
Interactive Rule Refinement for Fraud Detection
Tova Milo

Tel Aviv University
milo@post.tau.ac.il

Slava Novgorodov
Tel Aviv University

slavanov@post.tau.ac.il

Wang-Chiew Tan
Recruit Institute of Technology

wangchiew@recruit.ai

ABSTRACT
Credit card frauds are unauthorized transactions that are made or
attempted by a person or an organization that is not authorized by
the card holders. Fraud with general-purpose cards (credit, debit
cards etc.) is a billion dollar industry and companies are therefore
investing significant efforts in identifying and preventing them.

It is typical to deploy mining and machine learning-based tech-
niques to derive rules. However, such rules may not always capture
the semantic reasons underlying the frauds that occur. For this
reason, credit card companies often employ domain experts to
manually specify rules that exploit general or domain knowledge
for improving the detection process. Over time, however, as new
(fraudulent and legitimate) transactions arrive, these rules need to
be updated and refined to capture the evolving (fraud and legiti-
mate) activity patterns. The goal of the RUDOLF system described
in this paper is to guide and assist domain experts in this challeng-
ing task. RUDOLF automatically determines the “best” adaptation
to existing rules to capture all fraudulent transactions and, respec-
tively, omit all legitimate transactions. The proposed modifications
can then be further refined by users and the process can be re-
peated until they are satisfied with the resulting rules. We show
that the problem of identifying the best candidate adaptation is
NP-hard in general and present PTIME heuristic algorithms for
determining the set of rules to adapt. We have implemented our
algorithms in RUDOLF and show, through experiments on real-life
datasets, the effectiveness and efficiency of our solution.

1 INTRODUCTION
A credit card fraud is an unauthorized transaction made or at-
tempted by an individual or organization who is not authorized by
the card holder to use a credit card to perform the electronic pay-
ment. Fraud with general-purpose cards (credit, debit cards etc.) is
a billion dollar industry. In fact, several independent news articles
and studies that were carried out (e.g., [1, 2]) corroborate that
there is a consistent, fast-growing, and upward trend on the total
global payment-card frauds. Detecting and deterring credit card
frauds are therefore of extreme importance to credit card compa-
nies. A core part of operations behind every credit card company
is to (automatically) detect fraudulent transactions among the new
transactions (e.g., [3]) that are received everyday.

To this end, models based on data mining and machine-learning
techniques (e.g. [4–6]) have been used. A typical approach is to
score each transaction where transactions whose scores are above
a threshold are classified as fraudulent. However, the models
and scoring system do not always have high precision and re-
call. Fraudulent transactions may be missed by the models and,
likewise, legitimate transactions may be wrongly identified as
fraudulent. The derived threshold also do not provide a semantic
explanation of the underlying causes of the frauds. It is for this
reason that credit card companies typically rely on rules that are

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

carefully specified by domain experts in addition to models for
automatically determining fraudulent transactions.

Intuitively, a rule describes a set of transactions in the database
and the goal is to arrive at a set of rules that, together with the
automatically derived scores, captures precisely the fraudulent
transactions. The use of rules written by users has the advantage
that it allows employing general or domain knowledge to handle
rare special cases.

Writing rules to capture precisely fraudulent transactions is
a challenging task that is exacerbated over time as the types of
fraudulent transactions evolve or as new knowledge is learnt. Typ-
ically, a set of rules that were curated by users already exists
and the rules work well for capturing fraudulent transactions up
to a certain day. However, these rules need to be adapted over
time to capture new types of frauds that may occur. For example,
there may be new reported fraudulent transactions coming from
a certain type of store at a certain time that did not occur before
and hence, not caught by existing rules. Analogously, there may
be some transactions that were identified by the existing rules as
fraudulent but later verified by the card holders to be legitimate.
Hence, the rules have to be adapted or augmented over time to
capture all (but only) fraudulent transactions. In this paper, we
present RUDOLF, a system whose goal is to assist users to define
and refine rules for fraud detection.

Note that our goal resembles in part that of previous works
on query/rule refinement, which attempt to automatically identify
minimal changes to the query/rule in order to insert or remove
certain items from the query result (e.g., [7]). However, a key
difference here is that such minimal modifications often do not
capture the actual “ground truth”, namely the nature of ongoing
attack, which may not yet be fully reflected in the data. By inter-
acting with users to fine-tune rules, important domain knowledge
can be effectively imported into the rules to detect the pattern of
frauds often even before they are manifested in the transactions
themselves.

Our goal also resembles previous work on discovering or learn-
ing decision rules from streams with concept drifts (e.g. [8, 9]).
Like them, RUDOLF strives to discover or adapt rules as new
transactions arrive. However, all previous work considered only
domains over numerical values and hence do not immediately ap-
ply to our setting, which involves both categorical and numerical
values. Furthermore, RUDOLF makes crucial use of a hierarchy of
higher-level concepts over the domains (numerical or categorical)
in the specification of rules. In addition, RUDOLF collaborates
with the domain expert to improve upon the quality of the rules
used for capturing only fraudulent transactions. The interplay be-
tween the domain experts and the use of higher-level concepts,
whenever possible, enables the derivation of rules which can be
used to explain the true nature ongoing frauds. Our experiments
indicate that such interactions can be effective in deriving rules
with good prediction quality.
An overview example The top of Figure 1 shows a simplified set
of rules that is currently used to capture fraudulent transactions
up to yesterday. Intuitively, the first two rules capture a suspicion
of two attacks on an online store taking place at the first and

Series ISSN: 2367-2005 265 10.5441/002/edbt.2018.24

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.24

last few minutes of 6pm, charging amounts over $110. The last
rule captures a fraud pattern at Gas station A where false charges
of amounts over $40 are made soon after the closing time at
9pm. In practice each rule also includes some threshold condition
(not shown) on the score (i.e., the degree of confidence that the
transaction is fraudulent) for each transaction, as well as additional
conditions on the user/settings/etc. The scores and the additional
conditions are omitted so that we can focus our discussions on the
semantic aspect of the rules shown in Figure 1.

Figure 2 shows an example of a relation which contains a num-
ber of transactions made today. The transaction tuples are ordered
by the time of the transaction. In the figure, some transactions that
were reported as fraudulent are labeled as “FRAUD”. Similarly,
transactions that are reported to be legitimate may be correspond-
ingly labeled “LEGITIMATE” (not shown in the figure). Transac-
tions may also be unlabeled. The current set of rules captures only
the shaded tuples shown in the transaction relation. Clearly, none
of the new fraudulent transactions are captured by the existing
rules whereas some unlabeled transactions are captured.

RUDOLF first attempts to capture the fraudulent transactions by
generalizing the rules, semantically according to a given ontology
whenever possible, before it specializes the rules to avoid unnec-
essarily capturing legitimate transactions. However, the changes
proposed by RUDOLF may not correspond to the best or correct
changes. The domain experts can view/accept/reject/modify the
suggestions provided by RUDOLF, arriving for instance at the
1) Time ∈ [18:05,18:05] ∧ Amt ≥ 100 ∧ Type = Onl., no CCV.
2) Time ∈ [18:55,19:15] ∧ Amt ≥ 100 ∧ Type = Onl., no CCV.
3) Time ∈ [20:45,21:15] ∧ Amt ≥ 40 ∧ Location ≤ Gas Station
∧ Type ≤ Offline.

Intuitively, the first two rules above flag online transactions
without CCV, charging amounts over $100 in the respective time
intervals as fraudulent transactions. The third rule flags offline
transactions at the gas stations around closing time of amounts
over $40 as fraudulent transactions. Observe that the condition
“Location ≤ ‘Gas Station’ is a semantic generalization of Gas
Stations A and B, which are defined in an ontology to be contained
within the category “Gas Station”. Similarly, “Type ≤ Offline”
reflects the semantic category (shown at the bottom of Figure 1)
which contains offline transactions with and without PIN.
Contributions This paper makes the following contributions.

(1) We formulate and present a novel interactive framework for
determining the “best” way to adapt and augment rules so
that fraudulent transactions are captured and, at the same
time, legitimate transactions are avoided.

(2) We establish that the rule refinement problem is NP-hard
even under special circumstances: (1) determine the best
way to generalize rules to capture new fraudulent transac-
tions when there are no new legitimate transactions, and
(2) determine the best way to specialize existing rules to
avoid capturing new legitimate transactions when there are
no new fraudulent transactions.

(3) In light of these hardness results, we develop a heuristic
algorithm which is able to interactively adapt rules with do-
main experts until a desired set of rules is obtained. At each
step, the algorithm makes a proposal of the best changes
to a rule, and the domain expert can further refine the
proposed changes or seek suggestions for other possible
changes. Our algorithm represents a departure from prior
algorithms on discovering or learning decision rules from
streams with concept drifts in that it handles categorical

values in addition to numerical values, adapt rules with
semantic concepts from available ontologies, and interacts
with domain experts.

(4) We have implemented our solution in the RUDOLF proto-
type system and applied it on real data, demonstrating the
effectiveness and efficiency of our approach. We performed
experimental evaluations on a real-life dataset of credit card
transactions. We show that by interacting with users (even
ones with only little knowledge specific to the domain of
the datasets), our algorithms consistently outperform alter-
native baseline algorithms, yielding more effective rules in
shorter time.

While most of our exposition on the features of RUDOLF is
based on credit card frauds, we emphasize that RUDOLF is a
general-purpose system that can be used to interact with users
to refine rules. For example, for preventing network attacks, for
refining rules for spam detection or for intrusion detection [10].

A first prototype of the system was demonstrated at VLDB’16
[11]. The short paper accompanying the demonstration gives only
a brief overview of the system architecture whereas the present
work provides a comprehensive description of the underlying
model and algorithms.

The paper is organized as follows. The next two sections define
the model and problem statement behind RUDOLF (Section 2
and, respectively, Section 3). The algorithm behind RUDOLF is
described in Section 4. We then present our experimental results
(Section 5) and related work (Section 6), before we present our
conclusions (Section 7).

2 PRELIMINARIES
Transaction relation A transaction relation is a set of tuples
(or transactions). The transaction relation is appended with more
transactions over time. We assume that the domain of every at-
tribute A has a partial order, which is reflexive, antisymmetric,
and transitive, with a greatest element ⊤A and least element ⊥A.
W.l.o.g. we also assume that ⊥A does not appear in any of the tu-
ples1. For brevity, when an attribute name is clear from the context
we will omit it and simply use the notations ⊤ and ⊥. Attributes
that are associated with a partial order but not a total order are
called categorical attributes. The elements in such partial order
are sometimes referred to as concepts.

A transaction may be flagged as fraudulent which means that
the transaction was carried out illegally or conversely, a transaction
may be flagged as legitimate. Unmarked transactions are called
unlabeled transactions. The labeling is assumed to correspond to
the (known part of the) ground truth. In addition, each transaction
has a score between 0 and 1, that is computed automatically
using machine learning techniques, and depicts the estimated
probability of each transaction to be fraud. The score may or may
not agree with the ground truth and this discrepancy is precisely
the reason why rules are employed to refine the fraud detection.

Example 2.1. Part of a transaction relation I with schema
T(time,amount,type,location,...) is shown in Fig-
ure 2. Each tuple records, among others, the time, amount, type of
transaction, and location where the purchase was made through
some credit card. The scores of the transactions, as computed by
a machine learning module, are omitted from the figure. The last
column annotates the type of transactions. The part of instance I
that is shown contains only fraudulent and unlabeled transactions.
1If this is not the case, add a new special element to the domain and set it smaller, in
the partial order, than all other elements.

266

Existing fraud rules Φ from the previous day:
1) Time ∈ [18:00, 18:05] ∧ Amt ≥ 110
2) Time ∈ [18:55, 19:00] ∧ Amt ≥ 110
3) Time ∈ [21:00, 21:15] ∧ Amt ≥ 40 ∧

Location≤‘Gas Station A’

All	=	�type	

Online	 Offline	 With	code	 No	code	

Online,	
with	CCV	

Online,	
without	CCV	

Offline,	
with	PIN	

Offline,	
without	PIN	

None	=	�type	

Figure 1: Top: An existing set of rules.
Bottom: Partial Order for type values.

Time Amount Transaction Type Location
18:02 107 Online, no CCV Online Store FRAUD
18:03 106 Online, no CCV Online Store FRAUD
18:04 112 Online, with CCV Online Store
19:08 114 Online, no CCV Online Store FRAUD
19:10 117 Online, with CCV Online Store
20:53 46 Offline, without PIN GAS Station B FRAUD
20:54 48 Offline, without PIN GAS Station B FRAUD
20:55 44 Offline, without PIN GAS Station B FRAUD
20:58 47 Offline, with PIN Supermarket
21:01 49 Offline, with PIN GAS Station A

: : : : :

Figure 2: A transaction relation containing new
transactions.

The type time is discretized to minutes and is associated with
a date (not shown). It thus has a partial order (in fact, a total
order), given by the ≤ relation. The type amount also has a total
order with least element 0 and greatest element ∞. The attribute
type is a categorical attribute and its partial order is given by
the hierarchy shown at the bottom of Figure 1. Some examples of
concepts in the hierarchy are “Online” or “Offline, without PIN”.
The type location is also a categorical attribute and its partial
order (not shown) is given by, say, the geographical containment
relationship. In particular, “Gas Station A” and “Gas Station B”
are both concepts that are children of the concept “Gas Station”.

Rules For simplicity and efficiency of execution, we assume rules
are typically written over a single relation, which is a universal
transaction relation that includes all the necessary attributes (pos-
sibly aggregated or derived from many other database relations)
for fraud detection. Hence, it is not necessary to consider explicit
joins over different relations in the rule language.

To highlight the key principles of our approach we consider
here a fairly simple rule language that captures a disjunction of
conjunctions. For simplicity, our rule language allows only one
condition over each attribute. Multiple disjunctive conditions over
the same attribute can be expressed in multiple rules. Other exten-
sions to the rule language are possible but will not be considered
here. Note that the rule language that we consider, albeit simple,
forms the core of common rule languages used by actual systems.

A rule is a conjunction of one or more conditions over the
attributes of the transaction relation. More precisely, a rule is of
the form α1∧ ...∧αn where n is the arity of the transaction relation,
αi is a condition is of the form ‘Ai op s’ or ‘Ai ∈ [s, e]’, Ai is the
ith attribute of the transaction relation, op ∈ {=, <, >, ≤, ≥}, and s
and e are constants.

More formally, if φ is a rule that is specified over a transaction
relation I , then φ(I) denotes the set of all tuples in I that satisfy
φ. We say that φ(I) are the transactions in I that are captured by
φ. If Φ denotes a set of rules over I , then Φ(I) =

⋃
φ ∈Φ φ(I). In

other words, Φ(I) denotes the union of results of evaluating every
rules in Φ over I . Observe that Φ(I) ⊆ I since every rule selects a
subset of transactions from I . For readability, in our examples we
show only the non trivial conditions on attributes, namely omit
conditions of the form Ai ≤ ⊤.

Note that, for simplicity, each rule includes only one condition
over each attribute, but multiple disjunctive conditions over the
same attribute can be expressed using multiple rules.

Example 2.2. The top of Figure 1 illustrates a set Φ of three
simplified rules currently used by the example credit card com-
pany to detect fraudulent transactions. The first rule captures all
transactions made between 6pm to 6:05pm where the amount in-
volved is at least $110. As previously mentioned, in practice each
rule also includes some threshold conditions (not shown here) on
the score for each transaction, as well as additional conditions
on the user/settings/etc. For simplicity we omit the score thresh-
olds and the additional conditions and focus in the sequel on the
simplified rules in this example.

For the new transaction relation shown in Figure 2, this rule
captures the 3rd tuple (which is an unlabeled transaction). The
2nd rule captures no tuples, and the 3rd rule captures the 10th
unlabeled tuple. Hence, the existing rules Φ do not capture any of
the fraudulent transactions on the current day.

As we shall demonstrate, the rule language that we consider
here, even though simple, is able to succinctly capture the fraudu-
lent transactions (and avoid legitimate tuples) in our experiments
with a real dataset. Other domains rules, e.g. access control for
network traffic or spam detection rules can also be expressed in
our language.
Cost and Benefit of modifications A modification to a rule is a
change in a condition of an attribute in the rule. One may also copy
an existing rule before modifying the copy, add rule or remove
an existing rule. As we will elaborate in subsequent sections,
our cost model assumes there is a cost associated with every
operation/modification made to a condition in the rule.

To compare between possible modifications to rules and deter-
mine which modifications are better, we need to know not only
the cost of each modification but also the “benefit” it entails. Intu-
itively, the gain from the modifications can be measured in three
ways: (1) the increase in the number of fraudulent transactions that
are captured by the modified rule, (2) the the decrease in the num-
bers of legitimate transactions that are captured by the modified
rule, and (3) the decrease in the numbers of captured unlabeled
transactions. The assumption underlying (3) is that unlabeled
transactions are typically assumed to be correct until explicitly
reported/tagged otherwise and the more specific the rules are to
fraudulent (and only) fraudulent transactions, the more precise
they are in embodying possible domain-specific knowledge about
the fraudulent transactions.

Observe that if our modifications are ideal, then after the modi-
fications, there are more fraudulent transactions captured, and less

267

legitimate and unlabeled transactions caught. Subsequently, the
overall update cost is defined as the cost of modifications minus
their benefit. We give the formal definition in the next section.

3 PROBLEM STATEMENT
As described, the goal of RUDOLF is to identify minimal modifi-
cations to existing rules that would ideally capture all fraudulent
transactions, omit all legitimate transactions, and at the same time,
minimize the inclusion of unlabeled transactions. The modifi-
cations suggested by RUDOLF serve as a starting point for the
domain expert who can either accept the proposed modifications
or interactively refine them with the help of RUDOLF . Formally,
the problem is stated below.

Definition 3.1 (General Rule Modification Problem). Let Φ be
a set of rules on an existing transaction relation I . Let I ′ denote
a new set of transactions over the same schema. Let F ,L ⊆ I
(resp. F ′,L′ ⊆ I ′) be two disjoint sets of fraudulent and legitimate
transactions in I (resp. I ′). Let R = I − (F ∪ L) (resp. R′ = I ′ −
(F ′ ∪ L′)) be the remaining unlabeled transactions in I (resp. I ′).

The GENERAL RULE MODIFICATION PROBLEM is to compute
a set M of modifications to Φ to obtain Φ′ so that cost(M) − (α ∗

∆F + β ∗ ∆L + γ ∗ ∆R) is minimized, where α , β ,γ ≥ 0, and
• ∆F = |(F ∪ F ′) ∩ Φ′(I ∪ I ′)| − |(F ∪ F ′) ∩ Φ(I ∪ I ′)|,
• ∆L = |(L ∪ L′) ∩ Φ(I ∪ I ′)| − |(L ∪ L′) ∩ Φ(I ∪ I ′)|, and
• ∆R = |(R ∪ R′) ∩ Φ(I ∪ I ′)| − |(R ∪ R′) ∩ Φ(I ∪ I ′)|.

The term (α ∗ ∆F + β ∗ ∆L + γ ∗ ∆R) represents the benefit of
applying the given modifications to the rules. In our rule language,
if a fraudulent transaction is not captured by a set of rules, then
at least some condition of a rule needs to be generalized to select
that fraudulent transaction. At the same time, making a condition
more general may capture also legitimate or unlabeled transac-
tions. Conversely, if a legitimate transaction is captured by a set of
rules, then at least some condition of a rule needs to be made more
restrictive so that the legitimate transaction is excluded. Such
modifications carry the risk of omitting some fraudulent trans-
actions that should be captured. The coefficients α , β and γ are
non-negative and are typically provided by the user to tune the
relative importance of each category (resp. correctly capturing the
fraudulent transactions, avoiding misclassifying legitimate trans-
actions, and excluding unlabeled transactions) in the calculation
of benefit. The overall goal is to identify the modifications having
the best cost-benefit balance.

Observe that if α , β and γ are set to large numbers (e.g. greater
than the maximal update cost) then the most beneficial modifi-
cations are those leading to a “perfect" set of rules, namely one
that will (1) capture all fraudulent transactions, (2) exclude all
legitimate transactions, and at the same time, (3) does not capture
any unlabeled transactions.

4 THE GENERAL RULE MODIFICATION
ALGORITHM

The rule modification algorithm (outlined below) first interactively
refines the rules to capture fraudulent transactions. The expert can
stop the refinement whenever she is satisfied with the rules and
believes that the omission of the remaining fraudulent transactions
is tolerable. The resulting set of rules may capture some (exist-
ing) legitimate tuples. Hence, in the second step, the algorithm
continues to interactively refine the rules to avoid the legitimate
transactions. Here again the user may stop the algorithm when she
believes that the inclusion of the remaining legitimate transactions

is acceptable. However, the rules that result after this step may
no longer capture some fraudulent transactions that were previ-
ously captured. The domain expert can either repeat the process
described above to remedy this, or choose to end the rule refine-
ment process at this point. In the latter case, the domain expert
has a choice to leave the result as-is or allow the algorithm to
create transaction-specific rules to capture each of the remaining
transactions.

(1) Generalize rules to capture fraudulent transactions. See
Algo. 1, section 4.1.

(2) Specialize rules to avoid legitimate transactions. See Algo. 2,
section 4.2.

(3) Exit if the domain expert is satisfied. Otherwise, repeat the
steps above.

Observe that it is essential for the generalization algorithm
(Algo. 1) to be applied before the specialization algorithm (Algo. 2)
as one can always add rules to capture specific fraudulent transac-
tions without accidentally capturing legitimate transactions. On
the other hand, one cannot always add/modify rules to avoid
specific legitimate transactions without accidentally excluding
fraudulent transactions with our current rule language.

As we shall show in the next sections, finding an optimal set
of changes to the rules is computationally expensive in either
case. For this reason, instead of computing an optimal set of
modifications to the rules to generalize or special rules to capture
fraudulent and, respectively, avoid legitimate tuples, we develop
heuristic algorithms to identify the best update candidates in each
of the cases.

4.1 Rule Generalization Algorithm
We first consider how rules can be generalized to capture fraud-
ulent transactions when the set I ′ of new transactions contains
only fraudulent transactions. The goal here is to adapt the existing
set of rules Φ to capture all fraudulent transactions. We call this
problem the RULE GENERALIZATION PROBLEM

THEOREM 4.1. The RULE GENERALIZATION PROBLEM is
NP-hard even if Φ is perfect for I , (namely, F ⊆ Φ(I) and L∩Φ(I) =
R ∩ Φ(I) = ∅). The problem is NP-hard even when I contains
only unlabeled transactions and I ′ consist of only one fraudulent
transaction.

PROOF. We prove the two claim simultaneously by reduction
from the minimum hitting set problem which is known to be
NP-hard. We recall of the Minimum Hitting Set Problem below.

Definition 4.2 (Minimum Hitting Set). Consider the pair (U , S)
where U is a universe of elements and S is a set of subsets of U .
A set H ⊆ U is a hitting set of S if H hits every set in S . In other
words, H ∩ S ′ , ∅ for every S ′ ∈ S . A minimum hitting set H is a
minimum cardinality hitting set s.t. ∀e ∈ H , we have H \ {e} is
not a hitting set of S .

We assume that each rule modification is associated with a unit
cost. Given an instance of the hitting set problem, we construct an
instance of the RULE GENERALIZATION PROBLEM were there
no fraudulent or legitimate transactions in I and I ′ consist of only
one fraudulent transaction, as follows.

The transaction relation has |U | columns, one for each element
in U . The transaction relation I has a characteristic (unlabeled)
tuple for every set s ∈ S . That is, for every set s in S , we construct
a characteristic tuple of s in I by placing a 0 in position i if xi ∈ s
and 1 otherwise. Hence there are |S | tuples in the transaction

268

relation I and these are unlabeled tuples that we would like to
minimize capturing with the rules. There are no existing fraudulent
or legitimate tuples in I . The set Φ is initially empty. Hence,
Φ(I) does not capture any transaction (and thus, by definition, is
“perfect” for I). The instance I ′ consists of a single transaction
(1,1,1,...,1), which is the new fraudulent transaction that we wish
to capture.

As an example, consider the following hitting set where U =
{A1,A2,A3,A4,A5} and S = {s1, s2, s3}, where s1 = {A1,A2,A3},
s2 = {A2,A3,A4,A5}, and s3 = {A4,A5}. The transaction rela-
tion I ∪ I ′ (where I ′ is highlighted in gray) is shown below. The
last column annotates the type of tuple (e.g., the last tuple is a
fraudulent transaction).

A1 A2 A3 A4 A5

0 0 0 1 1
1 0 0 0 0
1 1 1 0 0
1 1 1 1 1 F’

It is straightforward to verify that the construction of the in-
stance of the Rule Modification Problem can be achieved in poly-
nomial time in the size of the input of the Hitting Set Problem. We
now show that a solution for the Minimum Hitting Set Problem
implies a solution for the Rule Modification Problem and vice
versa.

Let H be the minimum hitting set. For every element xi in H ,
we add a condition ai = 1 to the same rule. (The condition can
also be ai ≥ 1 or ai > 0 but wlog we assume ai = 1 is used.)
The cost of changing ai = 1 is 1. Clearly, we have that Φ′(I ∪ I ′)
contains the fraudulent transaction and since H hits every set
s ∈ S , for every s ∈ S , there must be at least an attribute ai in the
corresponding tuple of s whose value 0 when the condition ai = 1
according to the new rule Φ′. Hence, it follows that Φ′(I ∪ I ′) does
not contain any tuples in I ∪ I ′ other than the fraudulent tuple.

We show next that the expression cost(M) − (α ∗∆F+ β ∗∆L+
γ ∗ ∆R) is the minimum possible, assuming that α = β = γ > 1
(β is actually irrelevant here) and the cost of each modification
is 1. Suppose there is another set of modifications whose cost
is lower than the above. It must be that none of the unlabeled
tuples are selected by the modified rules since one can always
avoid capturing an unlabeled tuple and lower the cost even further
by adding an appropriate condition ai = 1. Furthermore, by the
same reason, the fraudulent tuple must be selected by the modified
rules. Thus, the expression cost(M) − (α ∗ ∆F + β ∗ ∆L + γ ∗ ∆R)
is the minimum possible when the number of ai = 1 conditions
correspond to the size of a the minimum hitting set. Any smaller
value will mean we have a smaller cardinality hitting set which is
a contradiction to our assumption that H is a minimum hitting set.

For the converse, let M be the set of modifications made to Φ
such that cost(M)− (α ∗∆F+ β ∗∆L+γ ∗∆R) is minimum. Again,
wlog, we may assume that the modifications must be of the form
ai = 1.

Let H = {xi | ai = 1 in the modified rule}. We show next that
H is a minimum hitting set. First, we show that H is a hitting set.
Suppose not, then there is a set s ∈ S such that H ∩ s = ∅. Let t be
the tuple that corresponds to s in the transaction table. This means
that Φ′(I ∪ I ′) contains t , since t contains the value 1 in every
attribute ai where ai = 1 in the modified rule. Pick an element,
say x j ∈ s such that x j < H . Now if we add the modification
aj = 1, the change in cost is +1-γ . Since γ > 1, we have that the
new total cost is lower than the original cost which contradicts the
assumption that M is a set of modifications that would give the
minimum total cost.

Next, we show that H is a minimum hitting set. Suppose not,
then there is another hitting set H ′ where |H ′ | < |H |. With H ′, it
is straightforward to construct a set of modifications whose cost is
lower than cost(M) − (α ∗ ∆F + β ∗ ∆L + γ ∗ ∆R).

In our running example, a modified rule is
A1 ≤ ⊤ ∧ A2 = 1 ∧ A3 ≤ ⊤ ∧ A4 = 1 ∧ A5 ≤ ⊤

since a minimum hitting set is {A2,A4}. �

The reduction of the above proof shows that the NP-hardness
result may arise because we allow the size of the schema of the
transaction relation to vary. We show next that, even if we fix the
size of the schema, the NP-hardness result continues to hold.

THEOREM 4.3. The RULE GENERALIZATION PROBLEM is
NP-hard even if Φ is perfect for I and the size of the schema of the
transaction relation is fixed.

SKETCH. The proof makes use of a reduction from the set
cover problem and in the reduction, a single unary transaction
relation is used. We build a taxonomy of the elements of a set
cover instance according to which element belongs to which set.
The relation is initially empty and assume Φ is initially empty as
well. The cost of adding rule with a condition is 1 and we assume
that the cost of adding the condition A ≤ ⊤ is very high (i.e., it
is prohibited). The new transaction relation I ′ consists of n new
fraudulent transactions, one for each element of the universe in
the set cover instance. One can then establish that a set of rules
of minimum cost can be derived from a minimum set cover and
vice versa. Intuitively, each rule has the form A ≤ Si where each
Si is part of the solution to the instance of the minimum set cover
problem. �

The Algorithm In view of the hardness result, we develop a
heuristic algorithm (Algo. 1) for determining a best set of general-
izations to capture a given set of fraudulent transactions.

In the algorithm, we use I to denote both old and new trans-
actions. Observe that one reason for the hardness of the rule
generalization problem comes from the desire to identify a set
of modifications that captures all fraudulent transactions and is
globally optimal. Instead, our heuristic works in a greedy manner,
gradually covering more and more uncaptured transactions. Rather
than treating each transaction individually, we split the fraudulent
transactions into smaller groups (clusters) of transactions that are
similar to each other, based on a distance function, and treat each
cluster individually. We denote the set of clusters by C. Each
cluster in C is represented by a representative tuple. Intuitively,
a representative tuple of a cluster is a tuple that “contains” every
tuple in that cluster. Hence, if a rule is generalized to capture the
representative tuple, then it must also capture every tuple in the
associated cluster. The algorithm then identifies for each repre-
sentative tuple the (top-k) best rule modifications to capture it.
The proposed modifications are verified with the domain expert,
who may interactively further adapt them or ask for additional
suggestions. Note that the modifications made to the rules by the
algorithm may result in capturing some legitimate tuples. We will
see how this too may be avoided later.

We next describe our algorithm more formally. We first define
each of the components, then provide a comprehensive example
that illustrates all.
Representative tuple of a cluster The representative tuple f of
a clusterC is a tuple with the same schema as tuples inC such that
for every attribute A, f .A contains t .A for every t ∈ C. If A is an
attribute with a total order, then f .A is an interval that contains t .A.

269

Algorithm 1: Generalize rules to capture new fraudulent
tuples

Input: A set Φ of rules for a transaction relation I (contains old
and new transactions), with F ⊆ I and F ′ ⊆ I .

Output: A new set Φ′ of rules that captures F ∪ F ′.
1 Let C denote the result of clustering tuples in F ∪ F ′.
2 foreach C ∈ C do
3 Let f (C) be the representative tuple of C .
4 Let Top-k (f (C)) denote the top-k rules for f (C) based on

Equation 2.

5 foreach C ∈ C do
6 while there does not exist a rule r such that f (C) ∈ r (I) do
7 if Top-k (f (C)) is non-empty then
8 Remove the next top rule r from Top-k (f (C)).
9 Construct the smallest generalization of r to r ′ so

that f (C) ∈ r ′(I).
10 Ask whether the rule r ′ is correct.
11 if the domain expert agrees with the modified r ′ then
12 Replace r with r ′ in Φ.
13 else
14 Ask the domain expert which modifications in r ′

are undesired.
15 Revert the modifications to the original

conditions of r as indicated by the domain
expert.

16 Allow the domain expert to make further
generalizations to the proposed rule.

17 else
18 Create a rule that will select exactly f (C) and add it

to Φ.

19 return Φ as Φ′.

If A is a categorical attribute, then f .A is a concept that contains
t .A for every t ∈ C. Furthermore, f .A is the smallest interval (resp.
concept) that has the above property.2 In other words, f is the
“smallest” such tuple that contains every tuple in C. Intuitively, the
clustering step, which generates representative tuples, provides a
higher-level semantic abstraction to the fraudulent tuples that are
to be captured.
Distance of a rule from a representative tuple The notation
| f − r | denotes the distance of a rule r from a representative tuple
f . Intuitively it reflects how much the conditions in the rule need
to be generalized for the rule to capture the representative tuple. It
is formally defined as:

Σni (f .Ai − r .Ai), (1)

where r .Ai denotes the interval or concept associated with the
condition of attribute Ai in the rule r , and n is the arity of the
transaction relation.

The distance between two attribute intervals is defined as fol-
lows. If f .A is the interval [s1, e1] and r .A is the interval [s2, e2],
then |[s1, e1] − [s2, e2]| is the sum of sizes of the smallest inter-
val(s) needed to extend [s2, e2] so that it contains [s1, e1]. For
example, the distance of |[1, 5] − [5, 100]| is 4, while the distance
of |[1, 100] − [1, 5]| is 95. The distance of |[5, 10] − [1, 100]| is 0,
since [1,100] already covers [5,10]. If an attribute A is categorical,
then | f .A−r .A| is the length of the smallest “ontological distance”
that need to be added to r .A so that it contains f .A. For example,
|Offline with PIN - Online with CCV| is 1, and |Offline without

2If there are multiple such concepts, e.g. in non tree-shaped concept hierarchies, we
pick one.

PIN - Online with CCV| is 2. By leveraging concepts in the ontol-
ogy when available, the resulting rules have a more meaningful
interpretation.
The overall cost function The overall cost of modifying a rule
r to capture a representative tuple f then reflects the amount
of modifications that need to be carried (Equation 1) minus the
benefit derived from those modifications:

Σni (f .Ai − r .Ai) − (α ∗ ∆F + β ∗ ∆L + γ ∗ ∆R) (2)

Putting things together We now have all the ingredients for
describing our algorithms. The algorithm proceeds by clustering
the transactions into groups and then computes a representative
tuple for each cluster. 3 For every cluster C, we compute its
representative tuple f (C) as well the cost (according to Equation 2)
of modifying each of the rules to capture it, and select the k rules
with minimal cost. We refer to them as the top-k rules (see Line
4 of Algo. 1). In Line 8, we pick the top rule in top-k(f (C)). If
the rule r (I) does not already contain f (C), we will attempt to
make the smallest generalization on r to r ′ so that r ′(I) contains
f (C). Whenever the interval or concept of an attribute r .A does
not contain f .A, we will attempt to modify r .A by computing the
smallest extension needed on r .A based on its distance from f .A.
We perform this extension on every attributeA of r where r .A does
not contain f .A. This is what we mean by “generalize r minimally
to r ′ so that f (C) ∈ r ′(I)” in line 9.

Next, we proceed to verify the new rule r ′ with our potential
modifications with the domain expert. If the domain expert agrees
with the proposed modifications (lines 11,12), we will replace r
with the new rule r ′ in Φ. Otherwise, we will refine our question
to probe the domain expert further on whether or not there are
parts of the modifications that are desired even though the entire
rule r ′ is not what the domain expert desires (lines 14,15). We
then modify only the desired modifications, if any. The next step
allows the domain expert to make further generalizations to the
rules. After this, the algorithm proceeds to pick another closest
rule to f (C) to attempt to capture f (C). Line 18 captures the
case when we ran out of rules to modify. If this happens, we will
construct a new rule to cover f by stating the exact conditions that
are required.

We conclude with a remark regarding the computational com-
plexity of the algorithm. All components of the algorithm (i.e.,
clustering, computation of representative tuples for each cluster
and the top-k rules) execute in PTIME in the size of its input.
Hence each iteration executes in PTIME in the size of the input.
The number of iterations per cluster is dependent on the amount
of refinements that the expert makes to the suggested rule modifi-
cations (shown in our experiments to be fairly small).

Example 4.4. The relation below depicts the representative
tuples of the clusters formed from the six fraudulent transactions
from Figure 2. The first tuple is the representative tuple of the
cluster that consists of the first two tuples in Figure 2. The second
(resp. third) tuple below is the representative of the cluster that
consists of only the 4th tuple in Figure 2 (resp., 6th, 7th, and 8th
tuples).

3In our implementation, we use the clustering algorithms of [12], but other clustering
algorithms can be similarly be used.

270

Representatives of fraudulent transactions in Figure 2:
Time Amount Transaction Type Location

[18:02,18:03] [106,107] Online, no CCV Online Store
[19:08,19:08] [114,114] Online, no CCV Online Store
[20:53,20:58] [44,48] Offline, without PIN GAS Station B

: : : :

Consider a domain expert, Elena, that is working with the
system. The first rule in Figure 1 is the closest to the first rep-
resentative tuple above. This is because Equation 2 evaluates to
(0+4+0+0)-(2+0+0)=2 for the first rule and the first representa-
tive tuple, whereas the second and third rule of Figure 1 and
the first representative tuple have scores (53+4+0+0)-(2+0-1)=56
and (178+0+0+1)-(6+0-3)=168, respectively, and are thus ranked
lower than the first rule. The number ’1’ in the last calculation de-
notes the ontological distance between “Gas Station A” and “Gas
Station B”. Since they are both contained under “Gas Station”, the
distance is 1.

Algo. 1 will thus propose to modify the condition of the first
rule from “Amt ≥ 110” to “Amt ≥ 106” to capture the representa-
tive tuple. It then proceeds to verify the modification with Elena.
Suppose Elena accepts the proposed modification but further gen-
eralizes the condition rounding it down to “Amt ≥ 100” instead.
So the new rule 1 is

1) Time ∈ [18:00,18:05] ∧ Amt ≥ 100.
Besides the fact that rounded values may be preferred by do-

main experts over more specific values, such rounding may em-
body domain-specific knowledge that may possibly lead to the
discovery of more fraudulent transactions, particularly from trans-
actions that are unlabeled, or the discovery of legitimate transac-
tions that should not have been labeled as legitimate.

For the second and third cluster, similar interactions occur
between RUDOLF and Elena. The new rules that result are:

2) Time ∈ [18:55,19:15] ∧ Amt ≥ 110.
3) Time ∈ [20:45, 21:15] ∧ Amt ≥ 40 ∧ Location≤Gas station’.

To conclude, observe that Algo. 1 allows Elena to make further
generalizations to the rules. Elena rounded the value down from
106 to 100 because her experience tells her that if frauds occur
with amount greater than $106, then it is likely to occur a few
dollars below $106 as well. Hence, she generalized (i.e., rounded
down) the value to $100. In making such generalizations, the
fraudulent transactions will continue to be captured. However, the
modified rules may now capture (more) non-fraudulent transac-
tions. Nonetheless, we still allow such generalizations since these
are deliberate changes made by Elena, the domain expert. More
typically, however, such “rounding generalizations” tend to be
meaningful generalizations that may lead to the discovery of more
fraudulent transactions (i.e., unlabeled transactions that should be
classified as fraudulent or legitimate transactions that are mistak-
enly labeled as legitimate)4. As we shall show in Example 4.7,
Elena can also leverage her experience or domain knowledge to
pinpoint the right conditions for avoiding legitimate transactions.

We describe next how over-generalization may be treated.

4.2 Rule Specialization Algorithm
In the previous subsection, we have seen how one generalizes rules
to capture fraudulent transactions. We now discuss the opposite
case, where we wish to specialize rules instead, in order to exclude
legitimate transactions when there no new fraudulent transactions
or unlabeled transactions but there are new legitimate transactions.

4This is from our conversations with domain experts on credit card fraud detection.

We call this special case the RULE SPECIALIZATION PROBLEM.
Here again we can show hardness results analogous to Theorem
4.1 and 4.3.

THEOREM 4.5. The RULE SPECIALIZATION PROBLEM is
NP-hard even if Φ is perfect for I . The problem is NP-hard even
when I contains only unlabeled transactions and I ′ consists of
only one legitimate transaction.

PROOF. Given an instance of the hitting set problem, we con-
struct an instance of the RULE SPECIALIZATION PROBLEM as
follows.

The transaction relation has |U | columns, one for each element
in U . For every set s in S , we construct a characteristic tuple of s
by placing a 0 in position i if xi ∈ s and 1 otherwise. Hence there
are |S | tuples in the transaction relation I so far and the fraudulent
transactions F = I . The set Φ consists of a single rule

A1 ≤ ⊤ ∧ ... ∧A |U | ≤ ⊤,
where ⊤ denotes the top element, and hence, Φ(I) currently cap-
tures all fraudulent transactions F . The new transaction relation
I ′ consists of a single tuple (1,1,1,...,1). This set L′ of legitimate
transactions is a singleton set consisting of only (1,1,1,...,1). That
is, L′ = I ′. This is the legitimate transaction that we wish to
exclude.

With F ′ = L = ∅, our goal is to specialize the rule in Φ to
capture exactly the fraudulent tuples F only. Like in the proof of
Theorem 4.1, we assume that each modification is associated with
a unit cost and α = β = γ > 1.

As an example, consider the same hitting set as in the proof of
Theorem 4.1, where U = {A1,A2,A3,A4,A5} and S = {s1, s2, s3},
where s1 = {A1,A2,A3}, s2 = {A2,A3,A4,A5}, and s3 = {A4,A5}.
The transaction relation I ∪ I ′ is shown below (where I ′ is shown
in gray). The last column annotates the type of tuple (i.e., F for
tuples in F and L’ for tuples in L′).

A1 A2 A3 A4 A5

0 0 0 1 1 F
1 0 0 0 0 F
1 1 1 0 0 F
1 1 1 1 1 L’

It is straightforward to verify that the reduction to an instance
of the RULE SPECIALIZATION PROBLEM can be achieved in
polynomial time in the size of the input of the Hitting Set Problem.
We now show that a solution for the Minimum Hitting Set Problem
implies a solution for the RULE SPECIALIZATION PROBLEM and
vice versa.

Let H be a minimum hitting set. For every element xi in H ,
we duplicate the original rule (except if this is the last element
in H) and modify the corresponding condition to ai = 0 in the
copy of the rule. (The condition can also be ai ≤ 0 or ai < 1 but
wlog we assume ai = 0 is used.) Recall that the cost of changing
ai = 0 is 1, and the cost of duplicating a rule is 1. Clearly, we have
that Φ′(I ∪ I ′) contains F . Indeed, since H hits every set s ∈ S ,
there must be an element in s whose corresponding value under an
attribute ai is 0 when the condition ai = 0 according to a new rule
in Φ′. Hence, it follows that Φ′(I ∪ I ′) contains F and since each
rule in Φ′ contains a condition of the form ai = 0, the legitimate
transaction (1,1,1,...1) will not be among Φ′(I ∪ I ′).

We show next that the expression cost(M)−(α ∗∆F+β ∗∆L+γ ∗
∆R) is the minimum possible. Suppose there is another set M ′ of
modifications to Φ′′ such that cost(M ′)−(α ∗∆F+β ∗∆L+γ ∗∆R)
is less than the previous expression. Observe that every rule in
Φ′′ must contain at least a condition that is specific to selecting

271

a fraudulent transaction. That is, for every rule, ai = 0 for some
i since otherwise, the rule is either redundant or the legitimate
transaction will be selected. Also, we can assume that every other
condition in the rule in Φ′′ cannot contain a condition that selects
1s (e.g., of the form ai = 1). If a rule r contains a condition ai = 1,
then we can omit this condition and assume it is ai ≤ ⊤ instead.
The rule with ai ≤ ⊤ captures all tuples that are captured by r
(and possibly more) and hence, we will continue to capture all
fraudulent tuples and continue to exclude the legitimate tuple
under this assumption. Similarly, if a rule r contains multiple
conditions ai = 0s, then we can omit all but one of the ai = 0s
and assume the rest are ai ≤ ⊤. We can now construct a hitting
set from M ′ that is smaller than H , which is a contradiction.

For the converse, let M be the set of modifications made to
Φ such that F ⊆ Φ′(I ∪ I ′), the legitimate transaction l is such
that l < Φ′(I ∪ I ′), and cost(M) − (α ∗ ∆F + β ∗ ∆L + γ ∗ ∆R) is
minimum. As before, observe that each rule must contain at least
one modification of the form ai = 0 for some i so that l is not
selected. Furthermore, it is easy to see that each rule must contain
exactly one such condition ai = 0 only as additional conditions
such as aj = 1 or aj = 0 are redundant and can only increase the
cost.

Let H = {xi | ai = 0 in any of the modified rules}. We show
next that H is a minimum hitting set. First, we show that H is
a hitting set. Suppose not, then there is a set s ∈ S such that
H ∩ s = ∅. In other words, for every element xi ∈ s, there does not
exist a rule in Φ′ where ai = 0. Let f be the tuple that corresponds
to s in the transaction table. This means that f < Φ′(I ∪ I ′), which
contradicts our assumption that F ⊆ Φ′(I ∪ I ′).

Next, we show that H is a minimum hitting set. Suppose not,
then there is another hitting set H ′ where |H ′ | < |H |. With H ′, it
is straightforward to construct a set of modifications whose cost is
lower than M’s cost.

In our running example, Φ′ contains two rules:

A1 ≤ ⊤ ∧ A2 = 0 ∧ A3 ≤ ⊤ ∧ A4 ≤ ⊤ ∧ A5 ≤ ⊤

A1 ≤ ⊤ ∧ A2 ≤ ⊤ ∧ A3 ≤ ⊤ ∧ A4 = 0 ∧ A5 ≤ ⊤

since a minimum hitting set is {A2,A4}. �

Similarly, we can show that the NP-hardness continues to hold
even if we fix the size of the schema.

THEOREM 4.6. The RULE SPECIALIZATION PROBLEM is
also NP-hard even if Φ is perfect for I and the size of the schema
of the transaction relation is fixed.

SKETCH. The proof of the above result is similar to that of
Theorem 4.3. It makes use of a reduction from the set cover
problem and in the reduction, a single unary transaction relation
is used. We build a taxonomy of the elements of a set cover
instance according to which element belongs to which set. The
relation initially contains all elements of the universe of the set
cover instance and these transactions are all fraudulent. The set
Φ consists of a single rule A ≤ ⊤ which captures all fraudulent
transactions. The cost of adding a rule and modifying a condition
cost 1 each. The new transaction relation I ′ consists of a single
legitimate tuple whose value does not occur among the existing
values. One can then establish that a set of rules of minimum
cost can be derived from a minimum set cover and vice versa.
Intuitively, each rule has the form A ≤ Si where each Si is part of
the solution to the instance of the minimum set cover problem. �

Algorithm 2: Adapt rules to exclude legitimate tuples
Input: A set Φ of rules for a transaction relation I (contains old

and new transactions) with L ⊆ I and L′ ⊆ I .
Output: A new set Φ′ of rules that excludes L ∪ L′.

1 foreach l ∈ (L ∪ L′) do
2 Let Ωl = {r ∈ Φ | l ∈ r (I)}.
3 foreach r ∈ Ωl do
4 repeat
5 Let A be an attribute that has not been considered

before and where splitting on A to exclude l .A will
minimize the cost associated with splitting on A.

6 Suppose the existing condition on A is A ∈ [b, e].
7 Split r into r1 and r2 on A as follows:
8 Let r1 be a copy of r except that the condition on A

is A ∈ [b, prev(r .A)].
9 Let r2 be a copy of r except that the condition on A

is A ∈ [succ(r .A), e].
10 Ask the domain expert whether the split into r1 and

r2 is correct.
11 if the domain expert agrees with the modification

then
12 Add r1 and r2 to Φ.
13 Allow the domain expert to make further

modifications to the proposed rules.
14 Break out of repeat loop.
15 until all attributes have been considered;
16 Remove r from Φ.

17 return Φ as Φ′.

The Algorithm In view of the hardness results, we develop a
heuristic algorithm (Algo. 2) that greedily determines the best
attribute to “split” to avoid capturing each legitimate tuple.

In Algo. 2, we use I to denote both old and new transactions.
For each legitimate transaction l in (L ∪ L′), we determine the
set Ωl of rules that will capture l and modify every rule in Ωl to
ensure that the modified rules will no longer capture l . For a rule
r in Ωl , the algorithm proceeds to pick an attribute A where we
can split the condition of the attribute to exclude the value l .A.
The attribute A that we pick is the one that maximizes the benefit
according to the benefit α ∗ ∆F + β ∗ ∆L + γ ∗ ∆R, assuming a
fixed cost of modification where we copy the rule and split on the
attribute. If there are multiple attributes with the same maximum
benefit, we randomly pick one of them. Observe that the heuristic
of greedily selecting an attribute that will maximize benefit may
not be globally optimal in the end. In the proof of Theorem 4.5,
this greedy heuristic is analogous to the strategy of repeatedly
picking the attribute (and splitting on the attribute) that will “hit”
the most sets until all sets are hit.
Splitting on attributes Once an attribute is selected, the rule is
duplicated into r1 and r2 and the condition on A in both rules is
modified to exclude l .A. Observe that since r (I) captures l , we
must have that l .A satisfies the rule r ’s condition on A. In the split,
r1’s condition on A accept values from b to the element that is the
predecessor of l .A, where b denotes the smallest value accepted by
the existing condition of r on A. The rule r2 selects only elements
from the successor element of l .A to the largest value (i.e., e)
accepted by the existing condition of r on A.

For domains that are discrete and has a total order, the above
procedure, prev(r .A) and succ(r .A) are well-defined. However,
when domains are categorical and has only a partial order, the
rules will be split according to the partial order. Let O denote the

272

set of all concepts (excluding l .A) that are parents of ⊥ in the
partial order (i.e., the leaf nodes of the partial order excluding ⊥).
To exclude l .A, the algorithm considers how to select a minimum
set of concepts to “cover” all concepts inO that excludes l .A at the
same time. It can be shown that the problem of computing such a
minimum set is analogous to computing a minimum set cover for
O . Our procedure adopts the greedy heuristic where we greedily
pick a concept in the partial hierarchy that covers the most number
of uncovered concepts in O until all nodes in O are covered. For
categorical attributes, it may be necessary to duplicate r more than
twice, where there is a rule to select each concept in the cover. For
example, referring to Figure 1, to exclude “Online, with CCV”,
we may pick “Offline” and “Online, without CCV” to cover the
remaining concepts that are parents of “None”. Observe that simi-
lar to our algorithm on rule generalization, our rule specialization
algorithm also makes use of the ontology whenever available to
split the attributes meaningfully. In this case, attributes are split
into meaningful concepts in the “lower-level” according to the
ontology.

After this, we ask whether the domain expert agrees with the
split. If the domain expert agrees, we add both rules r1 and r2 to Φ.
The domain expert can also add further modifications to the rules
(line 13), such as excluding more values than what is suggested
by the algorithm, and we break out of the repeat loop. Otherwise,
we repeat the loop to attempt to split r on another attribute to
avoid capturing l . Note that since l has to be excluded, one of the
splits must be deemed correct by the domain expert. After this,
we remove r from Φ and repeat the same procedure to modify Φ
to exclude the selection of another legitimate transactions.

Example 4.7. We will now illustrate Algo. 2. The legitimate
transactions from Figure 2 that are captured by the modified rules
of Example 4.4 are shown below for convenience.

Time Amount Transaction Type Location
l1 18:04 112 Online, with CCV Online Store
l2 19:10 117 Online, with CCV Online Store
l3 21:01 49 Offline, with PIN GAS Station A

: : : :

Modified rules Φ from Example 4.4:
1) Time ∈ [18:00,18:05] ∧ Amt ≥ 100.
2) Time ∈ [18:55,19:15] ∧ Amt ≥ 110.
3) Time ∈ [20:45, 21:30] ∧ Amt ≥ 40 ∧ Location≤Gas station’.
We would like to adapt the rules to exclude these legitimate

transactions (and still continue capture fraudulent transactions).
For this example, assume that α = β = γ = 1.

The algorithm considers every legitimate transaction. Since l1
is caught by rule (1) above, Algo. 2 proceeds to determine which
attribute of the rule to split in order to exclude l1. Splitting on
time or amount or type will result in the same maximum
benefit: (1*0 (zero unlabeled transactions on either day) + 1*0
(the number of fraudulent transactions that are caught remains
unchanged) + 1*1 (one less legitimate transaction that is caught)).
Splitting on the attribute location, however, will cause addi-
tional fraudulent transactions (i.e., the first two transactions in
Figure 2) to be missed and hence has a lower benefit than the rest
of the attributes.

Suppose the algorithm proposes to split on time (an arbitrary
choice among time, amount or type). This will result in two
rules that will capture all fraudulent transactions that were previ-
ously caught by the rule and exclude l1 at the same time.

r11: Time ∈ [18:00,18:03] ∧ Amt ≥ 100.
r12: Time ∈ [18:05,18:05] ∧ Amt ≥ 100.

At this point, Elena can accept this proposal or ask for alterna-
tives. For the purpose of illustrating our algorithm, suppose Elena
asked for an alternative proposed modification. Our algorithm may
now propose to split on type instead. Since there is currently
no condition on type in the first rule, the condition is implicitly
“type ≤ ⊤”. And because the concepts “Offline” and “Online, with-
out CCV” cover all possible type values (i.e., values immediately
above the “None” node in Figure 1) except “Online,with CCV”
which we wish to exclude, we have the following two rules:
r11: Time ∈ [18:00,18:05] ∧ Amt ≥ 100 ∧ Type ≤ Offline.
r12: Time ∈ [18:00,18:05] ∧ Amt ≥ 100 ∧ Type ≤ Onl.,no CCV.

Using domain knowledge that only online purchases, especially
those without CCVs are of concern, Elena eliminates the rule r11.

After this, our algorithm proceeds in a manner that is similar to
what was described before to split the second rule of Φ to omit l2
(and similarly, the third rule of Φ for l3). We omit the details here
but show the final rules that are obtained.
r22: Time ∈ [18:55,19:15] ∧ Amt ≥ 100 ∧ Type ≤ Onl., no CCV.
r31: Time ∈ [20:45,21:15] ∧ Amt ≥ 40 ∧ Location ≤ Gas Station ∧

Type ≤ Online.
r32: Time ∈ [20:45,21:15] ∧ Amt ≥ 40 ∧ Location ≤ Gas Station ∧

Type ≤ No code.

Observe that whenever a condition is generalized (in Algo. 1),
more legitimate or unlabeled tuples may be inadvertently captured
by the rule. Hence, further refinements may be needed to tune the
rules to a desired state. Conversely, if a condition is specialized,
some fraudulent tuples may be inadvertently omitted. Hence, fur-
ther refinements may be needed to tune the rules to a desired state.
As we shall describe next, the rules are interactively refined based
on the input of a domain expert such as Elena. In particular, there
may be several rounds of refinements through generalizations and
specializations before a desired set of rules is obtained.

5 IMPLEMENTATION AND EXPERIMENTS
RUDOLF is implemented in PHP/JavaScript and uses MySQL as
the DB engine. Detailed system architecture described in [11].
Datasets We have access to a real-world datasets of credit card
transactions by a financial company XYZ5. Due to the sensitivity
of credit card-related information, we used anonymized version of
the dataset. The dataset consists of transaction sets of various sizes
from 15 financial institutes (FIs) for the first quarter of 2016. Each
transaction set varies from 100K to 10M transactions and most of
them consists of about 500K transactions. The percentage of fraud-
ulent transactions varies between 0.5% to 2.5% between different
FIs. The number of missclassified transactions (i.e., fraudulent
transactions that are marked as legitimate and vice-versa) varies
between 35% and 50%. The transactions contain both numerical
(time, amount, number of previous actions, etc.) and also categori-
cal (location, client type, etc) data. Along with the transactions,
we obtained 15 rules-sets, one for each of the 15 FIs for the same
time period from company XYZ. We also obtained the change
history and versions of those rules. A small FI typically has about
10 rules while a big FI typically has about 130 rules. Most FIs have
about 55 rules on average. Each time the rules are modified, the
rules undergo about 10 rounds of modifications on average. The
transactions in the data sets are annotated as fraudulent/legitimate,
and we take these annotations as the ground truth. Each transac-
tion also has a risk score, which is a value between 0 and 1000,
that is generated by the company’s machine learning algorithm
to determine the chance that the transaction is fraudulent. The

5Name omitted per company request

273

fraudulent transactions can be captured by the set of rules given
by the company and allowing the users to refine the rules over
time. Another option is to apply a rule that classify all transactions
with risk score above a certain threshold as fradulent.

Ontology In the experiments for the location attributes we used
a geographical ontology (containing different relations, e.g., cap-
ital city, located in, region, continent, etc) that was built semi-
automatically (using DBPedia [13]) and manually verified by the
domain experts.

Experiment scenarios The different sizes of transaction sets
allowed us to vary our experiments with different dataset sizes
(from 100K to 10M, with the average value being 500K).

We run each experiment with 8 users (fraud detection experts
from company XYZ) and as the variance was less that 2% we
present here the average. We also ran our experiments with 10
student volunteers to determine whether the level of expertise
affects the results. To simulate the work of a domain expert, we
we spilt each dataset into two parts of approximately the same
size, before and after a certain point in time. We advanced in time
from this point and examined, at different points in time, how the
expert adapts the rules in response to transactions arriving up to
that point.

We compared the performance of RUDOLF to three alternative
solutions, to be detailed below. For each of the algorithms and each
of the datasets, we varied the number of new transactions arriving
between consecutive rounds of rule refinement. The number of
new transactions varies from 10% to 20% of the dataset, with the
default being 10%, and this corresponds closely to what happens
in real-life between rounds of rule refinement.

Baseline algorithms We consider the two extreme baselines: A
fully-manual setting, where rules are manually refined by experts
without the help of the system (the current setting that is used by
company XYZ experts in their daily work), and a fully-automatic
setting that uses the risk score produced by the ML algorithm and
a single rule that selects fraudulent transactions based on their risk
scores. Observe that this algorithm essentially generates a single
new rule of the form score greater than threshold (rather than
refining an existing set of rules). We also compared to the baseline
algorithm No Change, which denotes the given rules without any
changes.

Observe that the fully manual setting is arguably our “toughest”
competitor since the rules are modified by experts and the experts
are not limited by any time constraint to refine the rules.

In addition to the above, we also consider a variant of RUDOLF,
denoted RUDOLF−, that automatically refines the existing set
of rules by accepting the modifications proposed by the system
without consulting an expert. We also considered RUDOLF -s,
which is the system RUDOLF that does not refine categorical
attributes (and hence does not use ontologies) of rules. To the
best of our knowledge, all existing systems refine only numerical
attributes of rules. Hence the performance of RUDOLF -s will
allow us to understand how RUDOLF compares with systems
that are only restricted to refine numerical attributes. In fact, we
discovered that RUDOLF -s gives almost same results as the fully-
manual system and also RUDOLF−. Hence, we omit the results of
RUDOLF -s completely.

Measurements In our experiments, we measured the efficiency
of the algorithms in terms of the effectiveness of the derived
rules and the amount of time that the domain experts saved as a
consequence of using our system. We also measured the running
time required by RUDOLF to select the proposed modifications.

For our datasets this was always at most one second, and we thus
omit the exact measures.

To measure the effectiveness of a set of rules derived by any
of the methods, we consider its prediction quality, namely how
correctly it identifies future frauds. For that, we examine the set
of transactions from the given point in time where the rules were
derived and until the end of the dataset. For these future trans-
actions we count, for each set of rules, the percentage out of all
fraudulent (resp. legitimate) transactions that it identifies (resp.
wrongly classifies as fraudulent).

To understand of how many modifications each method en-
tailed, we also computed the cumulative number of rule updates
that each method required. We measure this only for RUDOLF,
RUDOLF−, and the fully-manual methods, which directly change
existing rules.

Finally, we measured the time the experts took to refine the
rules.

Results We first report on our experiments with the domain ex-
perts. Our first experiment examines the performance of the algo-
rithms as time advances, with all parameters set to their default
value. As explained above, at each point in time, (i.e. after a certain
percentage of the transactions has been observed), the algorithms
are invoked to derive a corresponding updated set of rules. Fig-
ure 3(a) shows the (cumulative) number of modifications that
RUDOLF, fully-manual and RUDOLF− method performed to the
rules. We see that RUDOLF performs less modifications than its
competitors.

We can see this more clearly in Figure 3(b), which illustrates
the prediction quality of the derived sets of rules, in terms of the
percentage of misclassified future transactions (lower percentage
of error implies better prediction quality). RUDOLF performs
the best, providing the best prediction. The fully manual rule
derivation provides less accurate predictions, though still better
than the two automatic competitors. Among the two, RUDOLF−,
that incrementally refines the rules, still performs better than the
threshold-based ML approach.

We note that the difference in performance between RUDOLF−

and RUDOLF demonstrates the importance of incorporating ex-
perts and their domain knowledge in the loop.

For the experiments above, the rules were periodically refined
in hops of 10% of the transactions. For different hops sizes, the
results are also similar, except that convergence naturally arrives
after fewer (proportionally) iterations for larger hops.

Our next experiment examines the performance of the algo-
rithms for varying dataset, with almost the same percentage of
fraud, but different sizes. The size had no significant effect on the
number of rule modifications performed by the algorithms, but
the prediction quality slightly improved as more data was avail-
able. Figure 3(c) illustrate, for varying dataset sizes, the prediction
quality of the rules after the first refinement round, in terms of the
percentage of misclassified transaction. Here again, lower percent-
age means better quality. As before, RUDOLF yields best results.
We can see that the error of all algorithms slightly decreases as
the size of the data set grows. The improvement is only small
as fraudulent transactions of the existing fraud patterns are dis-
tributed throughout the datasets, so the additional data reveals
some, but not huge, amount of new information. Similar results
were obtained for the following refinements rounds and we thus
omit the graphs.

Next, we examine the performance of the algorithms for vary-
ing percentages of fraudulent transactions. We took 4 different

274

0

5

10

15

20

25

30

35

60% 70% 80% 90% 100%

o

f
ch

an
ge

s

% of seen transactions

Rudolf- Manual Rudolf

(a) cumulative # of changes

0%

10%

20%

30%

40%

50%

60%

70%

50% 60% 70% 80% 90% 100%

Er
ro

r
%

% of seen transactions

Auto No Change Rudolf- Manual Rudolf

(b) prediction quality

0%

10%

20%

30%

40%

50%

60%

70%

100 250 500 1000

Er
ro

r
%

Dataset size (K)

Auto No Change Rudolf- Manual Rudolf

(c) varying dataset size

0

5

10

15

20

25

0.5% 1.0% 1.5% 2.5%

o

f
ch

an
ge

s

% of fraud

Rudolf- Manual Rudolf

(d) varying % of fraud - # of changes

0%

10%

20%

30%

40%

50%

60%

70%

0.5% 1.0% 1.5% 2.5%

Er
ro

r
%

% of fraud

Auto No Change Rudolf- Manual Rudolf

(e) varying % of fraud - prediction quality

0

600

1200

1800

2400

3000

3600

1 2 5 10 50

Ti
m

e
(s

ec
o

n
d

s)

of changes

Rudolf Manual

(f) Time

Figure 3: Experimental results

customers databases of roughly the same size, but different fraud
percentages (0.5% to 2.5%). All other parameters are set to their
default values. Figures 3(d) 3(e) show, respectively, the number
of rule updates and percentage of error after the first refinement
round. We can see that an increased number of fraudulent transac-
tion entails more rule modifications to capture them. The classifi-
cation error slightly increases with more fraudulent transactions,
but here again RUDOLF achieves the lowest error.

Finally we note that rule refinement with RUDOLF not only
consistently yielded superior fraud prediction, but also reduced the
time required from the experts by a factor between 4 to 5. (Around
50 seconds per round for RUDOLF compared to 4-5 minutes with-
out). We measured time of our experts performance, depicted in
figure 3(f). We asked them to fix up to 50 problematic transactions
in both manual and automatic way. Interestingly, no expert fin-
ished all 50 fixes in the manual mode (a well-trained expert from
company XYZ usually can fix 30-40 transactions per work-day).
The fact that RUDOLF leads in performance across all parameters
is interesting as the rules derived manually by experts are typically
considered as ground truth and yet, RUDOLF is able to do better
(i.e., with less changes, and with lower percentage of error) with
less data. This was consistent in all the experiments. Furthermore,
all users reported that working with RUDOLF was convenient and
effective in the sense that the rules/modifications proposed by the
system helped them identify and focus on the problematic rules
and the needed treatment. To conclude we observed that around
75% of the modifications were condition refinements, 20% rule
splits, and 5% rule addition.

Interestingly, our experiments with novice users (student vol-
unteers) show similar trends. In particular, also for novice users,
the rules generated with the assistance of RUDOLF were of best
quality and produced much faster than in all alternatives. We omit
the graphs for space constraints and only note that as expected,
compared to the domain experts, the overall perdition quality,
even with RUDOLF , was lower (by about 5%) than for the experts,
but still significantly better (by 25%) than what the novice users
would have achieved alone.

6 RELATED WORK
The identification of fraudulent transactions is essentially a classifi-
cation problem. Classification has been a fundamental problem in
machine learning and data management [14, 15], and crowdsourc-
ing has recently emerged as a major problem solving paradigm
[16]. Many classification works have used crowdsourcing to ob-
tain training data for learning [17–20]. This is complimentary
to our work: In RUDOLF the crowd (of experts) is employed to
maintain classifications rules, which might have been initially
learnt through such training. Besides learning-based models, rules
are also used for classification. Most of the previous research in
rule-based classifiers focus on how to learn rules from the training
data. In contrast, [21] employs both learning and analyst experts
that manually create classification rules using regular expressions.
In [22] that describes LinkedIn’s job title classification system,
experts and crowdsourcing are also heavily used. In both cases
however the ongoing refinement of rules in a changing environ-
ment, which is the focus of RUDOLF, is not considered.

In addition to machine learning-based methods, there are mul-
tiple fraud-detection techniques that have been considered. For
example [4] uses a decision tree, defined recursively for nodes and
edges of the tree and using the ratio between number of transac-
tions that satisfy some condition to label them accordingly. Other
methods, e.g. [5], are based on genetic programming, used to clas-
sify transactions into suspicious and non-suspicious ones. Another
class of the algorithms for fraud detection is based on clustering
techniques. An example is [6] that clusters users based on com-
mon behavior and then considers as suspicious the transactions
that take the user outside its cluster. Bayesian networks are used
both to detect fraud in telecommunications (e.g. [23]) and in the
credit card industry (e.g. [24]). Neural networks are also used
for fraud detection. For instance [25] presents an online fraud
detection system, based on a neural classifier. All these techniques
are complimentary to ours and can be used to deriving the initial
base-set of rules.

Another class of work similar RUDOLF is that of Concept
Drifts, which are changes that occur on the distribution of the
input that affects the learning system and thus the output. [8]
deals with concept drifts by using sliding window that adaptively
remembers more or less items from the training set (the closest

275

past) according to whether it recognized a concept drift or not.
Other system ([9]) is classification system based on decision rules.
Even though these systems can compute the nearest neighbors
for the closest rules and generalization for numerical values, they
do not support generalization and specification on categorical
attributes, do not involve a human expert in the loop, and do not
allow configuration of weight for different kind of errors (false
positives and false negatives).

Finally, if we view our transaction relation as the source data-
base and the set of fraudulent transactions as our target database,
then the work on deriving queries or schema mappings based
on source-target databases (e.g., [26–28]) is also relevant. Simi-
larly, techniques for rule mining and, in particular, inductive logic
programming (e.g., [29]) can also be used for fraud detection,
where the fraudulent transactions can be seen as positive examples
and the legitimate transactions can be seen as negative examples.
However, the language of schema mappings and inductive logic
programming are different from our rule language and more im-
portantly, the rules derived cannot be interactively adapted.

7 CONCLUSION AND FUTURE WORK
We present RUDOLF, a novel system that assists domain experts
in defining and adapting rules in dynamic environments. We show
that the problem of identifying the best candidate adaptation for a
core language is NP-hard and present PTIME heuristic algorithms
for determining the set of rules to adapt and working interactively
with the domain experts until they are satisfied with the resulting
rules. Our experiments with real-world data sets demonstrate the
promise that RUDOLF is an effective and efficient tool for rule
refinement.

One direcvtion for future work is the use of more sophisticated
cost model. Instead of associating a cost with every modifica-
tion made to a condition in the rule, one can varying the cost
depending on the attribute or even rule that is modified and these
costs/weights can be learned or adjusted based on user feedback,
satisfaction of the suggested modification etc. Similarly, the param-
eters α , β and γ used in our cost formula to weight the importance
of misclassifying of fraudulent/legitimate/unlabeled transactions
may also be dynamically adapted based on such user feedback.

Acknowledgements This work has been partially funded by the
European Research Council under the FP7, ERC grant MoDaS,
agreement 291071, and by grants from the Blavatnik Cyber Se-
curity center and the Israel Innovation Authority. Work was done
while Tan was at UCSC. Tan was partially supported by NSF grant
IIS-1524382 at UCSC.

REFERENCES
[1] “The us sees more money lost to credit card fraud than the

rest of the world combined,” http://read.bi/18Gin67.
[2] “Card fraud worlwide,” http://nilsonreport.com/publication_

chart_and_graphs_archive.php?year=2015.
[3] “How credit card companies spot fraud before

you do,” http://money.usnews.com/money/personal-
finance/articles/2013/07/10/how-credit-card-companies-
spot-fraud-before-you-do.

[4] A. I. Kokkinaki, “On atypical database transactions: Identi-
fication of probable frauds using machine learning for user
profiling,” KDEX, 1997.

[5] P. J. Bentley, J. Kim, G.-H. Jung, and J.-U. Choi, “Fuzzy
darwinian detection of credit card fraud.”

[6] R. J. Bolton and D. J. Hand, “Statistical fraud detection: A
review,” Statistical Science, vol. 2002, pp. 235–255, 2002.

[7] A. Chapman and H. V. Jagadish, “Why not?” in SIGMOD,
2009, pp. 523–534.

[8] G. Widmer and M. Kubat, “Learning in the presence of con-
cept drift and hidden contexts,” Machine Learning, vol. 23,
no. 1, pp. 69–101, 1996.

[9] F. J. Ferrer-Troyano, J. S. Aguilar-Ruiz, and J. C. R. Santos,
“Data streams classification by incremental rule learning with
parameterized generalization.”

[10] C. Phua, V. C. S. Lee, K. Smith-Miles, and R. W. Gayler, “A
comprehensive survey of data mining-based fraud detection
research,” 2010.

[11] T. Milo, S. Novgorodov, and W. Tan, “Rudolf: Interactive
rule refinement system for fraud detection,” PVLDB, vol. 9,
no. 13, pp. 1465–1468, 2016.

[12] M. Shindler, A. Wong, and A. Meyerson, “Fast and accurate
k-means for large datasets,” in NIPS, 2011, pp. 2375–2383.

[13] “DBPedia,” http://dbpedia.org.
[14] T. M. Mitchell, Machine learning, ser. McGraw Hill series

in computer science. McGraw-Hill, 1997.
[15] R. Ramakrishnan and J. Gehrke, Database management sys-

tems (3rd ed.). McGraw-Hill, 2003.
[16] A. Doan, R. Ramakrishnan, and A. Y. Halevy, “Crowdsourc-

ing systems on the world-wide web,” Commun. ACM, vol. 54,
no. 4, pp. 86–96, 2011.

[17] S. Vijayanarasimhan and K. Grauman, “Large-scale live
active learning: Training object detectors with crawled data
and crowds,” in CVPR, 2011, pp. 1449–1456.

[18] V. Ambati, S. Vogel, and J. G. Carbonell, “Active learning
and crowd-sourcing for machine translation,” in LREC 2010.

[19] E. Kamar, S. Hacker, and E. Horvitz, “Combining human
and machine intelligence in large-scale crowdsourcing,” in
AAMAS, 2012, pp. 467–474.

[20] D. R. Karger, S. Oh, and D. Shah, “Iterative learning for
reliable crowdsourcing systems,” in NIPS 2011.

[21] C. Sun, N. Rampalli, F. Yang, and A. Doan, “Chimera: Large-
scale classification using machine learning, rules, and crowd-
sourcing,” PVLDB, vol. 7, no. 13.

[22] R. Bekkerman and M. Gavish, “High-precision phrase-based
document classification on a modern scale,” in KDD 2011,
2011, pp. 231–239.

[23] K. J. Ezawa and S. W. Norton, “Constructing bayesian net-
works to predict uncollectible telecommunications accounts,”
Intelligent Systems, 1996.

[24] S. Maes, K. Tuyls, B. Vanschoenwinkel, and B. Mander-
ick, “Credit card fraud detection using bayesian and neural
networks,” in NAISO, 2002.

[25] D. J.R., G. F., S. C., and C. C.S., “Neural fraud detection
in credit card operations,” IEEE Trans. on Neural Networks,
1997.

[26] A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and
J. Widom, “Synthesizing view definitions from data,” in
ICDT, 2010.

[27] Q. T. Tran, C. Y. Chan, and S. Parthasarathy, “Query reverse
engineering,” VLDB J., vol. 23, no. 5, pp. 721–746, 2014.

[28] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan, “De-
signing and refining schema mappings via data examples,”
in SIGMOD, 2011, pp. 133–144.

[29] L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek,
“Fast rule mining in ontological knowledge bases with
AMIE+,” VLDB J., vol. 24, no. 6, 2015.

276

	Interactive Rule Refinement for Fraud DetectionTova Milo, Slava Novgorodov, Wang-Chiew Tan

