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ABSTRACT
Due to the wide availability of social media and the wide range of
real-life and human-centered applications, social networks have
become an attractive research area. However, the temporal aspect
of relations between entities in a social network has been widely
ignored. We argue that the temporal aspect of social networks
is the key to understand interactions and other phenomena hap-
pening in these networks and should thus be considered more
closely. In this work we address the problem of pattern search
in temporal social networks, thus finding all occurrences of a
temporal pattern in a large temporal social network. As a first
step, we define a temporal pruning criterion, which allows to
quickly reduce the search space of candidates. Then, we present
an index structure which allows to quickly find the occurrences
of simple temporal network structures, from which more com-
plex query structures can be derived from. Our experimental
evaluation on a real-world temporal social network shows the
effectiveness of our pruning approach and our proposed index
structures, reducing the search-time for small temporal patterns
by many orders of magnitude.

1 INTRODUCTION
Social networks and other interaction networks1 are dynamic
by nature. Bonds of friendship can last for an eternity, but often
break and fade away over time. Active collaborations between
researchers naturally change over time. Thus, any social network
today will look significantly different tomorrow. Keeping in mind
the dynamic nature of human beings, the history of a social net-
work showing how interactions between individuals evolve over
time should be considered when inferring knowledge from it,
because the knowledge about the evolution of a social network
yields further semantic information. For instance, in a collabo-
ration network it might be interesting to see in which order a
1Though this paper mainly refers to social network, the proposed concepts are also
applicable for other interaction networks, e.g. economical networks, etc.
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Figure 1: Example evolution of a social network.

group of researchers formed a network, which researchers only
have short-term collaborations and which have rather long and
sustainable research collaborations. However, existing solutions
that consider only a snapshot in time, or building the union of
all past collaborations, are not able to take such information into
account. By considering this dynamic aspect of a social network,
it becomes possible to identify more interesting and meaning-
ful patterns. As a minimal example, consider Figure 1, showing
an evolving social network. Initially, only one social link exists,
between Anna and Brian. In the next month, an additional link
is added between Brian and Chris. Finally, the triangle is closed
with a link between Chris and Anna. In this example, Brian might
act as a social hub, who brings Anna and Chris together. In prac-
tice, more detailed temporal social patterns could matter, as for
instance the duration of a social link between Anna and Chris,
which was induced by Brian, may be of interest. The temporal
development of edges like in our example has been adressed
for more than a hundred years through the concept of ‘triadic
closure’, where the future creation of the third connection in a
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triange is tried to be estimated, e.g. through link prediction in
social networks. A more complex temporal structure in a social
graph is the ‘microtaboo’, where it is frowned upon when per-
sons Alice and Dave want to engage in a relationship, but there
exist prior relationships between Alice and Bob, Bob and Carol,
and Carol and Dave (“don’t date your ex-girlfriend’s boyfriend’s
ex-girlfriend”) [2].

Another example are communication and transportation net-
works, where links between nodes and hubs are only established
temporarily. Routing policies of computer networks may decide
differently at various time points on how to create links between
network nodes in order to transmit data. Transportation net-
works with feeder trucks, cargo aircraft and delivery vehicles
link hubs differently according to current demand. To analyzes
the behaviour of those networks, a temporal pattern analysis of
the interaction graph can help in mining information from the
graph’s history to deduct findings and information for future
optimization.

In this paper we address the problem of efficient evolution
pattern search in large temporal social networks. Our approach
bridges the gap between social network analysis and temporal
logic. The contributions of this paper can be summarized as
follows:
• We formally introduce the temporal subgraph matching
query as a new problem.
• We introduce a language to express such pattern-based
queries.
• We introduce and discuss several query filter strategies.
• We propose an index structure that allows us to search
for temporal subgraph patterns in large temporal social
network graphs.
• We provide a broad evaluation of the performance of our
approaches based on real world datasets and show that
our approach significantly outperforms state-of-the-art
approaches. Though our problem is a generalization of
the subgraph isomorphism problem, which is known to
be NP-complete [6, 11], we can show that our index-based
solution is able to find simple temporal social patterns in
large real-world social networks efficiently.

We define the problem of temporal social subgraph search
in Section 2. In Section 4, we propose filter strategies and intro-
duce our new indexing method in Section 5. Our experimental
evaluation is given in Section 7.

2 PROBLEM DEFINITION
We first introduce our representation of a temporal social net-
work which we define as a graph where each node refers to an
individual and each edge between two nodes is associated with a
discrete function that maps time to the domain {0,1} specifying
the presence and absence of the edge over time.

Definition 2.1 (Temporal Social Graph). Let T = {0, 1, . . . ,m}
be a discrete time domain. A temporal social graph (TSG) G =
(VG ,EG , FG ) is a graph, where VG = {vG1 ,v

G
2 , . . . ,v

G
n } is the

set of nodes, EG ⊆ VG ×VG the set of links (with (vGi ,v
G
k ) ∈ E

G ),
and
FG = { f G

vGi ,vGk
(t)|(vGi ,v

G
k ) ∈ E

G } a set of discrete time-dependent

functions, where f G
vGi ,vGk

(t) ∈ {0, 1} describes the existence of a

connection between vGi and vGk (0 indicating no connection and
1 indicating there is a connection) at time t ∈ T . Furthermore, an
edge (vGi ,v

G
k ) is only an element of EG if ∃t ∈ T : f G

vGi ,vGk
(t) , 0.

Based on this definition we are now able to define temporal
subgraph matching which finds a subgraph from a TSG that
exactly matches a given temporal subgraph query.

Definition 2.2. [Temporal Subgraph Matching] Let G = (VG ,

EG , FG ) be a TSG defined on the time domain T = {0, 1, . . . ,m}.
And let q = (V q ,Eq , Fq ) be a query TSG defined on the time
domain Tq = {0, 1, . . . , tq } where tq ≤ m. A temporal subgraph
matching query retrieves the set S of all temporal subgraphs
S ∋ S = (V S ⊆ VG ,ES ⊆ EG , FS ⊆ FG ), such that there
exists a bijection h : V q → V S and ∆t ∈ {0, ...,m − tq } that
satisfies ∀(vqi ,vqk ) ∈ Eq : (h(vqi ),h(v

q
k )) ∈ ES and ∀t ∈ [0, tq ] :

f
q
vqi ,v

q
k
(t) = f S

h(vqi ),h(v
q
k )
(t + ∆t ).

An example for a temporal social graph G is given in Figure
2(a). For convenience we labeled the edges (vi ,vk ) with the set
of time steps t ∈ T for which the function fvi ,vk (t) = 1. Figure
2(b) illustrates a temporal subgraph query q. A pattern match of
q can be found at ♣ inG for ∆t = 2, h(vq1 ) = v

G
4 , h(vq2 ) = v

G
2 and

h(vq3 ) = v
G
1 . A more sophisticated query q′ is depicted in Figure

6, which matches for h(vq
′

1 ) = vG11, h(v
q′
2 ) = vG8 , h(v

q′
3 ) = vG9 ,

h(vq
′

4 ) = v
G
10, and h(v

q′
5 ) = v

G
6 at ∆t = 5 (around the ♥ marker).

A summary of the notations used throughout this paper can
be found in Table 1.

3 RELATEDWORK
Various applications of temporal graphs and sources of temporal
graph data can be found in surveys on temporals graphs [4, 10].
Existing research on temporal graphs primarily focuses to tempo-
ral paths and their applications [1, 4, 12, 13, 15, 19, 22, 23]. None
of these works study the search of a given query pattern. Most
related is existing work on temporal community detection over
temporal networks [9, 14, 25, 26] and multi-layer networks [3].
These work first identify communities in a static network, then
identify the evolution of the communities from the changes of the
network. Specifically, the problem of finding dense patterns in
temporal graphs has been studied in [25, 26]. This work allows to
find diversified dense regions, thus minimizing the temporal and
social redundancy of the returned patterns. Such diversification
may also be applied to the arbitrary patterns mined in this work,
but is not in this paper’s scope. A recent approach [16] considers
relations between edges, namely the time-respecting subgraph
isomorphism problem, where edges are put into temporal se-
quence of each other. This is useful to model propagation in a
network, but cannot handle more complex temporal constraints
in the query. The authors propose a time-first, topology-first and
a hybrid solution to approach their problem. A consideration of
the fact that edges can appear and disappear over time is made
in [18], which focuses on finding structural subgraph patterns
in the graph that persist over the longest period of time. This is
supported by three index structures that store label information,
neighbourhood constellations and path maps.

In summary, these works can be used to find dense regions
such as cliques and quasi-cliques in a temporal network, but do
not allow to find patterns arbitrarily shaped over time. Thus, to
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Figure 2: Example TSG and TSQ. Time points where the time dependent function of an edge returns a non-zero value
are noted next to the edge: A dash (‘-’) is used to denote intervals and commas (‘,’) indicate enumeration of timepoints or
intervals. The suit markers (♥,♣, ♦) give visual guidance for the text description.

t ∈ T = {0, 1, . . . ,m} time-domain (discrete)

G = (VG ,EG , FG ) temporal social graph G
vertices/nodes V , edges/links E,
time-dependant function
FG = { f G

vGi ,vGk
(t) ∈ {0, 1}|

(vGi ,v
G
k ) ∈ E

G }
ex. Figure 2(a)

q = (V q ,Eq , Fq ) temporal social query graph q
ex. Figure 2(b)
ex. Figure 6

S ∈ S subgraphs of G matching q
S = (V S ,ES , FS )

G⊥ = (VG ,EG ) non-temporal projection of G

h : V q → V S bijection mapping

MS assignment map of an isomorph
S to q within G
size ofMS : |V q | × |VG |

M0 aggregation of allMS

ex. Figure 7

SSG = (V SSG,ESSG) simple subgraph structure
ex. Figure 3
ex. Figure 9

♠,♥,♣, ♦ visual markers

Table 1: Notations used throughout this paper.

the best of our knowledge, our work is the first one for finding
patterns in temporal graphs such that the query pattern exhibits
temporal constraints.

A further line of related work is pattern search on static (non-
temporal) graphs. The solution to this problem was proposed by
Ullmann [21] and serves as our baseline. This problem, for which
a survey of solutions is found in [5], still attracts vivid research
attention (e.g., [17, 20]). This pattern search has further been
extended to labelled vertex-graphs, as surveyed in [8]. While this
research field has received extensive attention, these solutions are
not applicable to our problem setting since they do not consider
any time-dependent network structures, which increases the
complexity of the problem.

Furthermore, solutions have been presented for the problem
of finding subgraphs in a large collection of small graphs [24].
This approach first mines frequent structures and stores for each
frequent structure the IDs of the graphs that contain it (similar
to an inverted file). A query can then be answered by identify-
ing the frequent structures contained in it and intersecting the
corresponding lists of IDs. Although, this problem setting is also
fundamentally different, it nonetheless inspired us for the index
structure proposed in this work.
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4 BASIC TEMPORAL SUBGRAPH
MATCHING

The problem of temporal subgraph matching is related to the
classic subgraph isomorphism counting problem, which is to find
the set S of all subgraphs of a non-temporal graph G that are
isomorphic to a given non-temporal query graph q. This problem
is a generalization of the NP-complete subgraph isomorphism
problem [6, 11], where the challenge is to decide whether any
such subgraph S ∈ S exists in G. Consequently, the subgraph
isomorphism counting problem is NP-hard, since its result can be
used in to decide the subgraph isomorphism problem in O(1), by
testing the number of subgraphs for positivity. The current best-
known algorithm for obtaining the exact count of an arbitrary
query graph q is in O(n

ωk
3 ), where k is the size of query graph

q and ω is the exponent of fast matrix multiplication [7]. Our
problem is at least as hard as subgraph counting, as we want to
enumerate all instances ofq inG , while also considering temporal
constraints on edges.

The problem of finding all subgraph isomorphisms on static
(non-temporal) graphs can be extended to temporal subgraphs
as follows: Given a temporal query subgraph q = (V q ,Eq , Fq ),
initialize the non-temporal graph q⊥ = (V q ,Eq ), where Fq⊥ , 0.
In informal words, two nodes in q⊥ are connected iff their corre-
sponding vertices in q are connected at least at one point of time.
This can be seen as a projection of the temporal query q to a
single point of time. Now this projection is applied on the tempo-
ral graph G = (VG ,EG , FG ) as well, yielding the non-temporal
graph G⊥ = (VG ,EG ). Now solve the subgraph isomorphism
problem on the “flattened” by finding the set of all subgraphs S⊥
ofG⊥ that are isomorphic to q⊥. This yields, for each any edge e
in any resulting graph S⊥ ∈ S⊥ a mapping h(e) to an edge in G
as described in Definition 2.2.

Since the temporal subgraph query is more selective than
the non-temporal query by considering temporal constraints,
an additional refinement step is necessary. For any S⊥ ∈ S⊥ to
be verified as a result of the overall temporal subgraph query,
there must exist a time offset ∆t such that the time-dependent
function Fq matches the time dependent function of S. More
formally, S⊥ = (V S ,ES ) satisfies the temporal subgraph query
of q iff ∃∆t ∈ {0, ...,m − qt } : ∀e ∈ S⊥ : ∀t ∈ [0, tq ] : f qe (t) =
f Gh(e)(t + ∆t ).

4.1 Subgraph Isomorphism in Non-Temporal
Graphs

Ullmann [21] introduces a viable method for solving the (non-
temporal) subgraph isomorphism problem, which we will extend
and briefly describe in this chapter: Let G be a non-temporal
graph, which is the special case of a temporal graph having a
singular time domain T = {0} and having all edges in EG exist
at time 0. For every subgraph S = (V S ,ES ) ∈ G that is isomorph
to a query graph q, we can define a |V q | × |VG | matrixMS , such
thatMS

i, j = 1 iff h(vqi ) = v
G
j and 0 otherwise.MS can therefore

be interpreted as an assignment map that locates the vertices
of the subgraph in the larger graph. Note that in every row of
MS , there is exactly one cell with the value of 1, while in every
column there is at most one cell to contain a 1.

Let furthermoreM0 be amatrix having the same dimensions as
MS andM0

i, j = 1−∏
S ∈G (1−MS

i, j ), so thatM
0 gives information

about whether there exists any unspecified subgraph S so that
h(vSi ) = v

G
j . It is now possible to retrieve the individual subgraph

matricesMS fromM0, along with possible other matrices, which
do not belong to a valid subgraph query solution: Alter the cells
ofM0 by setting different cells from 1 to 0, until the constraints
of a subgraph representation are fulfilled (exactly one 1 per row,
max. one 1 per column).

The main idea is to mine candidate subgraphs S from M0,
which are matching in the “flattened” graph G⊥ that is oblivious
to the time constraints. Therefore, a cell M0

i, j = 0 implies that
there exists no subgraph S where h(vSj ) would map vertex vSj to
vertexvGi in the social network. Analogously, a value of 1 implies
that such a graph may possibly exist. A trivial case is to set every
M0
i, j to 1, which means that every vertex inG can be part in any

subgraph that fulfills q. But in order to improve the runtime of
the algorithm, it is desireable to reduce the number of subgraph
combination. This can be achieved by setting as many cells inM0

to 0 as possible. There are different methods to prune candidates
with varying complexity and efficiency:

• Pruning based on anode’s degree. If deg(vSi ) > deg(vGj ),
thenM0

i, j can be set to 0. Note however, that in social net-
works the degree of the vertices is usually much higher
than the degree of vertices in the query pattern q, which
is why this approach yields limited pruning power.
• Pruning based on invalid neighbour mappings. Ver-
tices can be pruned if there is no valid assignment for
its neighbours, although the node itself can be mapped
between S and q. More formally, a cellM0

i, j = 1 can be set
to 0 (and thus be pruned), if there is a neighbour vertex
vSu of vSi (i.e. (vSi ,v

S
u ) ∈ ES ) and no neighbour vGw of vGj

(i.e. (vGj ,v
G
w ) ∈ EG ) such thatM0

u,w = 1:

M0
i j ← M0

i, j ·
( ∏
(vSi ,vSu )∈ES

(
1 −

∏
(vGj ,vGw )∈EG

(
1 −M0

uw
) ))

Pruning a cell may allow for further pruning of other cells,
so a new pruning iteration should be invoked after a suc-
cessfully setting a cell to 0. This method can be stacked
with other methods to further remove further candidates
after another method was successful in removing candi-
dates.

4.2 Additional Pruning Filters for Temporal
Graphs

Besides the generic filter steps enlisted in Section 4.1, we further-
more introduce two more viable filter steps that can be applied
in the context of temporal subgraph isomorphisms:

• Pruning based on time offset. As described before, ev-
ery derived subgraph S that is a candidate to be isomorph
to the query (represented throughMS ) needs to be refined
in the sense that there needs to exist a ∆t so that the time-
dependant functions match. When testing various ∆t , it is
feasible to create a copyMS

∆t
ofMS . Since only the time

frame from ∆t until ∆t + tq is relevant for the matching
of the functions, the graphG can be projected onto a more
sparse graph N∆t than N by only inserting an edge into
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EN∆t , if the corresponding edge in G exists in this more
narrow time frame.
• Pruning based on network distance. When iterating
through M0, after setting a candidate value for the first
processed row of M0, we can try to cut down the the
number of columns that can contain 1s at all. Let i be the
index of a row where exactly one column j is set to one.
Then we can compute the maximum hops from vSi to any
other node in S . Then we determine all nodes in the graph
N , whose hops distance to vNj is larger than that distance.
Those columns can then be set to zero. This is a viable
approach if |V N | ≫ |V S | and N is sparse. For efficiency
reasons, it is recommended to pick the first row i in a way
so that vSi lies in a central position in S , e.g. minimizing
the maximum hops distance. As temporal aspects are not a
pruning criterion for this filter, it can generally be applied
to non-temporal subgraph isomorphism queries as well.

In our experiments, we will take a deeper look at the effective-
ness and performance of the basic and our extended filters. We
will also evaluate the processing order, in which these filters are
applied.

5 AN INDEX STRUCTURE FOR TEMPORAL
GRAPHS

In this section we will give an in depth description of how to
build an index for temporal social graphs and how to perform
pattern queries on this index.

The construction of an index structure that supports subgraph
pattern search on temporal graphs can be summarized in four
steps: (1) Select one or more simple subgraph structures (SSGs)
and do the following steps for each of them. (2) Find each oc-
currence of the SSG in the graph G without consideration of
the temporal aspect. (3) Transform each occurrence into a string
reflecting its unique behaviour over time considering the func-
tions f of the edges. (4) Index the obtained strings using an index
structure for substring search. In the following we will consider
each of these steps in detail.
Simple Subgraph Structure Selection: The selection of suit-
able SSGs (SSG = (V SSG,ESSG)) is crucial for the performance of
the index, since the index can later on only answer queries that
contain at least one of the selected SSG. A good set of SSGs should
thus contain even the simplest possible query structures. Let us
note that a temporal pattern query on a TSG must involve at least
a relationship (edge) of two entities (nodes). The most simple
SSGs involving 2 and 3 nodes, illustrated in Figure 3, should thus
always be indexed in order to allow index support for all possible
queries. When challenging the trade off between simplicity and
ubiquitousness of SSGs, multiple different SSGs may be indexed
in parallel to suit a wider array of queries. In the following we
will showcase the construction of the index based on the triangle
structure.

Finding SSG Occurrences: To find all occurances of the SSG
in the graph, the temporal aspect of G will be neglected thus
using “flattened” version ofG⊥ ofG as used in Section 4. Within
G⊥, we search for all occurrences of the SSG using a traditional
subgraph isomorphism algorithm such as [21]. An SSG occurs at a
set of nodesVO ⊂ VG iff (vOi ,v

O
j ) ∈ E

N ⇔ (vSSGi ,vSSGj ) ∈ E
SSG.

Please note that due to possible symmetries, several occurrence

k
2V

SSG

1v
SSG

2v
SSG

1v
SSG

1v
SSG

2v

SSG

2v

SSG

3v

SSG

3v

Figure 3: Simple Subgraph Structures (SSGs) with 2 and 3
nodes
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Figure 4: Encoding the edges of a graph. Each possible
graph topology is encoded by an uppercase Latin charac-
ter A-H.

can happen for the same set of VO , depending on how VO is
mapped to V SSG.

Example 5.1. The triangle SSG occurs within the graph of
Figure 2(a) at the positions marked with ♥, ♣, and ♦. If there
would be an edge (vG6 ,v

G
10) at time 1, the set of nodesvG6 ,v

G
9 ,v

G
10

would also form an occurrence, even though at no point of time
an actual triangle is formed between the nodes.

The identification of those SSG occurances does not come
free of cost: In particular, finding all subgraphs of G that are
an occurance of the SSG has a runtime complexity of O(n

ωk
3 ),

where k is the size of query graph q and ω is the exponent of fast
matrix multiplication [7]. However, this task can be performed
offline and will not affect the query performance. Furthermore,
the actual runtime is in general low enough due to two reasons:
First, the SSGs are usually very small (in our example not more
than 3 nodes) and second, the graph G is not fully connected in
a real-world setting.

String Transformation: At every discrete point of time, a
set of nodes in the graph that belong to an SSG can form a certain
constellation via their edges. Figure 4 shows all possible com-
binations for a triangle SSG consisting of three, distinguishable
nodes (vSSG1 , vSSG2 , and vSSG3 ) and assigns each constellation a
unique symbol; here we are using uppercase Latin characters.
To encode an SSG’s temporal behaviour over time, at each time
frame the currently present edges have to be figured out and
be mapped via a pre-defined assignment table (such like Figure
4) to a unique symbol or character. In general, the alphabet to
encode all constellations of an SSG having k edges consists of 2k
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characters. Concatenating these characters along the chronologi-
cal time-series will yield in a string representing the temporal
behaviour.

Example 5.2. The graph q denoted in Figure 2(b) shall be repre-
sented by a string using the triangle SSG. When each node vqi is
mapped tovSSGi , the symbol representing the graph constellation
at each time frame tj (0 ≤ j ≤ tq ) can be looked up in Figure 4
(t0: B, t1: F, t2: H), thus yielding the string BFH. For other possible
mappings of vq to vSSG the string representations BGH, CEH,
CGH, DEH, and DFH are valid as well.

This schema can be applied to all substructure occurrences
found in the graph, so that each occurrence’s temporal behaviour
can be described through a string. It is then feasible to index
those strings in a way to efficiently support substring search.
We propose to employ a suffix-tree to index these substrings
concisely.

Example 5.3. Consider the triangle SSG. It occurs three times
in our example graphG (Figure 2(a)), namely at ♥, ♣, and ♦. For
every occurrence, there exist six possible permutations of how
the substructure can occur at this position, due to the ways vGi
may be mapped to vSSGi . We depict all of these occurrences and
permutations in Figure 5.

6 QUERY PROCESSING
Next, we describe how our string-index can find all occurrences
of a given temporal query pattern q. As described in Section 5,
in the following, we assume that an index has been build for a
specific simple subgraph structures SSG.

(1) Identify occurrences of the SSG in the “flattened” temporal
graph query q⊥.

(2) For each such occurrence, perform the same string trans-
formation than performed for the index (i.e., use the same
character map).

(3) Index-supported search for the transformed string to find
candidates for verification.

(4) Refine the candidates through verifying that the part of
q which is not contained in the SSG is isomorph to the
surrounding of a candidate.

In more detail, to answer queries according to Definition 2.2
using the index support of the suffix-tree, we first have to isolate
those SSG occurrences in the graph topology of the query graph
of the SSG that was used for the string transformation process
before. An SSGmay occur not at all, once, or multiple times in the
graph. If no SSG occurrence can be found, the index is of no help
and the search has to default to a full scan, which is why there
is a motivation to keep SSGs small and simple. In case of one
or several occurrences of the SSG in q, we isolate the temporal
behaviour of that part of the query graph and transform it using
the same string encoding method used for the index construction.

Since the queried time frame is usually smaller than the in-
dexed time span, the length of the string derived from the SSG
occurrence in q is shorter than the length of string belonging
to the occurrence in the graph which is stored in the index. To
answer the query, we now must find all those strings in the index
that contain the substring belonging to the query.

Example 6.1. Identification and String Transformation
of SSG in query q. In our example query q′ (Figure 6), the tri-
angle SSG occurs at the ♠ marker. Since there are six possible
permutations of the occurrence, valid string transformations are
EHH, EHH, FHH, FHH, GHH, andGHH. With each of these unique
query strings, we can search our encoding index (suffix tree) for
entries that contain the query string. The substring positions are
indicated through bold and underlined text in Figure 5. Entries
which do not contain one of the substrings can be pruned.

Since practical SSGs consist of more than one node, there is
usually always more than one way it can be mapped to either
the nodes of the occurrence in the query graph or the occurrence
in the main. I.e., there are also several string transformations of
the occurrence. There are in general several ways to approach
these permutations:
• Account for permutations at index creation and query
processing. This means that every permutation is indexed,
thus resulting in a larger index, and that index is queried
multiple times (once for each permutation of the query)
• Consider the permutations in the index, but not for the
query
• Consider the permutations only within the query
• Neglect the permutations in the query graph and at index
creation.

Neglecting all permutations may result in correct results not be-
ing found, as there is no guarantee that an ‘identical’ permutation
has been used for the index and the query. On the other hand,
if permutations are considered both times, the result will also
show how the query ‘fits’ into the graph, i.e. the direct mapping
from the nodes can be deducted. However, multiple queries have
to be performed on an increased index, thus increasing query
cost. As a trade-off, it is possible to only consider all permuta-
tions on one side (either the index or the query), and then find
out the mapping in a refinement step. We recommend to con-
sider all permutations within the index and not for the query,
as submitting multiple queries increases the overall query cost
linearly, while linearly enlarging the index results in a sublinear
increase in query performance. Compared to the approach where
permutations are considered on both sides, a refinement step
is now necessary to deduct the exact mapping of the query to
the substructure (one mapping per possible permutation). This is
likely to be done faster after the query than it is to do multiple
queries (one for each permutation).

Example 6.2. Index-supported Search for Transformed
String Representation of the SSG. If following our advice to
only consider permutations within the index, querying our exam-
ple query q′ (Figure 6) with a triangle SSG, the search string will
either be EHH or FHH or GHH. The exemplary index in Figure
5 will then yield the set of nodes {vG3 ,v

G
5 ,v

G
6 } for the ♦, and

the set {vG8 ,v
G
9 ,v

G
11} for the ♥ occurance. However, the mapping

of vq
′

i to vGj cannot be deducted from the index and has to be
refined computationally.

Searching for a substring in the index then retrieves two im-
portant facts for every match: (1) a subset ofVG that corresponds
to an SSG occurrence, and (2) the temporal offset ∆t at which
it occurred (calculated by the offset position of the substring
from the beginning of the indexed string). Both are crucial for
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Figure 5: Transforming the temporal behaviour of the triangular SSG occurances in G to strings.
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Figure 6: A more complex TSQ q′.

efficiently refining the candidates. A refinement is necessary, as
the query may be more restrictive than the SSG itself, i.e. through
additional edges attached to the SSG, the retrieved candidates
are a superset of the results. Therefore, this set has to be refined,
i.e. it has to be checked whether the found SSG is part of a larger
subgraph structure that can fulfill the query constraints with re-
gards to graph structure as well as temporal behaviour. To refine
the candidates, we return to the concept of Section 4.1. Before
evaluating the substring candidates, we can still apply the degree
filter for q′ and G toM0, as it is a quick way to eliminate some
impossible assignments.

Example 6.3. Figure 7 showsM0 for our sample query q′ after
applying the degree and neighbour filters. It shows that for ex-
ample vq

′

1 can only be mapped to nodes with a degree of at least
4, thus leaving only cellsM0

1,4 andM
0
1,9 in the first row with a 1.

On the other hand,M0
2,3 is set to 0, as vq

′

2 cannot be mapped to

vG4 , as v
G
4 (unlike vq

′

2 ) does not have a neighbour of degree 4.

After optimizing M0, for each found SSG x , we initialize a
copy of M0 denoted as Mx and thereby set Mx

i, j := M0
i, j . Each

found SSG instance x gives us a ‘hint’, where an occurrence of
q′ in G may occur as well as the temporal offset ∆t at which
the temporal pattern of the subgraph structure matched. This
hint will either lead to a correct result or may be false – but

M0 !"# !$# !%# !&# !'# !(# !)# !*# !+# !",# !""#

!"-′ 0 0 0 1 0 0 0 0 1 0 0

!$-′ 1 1 0 0 1 1 1 1 0 0 1

!%-′ 1 1 0 0 1 1 1 1 0 0 1

!&-′ 1 1 0 0 1 1 1 1 0 1 1

!'
-′ 1 1 0 0 1 1 1 1 0 1 1

Figure 7: Assignment matrix M0 for q′ and Q after apply-
ing the degree and neighbour filters.

M�4 !"# !$# !%# !&# !'# !(# !)# !*# !+# !",# !""#

!"-′ 0 0 0  1 ?! 0 0 0 0 0 0

!$-′ 0 0 ?!          0 0 0 0 0 0 0 0

!%-′ 0 0 0 0 0 1 0 0 0 0 0

!&-′ 1 1 0 0 0 0 1 1 0 1 1

!'
-′ 1 1 0 0 0 0 1 1 0 1 1

Figure 8: Assignment matrix M♦4 after applying the as-
signment from the index candidate. This means that the
bold cells should be set to 1. However, cells depicted with
‘?!’ already contain a 0 (ref. Figure 7) and cannot be set to
1 in a valid way.

its correctness will not have any effect on other SSG instances,
which is why we can process them individually and in parallel.
Since the index found a matching SSG which implicitly matches
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the vertices of the structure to vertices of the graph (after consid-
ering the permutations of the mapping), we can assign |V SSG | fix
assignments, thus nullifying all other cells in those rows (since
Mx is usually much wider than tall, this drastically increases the
number of cells containing a 0). Since ∆t is known at this point
of time, we can now apply the more sophisticated time offset and
network distance filters (Section 4.2) toMx .

Example 6.4. Let us return to our running example, where we
search for occurrences of the more complex query q′ (Figure 6)
in the running social net work G (Figure 2(a)). Let’s consider the
fourth permutation of the ♦ substructure, which is returned as
a candidate through the query permutation EHH (vq

′

1 → vSSG1 ,
v
q′
2 → vSSG3 , vq

′

3 → vSSG2 ) (see Figure 5). Mapping this SSG to G
yields the mappings vq

′

1 → vSSG1 → vG5 ; vq
′

2 → vSSG3 → vG3 ; and
v
q′
3 → vSSG2 → vG6 also shown in Figure 5. We attempt to make

this assignment in the corresponding matrixM♦4 depicted in Fig-
ure 8. Therefore, we have to set the values inM♦41,5,M

♦4
2,3 andM

♦4
3,6

to 1, but we see that the first two entries already contain a zero
in the global assignment matrix M0, such that this assignment
does not yield a valid matching. Therefore we can stop here and
prune this candidate. In fact, in our example we can prune all
permutations of ♦ in the same way, as well as permutations 1, 3,
5, and 6 of ♥; with ♣ not even providing candidates. In summary,
this just leavesM♥2 andM♥4 for further refinement.

We are now left with a set of matrices that we need to derive fi-
nal assignment candidates from. A naive way would be to iterate
over all possible assignments and verify them; one would do that
by choosing a singleMX

i, j = 1 and using it as an assignment, thus
nullifying other values row i and column j , and then proceeding
to row i + 1, re-applying the same concept. This needs to be done
iteratively for allmX

i, j = 1 of a row. We aim to improve this expo-
nentially expensive approach by using heuristics. Therefore, we
first take effort in finding a clever order of which we process the
rows. We process rows in breadth-first-order starting at the corre-
sponding SSG occurrence, skipping lines having a “1” assigned by
the SSG occurrence. For any other line b, we look at any previous
row a such that (vq

′
a ,v

q′

b ) ∈ E
q′ , i.e., a neighbour of vq

′

b that we
have already assigned. Since we always start with a pre-assigned
row and proceed in a breadth-first-manner, such a rowmust exist.
That row a contains a single assignment h(vqa ) = vGc . Assuming
this assignment is correct, we only need to look at columns d
where vGd is a neighbour of vGc , thus having (vGc ,vGd ) ∈ E

G . This
can be deducted from the following:

h(vqa ) = vGc ∧ h(v
q
b ) = v

G
d ∧ (v

q
a ,v

q
b ) ∈ E

q

⇒ (vGc ,vGd ) ∈ E
G

because Eq ⊆ EG .

For every neigbour vGd where Mx
b,d = 1 and the temporal

patterns match, we create a copy of the current Mx , nullify all
other cells in row b and proceed to the next row inMx . When the
last row is reached, every vertex in vq has been assigned exactly
one partner in vG , thus being a result.

Example 6.5. For our running example, we retrieve the follow-
ing assignments fromM♥2 andM♥4:

M♥2 : h(vq
′

1 ,v
q′
2 ,v

q′
3 ) = (v

G
9 ,v

G
8 ,v

G
11)

M♥4 : h(vq
′

1 ,v
q′
2 ,v

q′
3 ) = (v

G
11,v

G
8 ,v

G
9 )

The later one is invalid, as M0
1,11 is already 0 and v

q′
1 can

therefore not be mapped to vG11. Following the first assignment,
we now retrieve two final candidates for the complete occurance
of q′:

C1 : h(vq
′

1 ,v
q′
2 ,v

q′
3 ,v

q′
4 ,v

q′
5 ) = (v

G
9 ,v

G
8 ,v

G
11,v

G
6 ,v

G
10

C2 : h(vq
′

1 ,v
q′
2 ,v

q′
3 ,v

q′
4 ,v

q′
5 ) = (v

G
11,v

G
8 ,v

G
9 ,v

G
10,v

G
6 )

of which the first one C1 is invalid, as the time-dependant-
function on edges (vq

′

1 ,v
q′
4 ) and (v

Q
9 ,v

Q
6 ) do not match. C2 is a

valid result to the query.

7 EXPERIMENTS
In this section we show experimental results of our proposed
methods. As a baseline approach, we resort to Ullmann’s algo-
rithm as described in Section 4.1. This represents the expansion
of traditional solutions to the temporal domain. We further eval-
uate the included filters as well as our proposed additional filters
individually and in combination to distinguish the naive baseline
approach from a more advanced setup. We then compare this
baseline approach, which has been extended to temporal graphs,
to our advanced query processing approach proposed in Section
6 supported by the index structured introduced in Section 5. Ad-
ditionally, we introduce the evaluated queries and the employed
datasets. All experiments were performed on a 3Ghz workstation
having 32 GB of RAM. The experiments were run on a single
core.

7.1 Datasets
As a datasource for our real data evaluation we use a snapshot
of the ACM Digital Library2 taken on Dec 15, 2014 consisting
of 582,150 publications with author information. Using only the
co-author relationship for each calendar year, we build a tempo-
ral social graph G = {VG ,EG , FG }, reflecting the collaboration
network over time, in the following way:
• Each researcher present in the dataset is represented by a
node vG .
• Two researcher nodesvGi andvGj are connected by an edge
(vGi ,v

G
j ) if they have at least co-authored one publication

at any time t ∈ T .
• The time dependent function for an edge (vGi ,v

G
j ) indi-

cates collaboration over time and is set the following way:

f G
vGi ,vGj

(t) =


1 if vGi and vGj co-authored a publi-

cation in year t
0 if vGi and vGj did not co-author a

publication in year t

The resulting temporal social graph is called PUBS in the re-
mainder of this section. In order to evaluate naive approaches of
the proposed algorithms we also use small subgraphs of PUBS
2http://dl.acm.org/
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Square	Pan	 Crossbox	

Arrow	String	 Triangle	

Figure 9: Evaluated subgraph structures in our experi-
ments along with assigned names.

PUBS MiniPUBS MicroPUBS
Nodes 379,188 10,000 3,792
Edges 2,114,720 77,568 36,548
Timepoints 69 46 43
# Strings 2,114,720 77,568 36,548
# Arrows 44,379,646 1,541,152 917,810
# Triangles 13,191,264 422,736 176,286
# Squares 449,684,160 5,179,608 2,259,456
# Pans 1,438,921,874 25,601,204 21,972,438
# Crossboxes 411,978,792 3,967,824 1,196,184

Table 2: Characteristics of the researcher collaboration
datasets

Triangle	

T-Two-Legs	T-Long-Leg	

T-One-Leg	

T-Pair-Legs	

Double-Triangle	 Quad-Clique	

Figure 10: Small queries used in our experiments.

called MiniPUBS and MicroPUBS, with 10000 nodes and 3792
nodes, respectively. These subgraphs were generated from PUBS
by performing a breadth-first search rooted at the first two (anony-
mous) authors of this work.

Table 2 summarizes the characteristics of the three datasets.
In addition to the number of nodes, the number of edges and the
duration of the network in years Table 2 contains the number of
the subgraph structures illustrated in Figure 9.
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Figure 11: Querying with a triangle and a crossbox struc-
ture of constant edges and variable length tq .

7.2 Queries
Figure 10 shows a set of standard query subgraphs that we used
in our experimental evaluation. In the first set of experiments, the
query time domain tq is set to relatively small values of 3 ≤ tq ≤
5, to all the baseline approaches to terminate in reasonable time.
The temporal pattern on these subgraphs is chosen uniformly
random, such that at each point of time t ∈ Tq of the query
graph, any edge has a chance of 50% to be part of the query
pattern. To avoid degenerated cases, we ensure that each edge of
a standard query is required to exist at at least one time t .

7.3 Baseline vs. Index
In a first experiment we compare the performance of our pro-
posed index structure (cf Section 5) with the baseline approach as
discussed in Section 4. Since the baseline approach is very time
consuming we did this experiment on the MicroPUBS dataset. As
a basic subgraph structure for our index we used the triangle and
as queries we evaluated the triangle-query and the quad-clique-
query with increasing temporal query length tq . The results are
shown in Figure 11. The baseline approach has to build a projec-
tion of the original TSG for each possible start time t over the
duration of the query. With increasing duration of the query, this
projection becomes more and more dense, which results in in-
creasing runtime. The index based query processing on the other
hand performs much faster in this setting. Note that, although
the triangle query is beneficial to the index (since the index is
built on the triangle structure), the quad-clique query can also be
answered efficiently. With increasing query duration, the results
quickly decrease, yielding a lower number of candidates, which
leads to even lower runtime.

Figure 12 shows the query time for various query patterns. As
most of the 4-year-long queries have a highly specific temporal
pattern, the index-based approach profits from early pruning
of large parts of the data, while the baseline approach is first
looking for the general graph structure and can only prune at a
second step where the temporal behaviour is considered. We see
that the Triangle query for tq = 3 has the highest run-time using
our index, while having the lowest run-time of the baseline. The
reason is that this query yields the largest number of (verified)
results which, trivially, cannot be pruned. When changing the
query time tq for the more complex T-Two-Legs query, we can

297



1.0E‐1

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

1.0E+6

1.0E+7

1.0E+8

Quad‐Clique tq=4

T‐One-Leg tq=4 

T‐Long-Leg tq=4

T‐Two-Legs tq=4

T‐Pair-Legs tq=4 

Double‐Triangle tq=4 

Triangle tq=4

Triangle tq=3

T‐Two-Legs tq=5

T‐Two-Legs tq=3

processing time [ms]

qu
er
y 
pa

tt
er
n

Index

Baseline

Figure 12: Querying with a distinct queries.
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Figure 13: no. of results and runtime with increasing
query length

again observe that our index supported approach can benefit
from early pruning. Note that the time needed to build the index
for this microPUBS dataset was less than a second.

7.4 Evaluating query parameters
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query time [ms]

Figure 14: query time for harder queries

In the next set of experiments we demonstrate the effect of
the query duration tq on the large PUBS dataset. The Baseline
approach was not evaluated on this dataset due to its excessive
run-time. In the first experiment, shown in Figure 13, we use the

1 10 100 1000 10000 100000
Candidates from Index

Triangle
Arrow
String

Quad‐Clique tq=4

 T‐One-Leg tq=4

T‐Long-Leg tq=4

T‐Two-Legs tq=4

T‐Pair-Legs tq=4 

Double‐Triangle tq=4 

Triangle tq=4

Triangle tq=3

T‐Two-Legs tq=5

T‐Two-Legs tq=3

Figure 15: Testing different indexed subgraph structures:
number of candidates
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Triangle tq=4
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Figure 16: Testing different indexed subgraph structures:
processing time

Triangle structure for query and indexing. Index construction on
this large dataset took less than 30 minutes. Results using this
index are averaged over 1K runs for random temporal patterns
of the PUBS dataset. We observe that the run-time is directly
proportional to the number of results. This behaviour is expected,
since less refinement is needed.

The previous experiment show-cased a best-case scenario,
where the structure used for indexing is identical to the query
structure. In this case, candidates returning by the index need
only to be verified for temporally matching the query pattern.

To show the behaviour in more realistic scenarios, we made
the topological structure of the query more complex by adding
additional edges, while still using triangle SSGs for indexing.
Thus, those added edges are not covered by the index and need
to be accounted for in the refinement step. Figure 14 shows that
adding additional edges and nodes to the query increases the
processing time: Adding two edges to the triangle produces a
more complex query than just adding one (than adding none),
and a Quad-triangle is more specific than a Double-Triangle than
a simple triangle.

Thus, in the next set of experiments shown in Figures 15 and
16, we test the efficiency of different SSGs on the MiniPUBS
dataset. Here, we compare different structures used to build the
index (specifically, the SSGs Triangle, Arrow and String), and
different query structures for different time lengths tq .
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Figure 17: Comparing the number of candidates left after
applying filters toM0.
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Figure 18: Measuring the computational cost of applying
filters toM0.

Comparing these results to Table 2, we notice that simpler
subgraph structures appear more often in graphs, whereas more
complex structures appear less and are thus generally more selec-
tive when used as the basis for an index. This also reflects in the
number of candidates produced by our index-based approach for
different basic query structures. We note that in these queries,
using triangle structure for indexing yields much less candidates
for refinement. This is because many Arrow and String structures
may not be part of a triangle, thus creating additional candidates
to be pruned. However, it should be noted that the triangle index
is only applicable if the query structures contains at least one
triangle, which is the case for query structures featured in this
experiment.

7.5 Evaluating Pruning Filters
In Section 4.2 we introduced additional pruning filters appli-
cable to temporal graphs. We evaluated the various filters on
the candidates retrieved after querying the index with a sim-
ple subgraph structure (SSG) for our running query example
q′ on the MiniPUBS graph. Therefore, we measure the perfor-
mance of different pruning strategies (and their combinations)
in their number of candidates generated from M0 that need to
be refined. Figure 17 shows that the degree filter has no effect,
because the only nodes not matched in the initial assignmentM0

are the two legs not part of the SSG which just have a degree
of 1. The network distance filter and the neighbour mapping
filter reduce the number of candidates by a factor of about 10, 000
and 30, 000, respectively. The time offset filter has the highest
pruning power, reducing the number of candidates to less than

0	 10	 20	 30	

degree	filter	
neighbour	mapping	filter	

6me	offset	filter	
deg.	+	nei.	

deg.	+	nei.	+	netw.	
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degree	filter	
neighbour	mapping	filter	
6me	offset	filter	
network	distance	filter	

Figure 19: Measuring the computational cost of applying
filters toM0 with highlight of individual cost.

two hundred. Furthermore, variations of sequential filter com-
binations are depicted as well: A combination allows to narrow
down the candidate size even more. Figure 18 shows the corre-
sponding computational time of the filters: the network distance
filter is by far the most expensive one, even though it cannot
outperform the time filter. We contribute the bad performance of
the network distance filter to the dataset, in which network dis-
tances are generally very short, as the dataset was generated by
a breadth-first search of a larger network. A more detailed look
into the combination of filters is shown in 19, where it becomes
clear that an expensive, but selective filter like the time offset
filter, becomes cheap if applied after another more generic filter
and in combination gives great results and a very small candidate
set. We summarize that the time-offset filter is the most powerful
pruning step in our setting. This is because most candidates to
not match the specific temporal patterns exhibited by the tem-
poral query graph, such that temporal pruning is very powerful.
This also shows how traditional pruning methods only, which do
not consider temporal patterns, are not sufficient to efficiently
find patterns on temporal graphs.

8 CONCLUSIONS
We proposed first solutions for the problem of searching patterns
on temporal social networks. For this problem, existing solutions
for graph isomorphism can not be applied directly, since tempo-
ral conditions need to be handled. As a baseline approach, we
define a temporal pruning heuristic to augment an existing sub-
graph isomorphism search algorithm. Due to the high run-time
of such approach on real social networks, we proposed a data
structure to index all occurrences of basic graph structures, to
find a candidate set of isomorphic subgraphs quickly at query
time. This data structure transforms temporal graphs and tempo-
ral graph queries in strings and employs a suffix tree to organize
these strings efficiently. Our experimental evaluation shows that
this index structure can reduce the run-time of searching small
temporal query patterns by orders of magnitude. Still challenges
remain open: since the problem of isomorphic subgraph search
is exponentially hard in the size of the query graph, we cannot
hope to scale to large query graphs. Thus, approximate solutions
are required for larger and more complex query patterns. Further,
we can relax the problem to estimation of the number of isomor-
phic subgraphs, rather than returning all occurences and their
location in the graph. This relaxation may allow more efficient
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approximations. Another important future aspect of this work
is the diversification of patterns as studied in [25, 26] for dense
subgraphs only. Applying such diversification to arbitrary sub-
graphs is a non-trivial task, as the notion of social and temporal
overlap has to be redefined.

As you have seen in our running examples, temporal subgraph
queries need to be defined very detailed, i.e., each configuration
at every point of time needs to be stated. In cases where such
level of detail is unneeded (for example when a certain link may
or not exist as well at a specific point of time) our algorithm
cannot specifically account for this fact. While intuitively, al-
lowing more configurations makes queries less hard to verify,
it actually increases the query complexity as the program must
now consider several possible configurations instead of one. A
future version could benefit in these scenarios.
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