features for cross-tenant query processing.

Privacy/Confidentiality: Clearly, cross-tenant query processing
almost immediately raises the question of data confidentiality. In
the case of the HDC, for instance, patients might consent to their
data being used in aggregated analytics, but they most certainly
would not want sensitive, personal information, like their social
security number, to appear in any report. While it is out of the
scope of this paper to thoroughly discuss data confidentiality in a
multi-tenant system, this work establishes proper syntax and se-
mantics for cross-tenant query processing, which lays the ground
for building appropriate encryption mechanisms [16, 21] atop as
is sketched in our technical report [15].

UDFs and Complex Expressions: Oracle MLE [39] is a system
that allows for highly-optimized execution of user-defined func-
tions, which makes it a promising candidate to further investigate
optimization of conversion functions. For instance, we would like
to look at optimizing complex expressions, containing several
nested user-defined function calls, as a whole.

7 CONCLUSION
This paper presented MTSQL, a new language to address cross-
tenant query processing in multi-tenant databases. MTSQL ex-
tends SQL with multi-tenancy-aware syntax and semantics, which
allows to efficiently optimize and execute cross-tenant queries
in MTBase. MTBase is an open-source system that implements
MTSQL. At its core, it is an MTSQL-to-SQL rewrite middleware
sitting between a client and any multi-tenant DBMS of choice. The
performance evaluation with a benchmark adapted from TPC-H
showed that MTBase (on top of PostgeSQL) can scale to thousands
of tenants at very low overhead and that our proposed optimiza-
tions to cross-tenant queries are highly effective.

In the future, we plan to further analyze the interplay between
the MTBase query optimizer and its counter-part in the DBMS
execution engine in order to assess the potential of cost-based
optimizations. We also want to study conversion functions that
vary over time and investigate how MTSQL can be extended to
temporal databases. Moreover, we would like to look more into
the privacy issues of multi-tenant databases, in particular how to
enable cross-tenant query processing if data is encrypted.
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