
Apollo: Learning Query Correlations for Predictive Caching
in Geo-Distributed Systems

Brad Glasbergen
University of Waterloo
bjglasbe@uwaterloo.ca

Michael Abebe
University of Waterloo
mtabebe@uwaterloo.ca

Khuzaima Daudjee
University of Waterloo

kdaudjee@uwaterloo.ca

Scott Foggo
University of Waterloo
sjfoggo@uwaterloo.ca

Anil Pacaci
University of Waterloo
apacaci@uwaterloo.ca

ABSTRACT
The performance of modern geo-distributed database applications
is increasingly dependent on remote access latencies. Systems
that cache query results to bring data closer to clients are gaining
popularity but they do not dynamically learn and exploit access
patterns in client workloads. We present a novel prediction frame-
work that identifies and makes use of workload characteristics
obtained from data access patterns to exploit query relationships
within an application’s database workload. We have designed and
implemented this framework as Apollo, a system that learns query
patterns and adaptively uses them to predict future queries and
cache their results. Through extensive experimentation with two
different benchmarks, we show that Apollo provides significant
performance gains over popular caching solutions through reduced
query response time. Our experiments demonstrate Apollo’s ro-
bustness to workload changes and its scalability as a predictive
cache for geo-distributed database applications.

1 INTRODUCTION
Modern distributed database systems and applications frequently
have to handle large query processing latencies resulting from the
geo-distribution of data [11, 13, 41]. Industry reports indicate that
even small increases in client latency can result in significant drops
in both web traffic [20] and sales [3, 30]. A common solution to
this latency problem is to place data closer to clients [38, 39] using
caches, thereby avoiding costly remote round-trips to datacenters
[27]. Static data, such as images and video content, is often cached
on servers geographically close to clients. These caching servers,
called edge nodes, are a crucial component in industry architec-
tures. To illustrate this, consider Google’s datacenter and edge
node locations in Figure 1. Google has comparatively few datacen-
ter locations relative to edge nodes, and the latency between the
edge nodes and datacenters can be quite large. Efficiently caching
data on these edge nodes substantially reduces request latency for
clients.

Existing caching solutions for edge nodes and content deliv-
ery networks (CDN) focus largely on static data, necessitating
costly round trips to remote data centers for requests relying on
dynamic data [21]. Since a majority of webpages today are gener-
ated dynamically [5], a large number of requests are not satisfied
by cached data, thereby incurring significant latency penalties. We
address this concern in Apollo, a system that exploits client access
patterns to intelligently prefetch and cache dynamic data on edge
nodes.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(a) Datacenter Locations (b) Edge Node Locations

Figure 1: Google’s datacenter and edge node locations [21].

1. SELECT C_ID FROM CUSTOMER WHERE

C_UNAME = @C_UN and C_PASSWD = @C_PAS

2. SELECT MAX(O_ID) FROM ORDERS WHERE

O_C_ID = @C_ID

3. SELECT ... FROM ORDER_LINE, ITEM

WHERE OL_I_ID = I_ID and OL_O_ID = @O_ID

Figure 2: A set of motivating queries in TPC-W’s Order
Display web interaction. Boxes of the same colour indicate
shared values across queries.

Database client workloads often exhibit query patterns, cor-
responding to application usage patterns. In many workloads [1,
10, 42], queries are highly correlated. That is, the execution of
one query determines which query executes next and with what
parameters. These dependencies provide opportunities for opti-
mization through predictively caching queries. In this paper, we
focus on discovering relationships among queries in a workload.
We exploit the discovered relationships to predictively execute
future dependent queries. Our focus is to reduce the response time
of consequent queries by predicting and executing them, caching
query results ahead of time. In doing so, clients can avoid contact-
ing a database located at a distant datacenter, satisfying queries
instead from the cache on a closer edge node.

As examples of query patterns, we consider a set of queries
from the TPC-W benchmark [42]. In this benchmark’s Order
Display web interaction, shown in Figure 2, we observe that the
second query is dependent upon the result set of the first query.
Therefore, given the result set of the first query, we can determine
the input set of the second query, predictively execute it, and
cache its results. After the second query has executed, we can
use its result set as input to the third query, again presenting an

Series ISSN: 2367-2005 253 10.5441/002/edbt.2018.23

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.23

Figure 3: Query flow through components of the predictive
framework.

opportunity for predictive caching. Similar scenarios abound in
the TPC-W and TPC-C benchmarks, such as in the TPC-W Best-
Seller web interaction and in the TPC-C Stock level transaction.
Examples that benefit from such optimization, including real-
world applications, have been previously described [10].

In this paper, we propose a novel prediction framework that uses
a query-pattern aware technique to improve performance in geo-
distributed database systems through caching. We implement this
framework in Apollo, which uses a query transition graph to learn
correlations between queries and to predict future queries. In doing
so, Apollo determines query results that should be cached ahead of
time so that future queries can be satisfied from a cache deployed
close to clients. Apollo prioritizes common and expensive queries
for caching, eliminating or reducing costly round-trips to remote
data without requiring modifications to the underlying database
architecture. Apollo’s ability to learn allows it to rapidly adapt to
workloads in an online fashion. Apollo is designed to enhance an
existing caching layer, providing predictive caching capabilities
for improved performance.

The contributions of this paper are threefold:

(1) We propose a novel predictive framework to identify re-
lationships among queries and predict consequent ones.
Our framework uses online learning to adapt to changing
workloads and reduce query response times (Section 2).

(2) We design and implement our framework in a system called
Apollo, which predictively executes and caches query re-
sults on edge nodes close to the client (Section 3).

(3) We deploy and extensively test Apollo on Amazon EC2
using the TPC-W and TPC-C benchmark workloads to
show that significant performance gains can be achieved
for different query workloads (Section 4).

2 PREDICTING QUERIES
A client’s database workload is comprised of a stream of queries
and the transitions between them. These queries are synthesized
into the query transition graph, which is at the core of our pre-
dictive framework. From this query transition graph, we discover

query relationships, dependencies and workload characteristics
for use in our predictive framework. The predictive framework
stores query result sets in a shared local cache, querying the re-
mote database if a client submits a query for which the cache does
not have the results.

Figure 3 gives a high level overview of how incoming queries
are executed, synthesized into the query transition graph, and used
for future query predictions. Incoming queries are routed to the
query processor, which retrieves query results from a shared local
query result cache, falling back to a remote database on a cache
miss. Query results are immediately returned to the client and,
together with their source queries, are mapped to more general-
ized query template representations (Section 2.1). These query
templates are placed into per-client queues of queries called query
streams, which are continuously scanned for relationships among
executed queries. Query relationships are synthesized into the
query transition graph and then used to detect query correlations,
discovering dependencies among executed queries and storing
them in a dependency graph. This dependency graph is used by
the prediction engine to predict consequent queries given client
queries that have executed.

Although we focus on geographically distributed edge nodes
with remote datacenters, Apollo can also be deployed locally
as a middleware cache. Our experiments in Section 4 show that
both deployment environments benefit significantly from Apollo’s
predictive caching.

Next, we discuss the abstractions and algorithms of our pre-
dictive framework, describing how queries flowing through the
system are merged into the underlying models and used to predict
future queries.

2.1 Query Templates
Using a transition graph to reason about query relationships re-
quires a mapping from database workloads (queries and query
relationships) to transition structures (query templates and tem-
plate transitions). We propose a formalization of this mapping
through precise definitions, and then show how our model can be
used to predict future queries.

Queries within a workload are often correlated directly through
parameter sharing. Motivated by the Stock Level transaction in
the TPC-C benchmark, consider an example of parameter sharing
in which an application executes query Q1 to look up a product ID
followed by query Q2 to check the stock level of a given product
ID. A common usage pattern is to execute Q1, and then use the
returned product ID as an input to Q2 to check that product’s stock
level. In this case, Q2 is directly related to Q1 via a dependency
relationship. Specifically, Q2 relies on the output of Q1 to execute.

We generalize our model by tracking relationships among query
templates rather than among parameterized queries. Two queries
Q1 and Q2 have the same query template if they share the same
statement text barring constants that could logically be replaced
by placeholders for parameters values (‘?’). Each query template
is represented by a node in the query transition graph.

Below is an example of two queries (Q1,Q ′1) and their corre-
sponding templates (Qt1,Qt

′
1):

Q1: SELECT C_ID FROM CUSTOMER WHERE C_UNAME
= ’Bob’ and C_PASSWD = ’pwd’
Qt1: SELECT C_ID FROM CUSTOMER WHERE C_UNAME =
? and C_PASSWD = ?

254

Q ′1: SELECT C_ID FROM CUSTOMER WHERE C_UNAME =
’Alice’ and C_PASSWD = ’pwd2’
Qt ′1: SELECT C_ID FROM CUSTOMER WHERE C_UNAME =
? and C_PASSWD = ?

Note that although the above two original queries differ, their
query templates are the same. Therefore, a node’s transitions in
the transition graph are based on query relationships from both
Q1 and Q ′1.

2.2 Query Template Relationships
To find query template relationships, we implement the transition
graph as a frequency-based Markov graph, constructing it in an
online fashion. We exploit the memory-less property of Markov
models to simplify transition probability computations — transi-
tion probabilities are based solely on the previous query the client
executed.

We monitor incoming queries, map them to query templates and
calculate template transition probabilities. In particular, for any
two templates Qti ,Qt j , we create an edge from Qti to Qt j if Qt j is
executed after Qti . We store the probability of Qt j executing after
Qti on this edge, and refer to it as P(Qt j |Qti). If this probability
is larger than some configurable threshold τ , we say Qt j is related
to Qti .

The τ parameter serves as a configurable confidence threshold
for query template relationships. More concretely, the τ parameter
provides the minimum required probability for Qt j executing after
Qti to infer that they are related. By choosing τ appropriately,
we can limit the predictive queries executed after seeing Qti to
only those that are highly correlated to it. In doing so, we ensure
that our predictions have a high degree of accuracy and avoid
inundating the database with predictive executions of unpopular
queries.

P(Qtj |Qti) is too broad to capture fine-grained query template
relationships. Given enough time, almost all of the query tem-
plates in a workload could be considered related under the above
definition. Two templates should not be considered related if there
is a significant time gap between them, thus motivating a tem-
poral constraint. Furthermore, by placing a temporal restriction
on the relationship property, we reduce the time needed to look
for incoming related templates. Consequently, we define a config-
urable duration, ∆t , which specifies the maximum allowable time
separation between related query templates.

Definition 2.1. For any two query templates Qti ,Qt j , in which
Qt j is executed T time units apart from Qti , if P(Qtj |Qti ;T ≤
∆t) > τ for some threshold parameter τ ∈ [0, 1], we consider Qtj
to be a related query template of Qti .

To learn a transition graph representing P(Qtj |Qti ; T ≤ ∆t),
we map executed queries to query templates and place them at the
tail of per-client queues called query streams. Since each client
has its own stream and transition graph, we avoid expensive lock
contention when updating the graphs and computing transition
probabilities.

Algorithm 1 runs continuously over client query streams, updat-
ing their corresponding transition graphs. Intuitively, the algorithm
scans the query stream, looking for other query templates that exe-
cuted within ∆t of the first query template, adding counts to their
corresponding edges and afterwards incrementing the vertex count
indicating number of times the template has been seen. To calcu-
late the probability of P(Qtj |Qti ;T ≤ ∆t), we take the edge count
from Qti to Qtj and divide by the vertex count for Qti . To use

Algorithm 1 Query Transition Graph Construction

Input: (Qt1, t1), (Qt2, t2), . . ., an infinite stream of incoming
query template identifiers and their execution timestamps,
∆t , a fixed time duration,
G = (V ,E), a directed graph, initially empty,
wv : V → N, vertex counters indicating the number of times
we have seen the vertex, initially all zero,
we : V ×V → N, edge counters indicating the number of times
we’ve seen the outgoing vertex followed by the incoming vertex
within ∆t , initially all zero.

i ← 1
loop

if ti + ∆t >now() then
wait until now()> ti + ∆t

end if
V ← V ∪ {Qti }
wv (Qti) ← wv (Qti) + 1
j ← i + 1
loop

if tj > ti + ∆t then
// too far apart in time
break

else
E ← E ∪ {(Qti ,Qt j)}
we (Qti ,Qt j) ← we (Qti ,Qt j) + 1

end if
j ← j + 1

end loop
// advance forward in stream
i ← i + 1

end loop

the variables directly from Algorithm 1, the probability that query
template Qt j executes within ∆t of a query template Qti is given

by
we (Qti ,Qt j)
wv (Qti)

. Per Definition 2.1, if this probability exceeds τ
then Qt j is considered related to Qti .

The choice of the ∆t parameter can impact prediction efficacy.
If ∆t is too high, it is possible that relationships will be predicted
where there are none; if ∆t is too low, we may not discover re-
lationships where they are present. Although the choice of ∆t is
workload dependent, some indicators aid us in choosing an appro-
priate value, such as query arrival rate. If P(Qtj |Qti ;T ≤ ∆t) is
high for a fixed Qti and many different Qtj , then either Qti is a
common query template with many quick-executing related query
templates, or ∆t is set too high. If this holds for many differentQti ,
then ∆t can be decreased. A similar argument holds for increasing
∆t . We discuss selection of ∆t and τ values for various workloads
in Section 4.7.

A key property of our model is that it uses online learning to
adapt to changing workloads. As new query templates are ob-
served, query template execution frequencies change, or query re-
lationships adjust, the transition graph adapts to learn the changed
workload. Moreover, online learning precludes the need to un-
dergo expensive offline training before deployment. Instead, our
model rapidly learns client workloads and takes action immedi-
ately.

255

2.3 Parameter Mappings
Predictive query execution requires a stronger relationship be-
tween queries than the transition graph provides. In addition to
queries being related, they must also exhibit a dependency rela-
tionship.

To provide predictive execution capabilities, we record the
output sets of query templates and match them with the input sets
of templates that we have determined are related based on the
transition graph. We then confirm each output column to input
variable mapping over a verification period, after which only the
mappings present in every execution are returned.

As a concrete example, consider the TPC-W queries from Fig-
ure 2. We will refer to the query template for the first query as Qt1
and the template for the second query as Qt2. In the first stage of
tracking, we observe which query templates have executed within
∆t of Qt1. Once Qt1 has executed enough times (according to the
verification period), we begin to construct mappings among the
query templates. After Qt1 finishes an execution, we record its
output set. When any of Qt1’s related query templates (in this case
assume only Qt2) are executed, we record their input sets. We
then check if any column’s result in Qt1’s output set maps to the
input parameters of Qt2. If they do, we record the matching output
columns with their corresponding input argument position. If the
same mappings are observed across the verification period, we
infer that these mappings always hold.1 If a query template has
mappings for every one of its input arguments from a set of prior
templates, we can predict a query by forwarding parameters from
its prior template’s result sets as soon as they are available. In
this case, we say the query template is a candidate for predictive
execution given its prior query templates’ result sets. Similarly, we
discover mappings between Qt2 and Qt3 and use them to execute
Qt3 given Qt2’s result set.

2.4 Pipelining Query Predictions
Parameter mappings among query templates enable predictive
execution of queries as soon as their input sets are available via
prior template execution. It may be the case that the prior query
templates are also predictable, forming a hierarchical tree of de-
pendencies among templates. We exploit these relationships by
pipelining query predictions. Pipelining uses result sets from pre-
dictively executed queries as input parameters for future predic-
tions, thereby enabling predictions several steps in advance.

Figure 4: An example of pipelining within a dependency hi-
erarchy. The arrows represent a mapping from a prior query
template’s output set to the consequent query template’s in-
put set.

Figure 4 illustrates how pipelining can be used to form extended
chains of predictive executions using the TPC-W example from
Figure 2. Qt1 has a mapping to Qt2, which in turn has a mapping

1If future executions disprove a mapping, we will mark that mapping invalid and
preclude the template from predictive execution if its dependencies are no longer
met.

to Qt3. If Qt1 is executed, we can forward its result set as input
with which to predictively execute Qt2. Once Qt2 has also been
executed, we can predictively execute Qt3. As such, Qt2 is fully
defined given the result set of Qt1, and Qt3 is fully defined given
the result set of Qt2. We formalize the notion of fully defined
queries:

Definition 2.2. A fully defined query template (FDQ) Qt j has
all of its inputs provided by some set, possibly empty, of prior
query templates Qti1 ,Qti2 , . . . ,Qtik where each Qtim (∀m ∈

[1,k]) is either:
(1) a fully defined query template, or
(2) a dependency query template, required to execute Qt j .

Per Definition 2.2, both Qt2 and Qt3 are FDQs, but Qt1 is sim-
ply a dependency query. This definition captures the dependency-
graph nature of FDQs — each node in this graph corresponds to a
query template, with inbound and outbound edges corresponding
to inbound and outbound parameter mappings, respectively. The
transition graph induces the dependency graph but is stored and
tracked separately. By keeping the dependency graph separate,
we reduce contention on it. Once the dependency graph matches
the current workload, it will not need to be modified until the
workload changes.

Algorithm 2 Core Prediction Algorithm

Input: executed query template Qt
record_query_template(Qt)
new_fdqs = find_new_fdqs(Qt)
rdy_fdqs = mark_ready_dependency(Qt)
rdy_fdqs = rdy_fdqs ∪ new_fdqs
ordered_fdqs = find_all_runnable_fdqs(rdy_fdqs)
for all rdy_fdq ∈ ordered_fdqs do

execute_fdq(rdy_fdq)
end for

Discovering new FDQs, managing FDQ dependencies, and
pipelining predictions comprise the main routine of the predictive
framework. The engine executes Algorithm 2 after the execution
of a client-provided instance of query template Qt. The engine
records Qt’s result set and input parameters in the query transition
graph (Section 2.3), looks for parameter mappings, and records
discovered dependencies in the dependency graph. This query
template is then marked as executed so that FDQ pipelines that de-
pend on its result set can proceed. Any queries that are determined
ready for execution given the result of this query (and previously
executed queries) are then executed, forwarding parameters from
their dependent queries’ result sets. The dependencies are then
reset, waiting for future invocations with which to predict queries.
The dependency graph is stored as a hash map with edges between
dependent queries, allowing Apollo to quickly determine which
FDQs are ready for execution given an executed query.

Always defined query templates (ADQs) are a subset of FDQs,
requiring that all of their prior query templates (recursively) are
FDQs. They comprise an important subclass of fully defined
queries since their dependencies are always satisfied; they can
be executed and cached at any time. As a concrete example,
“SELECT COUNT(*) FROM shopping_cart” is an ADQ
because all of its input parameters (the empty set) are always
satisfied.

It follows from Definition 2.2 that an FDQ is an ADQ if and
only if all of its inputs are provided by ADQs. Consequently, ADQ

256

hierarchies are discovered by recursively checking the dependency
structure of the FDQ.

3 APOLLO
In this section, we present Apollo, our system that implements the
predictive framework described in Section 2. Apollo is a system
layer placed between a client application and the database server.
Application clients submit queries to the Apollo system, which
then interacts with the database system and cache to return query
results.

Apollo uses Memcached [19], a popular industrial-strength dis-
tributed caching system, as the query result cache. Each executed
read-only query has its result set placed in Memcached, which
employs the popular Least Recently Used (LRU) eviction policy.
With predictive caching enabled, Apollo also places predictively
executed query results into the cache, increasing the number of
cache hits and thereby overall system performance. Apollo’s pre-
dictive engine operates in a complementary manner where queries
are passed unchanged through to the cache and database, preserv-
ing the effective workload behaviour. Apollo executes predicted
queries and caches them ahead of time, reducing response times
through correlated query result caching.

Since Apollo is implemented in the Java programming lan-
guage, we use the JDBC API to submit queries to the remote
MySQL [33] database. The JDBC API [32] makes Apollo data-
base agnostic and therefore portable, allowing MySQL to be easily
swapped for any other JDBC compliant relational database sys-
tem.

To efficiently track query templates within Apollo, we identify
queries based on a hash of their constant independent parse tree.
A background thread processes the SQL query strings placed into
the query stream, parsing and then hashing them into a 64-bit
identifier. All parameterizable constants are replaced by a fixed
string, and therefore share the same hash code. Thus, queries with
the same text modulo parameterizable constants have the same
hash.

Hashes can be computed efficiently and are used internally to
refer to query templates. Apollo uses them to look up nodes in
the transition graph, and to find statistics and parameters we have
stored for each query template. Hash collisions are very rare due to
the length of the hash and common structures that SQL statements
share. Due to the complementary nature of Apollo, query template
hash collisions are guaranteed not to introduce incorrect system
behaviour.

3.1 Prediction Engine
When a client submits a query, it has its results retrieved from
the local cache or executed against the remote database, then
placed into Apollo’s query stream and evaluated by the prediction
engine. Background threads use the query stream to construct
the transition graph described in Section 2, processing executed
queries into query templates. The core prediction routine from
Section 2.4 is then invoked: new FDQs are discovered from the
underlying transition graph, the dependency graph is updated, and
future queries are predicted using pipelining. We now detail each
of these subroutines, showing how these operations are carried
out efficiently.

Algorithm 3 shows how new FDQs are discovered. First, the
transition graph is consulted for all related query templates (tem-
plates with inbound edges from Qti) since these are the templates
that may have new mappings from Qti ’s result set. Qti itself is also

checked since it may be an ADQ (if it has no input parameters).
For each query template Qt j that has no recorded dependency in-
formation in the dependency graph, the transition graph is checked
to see which templates have mappings to them. If each of Qt j ’s
input parameters are satisfied by its prior query templates then
by Definition 2.2 we know that it is an FDQ. An FDQ struc-
ture is constructed for Qt j and its dependencies are recorded in
the dependency graph. For efficiency, we represent the depen-
dency graph as a hash map from dependency query templates
to dependent templates and their full dependency list. Therefore,
determining newly satisfied FDQs can be performed quickly with
simple lookup operations.

Algorithm 3 find_new_fdqs

Input: a query template Qti
Output: a set of newly discovered FDQs

queries_to_check = get_related_queries(Qti)
queries_to_check = queries_to_check ∪ {Qti}
new_fdqs = {}
for all Qt j ∈ queries_to_check do

if !already_seen_deps(Qt j) then
p_mappings = get_prior_query_mappings(Qt j)
if have_enough_mappings(Qt j) then

fdq = construct_fdq(Qt j ,p_mappings)
unresolved_deps = get_dependencies(fdq)
add_to_dep_graph(unresolved_deps, fdq)
mark_seen_deps(fdq)
new_fdqs = new_fdqs ∪ {fdq}

end if
end if

end for
return new_fdqs

Apollo ensures that there exists only one instance of an FDQ
hierarchy throughout the system so that mapping updates affect
both the FDQ and any FDQ structures that contain it. To do
so, we track the FDQs that the system has constructed before,
returning a previously constructed FDQ if applicable. During
FDQ construction, dependency loops are detected and returned
as dependency queries in an FDQ hierarchy. If all children of an
FDQ are tagged as ADQs, or if an FDQ has no parameters and no
children, then it is tagged as an ADQ and stored for use during
cache reload (Section 3.4.2). Dependency queries are marked
as unresolved dependencies on the FDQ and used to determine
when an FDQ is ready for execution. Algorithm 4 shows how
dependencies for known FDQs are tracked and used for predictive
execution. After the execution of a given query template Qti , each
dependent FDQ marks that dependency as satisfied. If all of an
FDQ’s dependencies are now satisfied, we add it to a list of “ready
FDQs”, resetting its dependencies so that they must be satisfied
again before we determine the FDQ as being ready for future
execution.

Algorithm 4 is used as part of a breadth-first approach to de-
termine all runnable FDQs given the current query state. Apollo
determines which FDQs are executable given the current system
state and a newly executed query, adding them to the list of ready
FDQs. Apollo then determines which other FDQs are executable
given this FDQ list, repeating the process as necessary. This fi-
nal list of FDQs is then executed in order, feeding result sets as
parameters to dependent FDQs.

257

Algorithm 4 mark_ready_dependency

Input: an executed query Qti whose result set is now available
Output: a set ready_fdqs of FDQs ready for execution

ready_fdqs = {}
dependency_lists = get_dep_query_dlists(Qti)
for all d_list ∈ dependency_lists do
mark_dependency_satisfied(d_list, Qti)
if all_deps_satisfied(d_list) then

ready_fdqs=ready_fdqs ∪ get_fdq(d_list)
reset_dependencies(d_list)

end if
end for
return ready_fdqs

3.2 Client Sessions
Apollo uses a client session consistency scheme [15], enabling
its predictive cache to share cached results among clients and
scale in the presence of write queries. In brief, each client has an
independent session that guarantees that it accesses data at least
as fresh as data it last read or wrote and that it efficiently shares
cached entries with other clients.

Each client maintains a version vector (v1,v2, . . . ,vn) indi-
cating its most recently accessed version vi for each table Ri .
Query results are stored in the cache and timestamped with a
version vector (c1, c2, . . . , cn) matching the version vector of the
client that wrote it. When a client wants to execute a read query
on a set of tables (R1,R2, . . . ,Rn), it checks if there exists an
entry in the cache for that query with a version vector with
(c1 ≥ v1, c2 ≥ v2, . . . cn ≥ vn). If so, the client will retrieve
and return the cached result, updating its client state for each of
the tables to match that of the cached entry. If there is no such
entry, the client will execute the query against the database, updat-
ing its version vector for each of the affected tables to match their
versions in the database and storing the result in the cache. Write
queries are never predictively executed (to prevent unnecessary
rollbacks) and always execute against the database. After a client
executes a write query, its version vector is updated to match the
state of the database.

Since cache misses and write queries update a client’s version
vector, old cache entries may be stale under the client’s new ver-
sion vector. Therefore, if it is important to update a client’s version
vector only when strictly necessary, and by the minimum amount.
As such, when a client could read two different versions of a
cached key, Apollo will return the value for the cached key with a
version vector that minimizes the distance from the client’s version
vector. Apollo uses a variety of optimizations to reduce the impact
of write queries on predictive caching and system performance,
discussed in Section 3.4.

Since a client’s session is independent of the sessions of other
clients, Apollo can easily scale horizontally. An individual client
must route all of its requests to the same Apollo instance to main-
tain its session, but other clients and processes do not affect its
session guarantees. Thus, extract, transform, load (ETL) processes,
database triggers, and client write requests do not result in mass
invalidations of cached data. Furthermore, Apollo instances do
not need to communicate with each other to maintain sessions
because a client’s session is tracked by a single Apollo instance.

3.3 Publish–Subscribe Model
Since Apollo handles many concurrent clients, multiple clients
may simultaneously try to execute the same read query. In these
cases, it is beneficial to execute the query only once and return
its result set to the waiting clients. Optimizing these queries is
particularly important for predictive execution since a predicted
query may not have finished execution before a client requests its
result set.

Before executing a read query, Apollo consults a hash map to
determine if a copy of the query is already executing. If so, Apollo
blocks the query until the other query returns, passing along its
result set. Otherwise, it will record an entry in the hash map with
a semaphore for other clients and predictive pipelines to wait on.
In this way, only one copy of a read query is executing at any time,
including shared predictive query pipelines for multiple clients.

When Apollo determines that a client’s query has multiple us-
able versions of its results cached, Apollo will use the earliest
version regardless of whether another usable version is already be-
ing retrieved for a different client. Experimentally, we determined
that it is better to retrieve results for earlier versions since reading
later versions will result in large version vector updates for the
client and may therefore cause misses for other cached results.
Similarly, if Apollo must retrieve the result set from the database,
Apollo will subscribe to any ongoing database retrievals of the
same query.

3.4 Session-Aware Caching
Since write queries increment client version vectors, they preclude
the client from reading any previously cached values. Therefore,
if a client executes a write query after a predictive query is issued
on that client’s behalf, the predicted query results may be stale and
unusable. If so, the system will have performed unnecessary work
to execute and cache the query. To minimize the effects of writes
on system performance, we avoid predictively executing queries
whose results are likely to become stale before client queries can
use their results (Section 3.4.1). Since ADQs can be executed
at any time, we strive to keep valuable ADQs in the cache by
reloading them if their results become outdated (Section 3.4.2).

3.4.1 Preventing Unusable Predictions. Apollo determines
the likelihood of a write query or cache miss occurring using the
query transition graph. Recall from Section 2.2 that each client has
a single transition graph. However, by maintaining multiple inde-
pendent transition graphs with different ∆t intervals, we are able
to determine the likelihood of a given query being executed by the
client in each of these windows. Using this technique, we predict
if a client will retrieve the results for a predictively executable
query before its results become stale. Apollo will predictively
execute and cache only query results that it deems are likely to be
used.

To determine if predictively executing and caching a query’s
results will be helpful, Apollo first estimates the time it will take
for the query to be executed and cached. Since all predictable
queries are by definition FDQs, we use a simple estimate: the
time to predictively execute an FDQ is given by the time it will
take to execute its dependencies and the time to execute the FDQ
itself. We calculate this estimate recursively: for a target FDQ, we
return the maximum time to execute its dependency queries and
add the time needed to execute the FDQ. In essence, this process
returns the longest expected path from the child weighted by
mean query runtimes. To provide an approximation of individual
query runtimes, we use the mean execution time for each query

258

template. Although more sophisticated methods can be used [4,
45] to estimate query runtimes, we found that this method yields
enough accuracy to determine the runtime of predicted query
while still being performant.

Once the runtime for a given FDQ f has been determined (say
t), Apollo looks up the client’s transition graph with smallest in-
terval ∆t where ∆t > t . It then uses this graph to determine the
likelihood of the client executing a query that would cause f ’s re-
sults — or the results of its dependencies — to become stale while
f is executing. If this likelihood is sufficiently high (given the τ
threshold), we avoid executing f to save on database execution
costs. Therefore, only queries that are likely to be executed and
useful to clients are predictively cached.

Although increasing the number of transition graphs per client
necessitates additional processing of the query stream, we find that
the simplicity of the query transition graph construction algorithm
(Algorithm 1) combined with a configurable (but small) number
of models per client results in low computational overhead for
the system. Furthermore, since workloads [1, 42] tend to have a
small number of unique query templates, the storage overhead is
minimal.

3.4.2 Informed ADQ Reload. Write queries update a client’s
version vector, and therefore provide an opportunity for opti-
mization through informed query result reload. As ADQ depen-
dencies are always satisfied and can be executed at any time,
we immediately reload valuable ADQ hierarchies after a client
executes a write query. Since there can be many ADQs and
reloading a hierarchy may be expensive for the database to exe-
cute, we limit ADQ reload to only those predictions for query
templates considered valuable according to the cost function
cost(Qt) = P(Qt) ·mean_rt(Qt).2 Specifically, the estimated cost
of an ADQ on the system is given by the probability of the ADQ
executing and the estimated ADQ runtime. If the cost of the ADQ
exceeds a predefined threshold α , we reload it into the cache. We
discuss α and its effects further in Section 4.7.

4 PERFORMANCE EVALUATION
In this section, we present the system setup used to conduct ex-
periments followed by performance results. Apollo is compared
against Memcached [19], a popular mid-tier cache used in data-
base and storage systems, as well as the Fido predictive cache [34].
We compare these systems using average query response time and
tail latencies, which have been observed to contribute significantly
to user experience and indicate concurrent interaction responsive-
ness [28].

The Fido engine serves as a drop-in replacement for Apollo’s
prediction engine, and uses Palmer et al.’s associative-memory
technique [34] for query prediction, scanning client query streams
to predict upcoming queries. Fido-like approaches have been em-
ployed to prefetch objects in databases [8]. Fido’s implementation-
independent middleware prediction engine makes it particularly
well-suited as a comparison point against Apollo.

The remainder of this section is organized as follows. Sec-
tion 4.1 describes our experiments’ setup and Section 4.2 pro-
vides performance experiments for TPC-W. In Section 4.3, we
use TPC-C to assess Apollo’s scalability under increasing client
load. Section 4.4 showcases Apollo’s ability to adapt to changing
workloads using online learning. Geographic latency experiments
and multi-Apollo instance experiments are shown in Sections 4.5

2Note that the techniques in Section 3.3 apply; shared query dependencies and
overlapping client query submissions will not result in multiple executions of ADQs.

and 4.6 respectively, and Section 4.7 presents a sensitivity analysis
of Apollo’s configurable parameters.

4.1 Experimental Setup
Our experiments use a geo-distributed setup in which Amazon
EC2 nodes are located in the US-East (N. Virginia) region for:
(i) Apollo with 16 virtual CPUs, 64 GB of RAM and a 50 GB
SSD (ii) Memcached on a machine with 2 virtual CPUs, 4 GB
of RAM, and a 50 GB SSD (iii) a node with concurrent clients
running our benchmarks with 16 virtual CPUs, 64 GB of RAM,
and a 50 GB SSD. We deploy a database machine in the US-West
(Oregon) region for our experiments, which has 16 virtual CPUs,
64 GB of RAM, a 250 GB SSD, and uses MySQL v5.6 as the
database. For each experiment, Memcached uses a cache size 5%
of the size of the remote database to demonstrate that Apollo is
effective with limited cache space. All results presented are the
average over at least five independent runs, with bars around the
means representing 95% confidence intervals.

Our experiments have three primary configurations: the Mem-
cached configuration (in which the cache has been warmed for 20
minutes prior to benchmarking), the Apollo caching configuration,
and the Fido prediction engine configuration [34]. In the Mem-
cached configuration, we check for query results in the cache and
forward queries on cache misses to the remote database, caching
the retrieved query results. The Apollo and Fido configurations
also load query results into the cache after they execute a read-
only query on the remote database, but Apollo uses the predictive
framework from Section 2 and Fido uses its own predictive engine,
which is detailed below.

Unlike Apollo, Fido functions on an individual query level
rather than on query templates. More concretely, if queriesQ1,Q2,
. . . ,Qn are present in a client’s query stream, Fido looks for
a stored pattern that is prefixed by them, say Q1,Q2, . . . ,Qn ,

P1, P2, . . . , Pm , proceeding to predictively execute P1, P2, . . . , Pm
and cache their results. In contrast to Apollo’s online learning
capabilities, Fido requires offline training to make predictions. We
provide Fido with client workload traces twice the length of the
experiment interval to serve as its training set for comparison
against a cold start Apollo. Additionally, we let Fido make up to
10 predictions for each matched prefix.

In all configurations, clients use session guarantees (Section 3.2)
and queries executed at the remote database have their result
sets immediately cached in Memcached. Thus, the difference in
caching performance between the configurations is due to caching
benefits provided by the query prediction engines.

Our experiments aim to answer three key questions. First, can
Apollo analyze incoming queries and learn patterns within a work-
load? Second, are Apollo’s predictive caching capabilities effec-
tive in reducing query round-trip time by avoiding costly database
query executions? Third, can Apollo’s predictive framework scale
with an increasing number of clients? We present performance
results in the next sections that include answers to these questions.

4.2 TPC-W Benchmark
The TPC-W Benchmark [42] generates a web commerce workload
by having emulated browsers interact with servlets that serve
webpages. The webpages require persistent data from storage so
servlets execute database queries against the remote database to
generate webpage content. The TPC-W benchmark includes 14
different web interactions for clients (e.g., Best Sellers, Order
Inquiry) each with their own distinct set of queries. For a given

259

 80

 90

 100

 110

 120

 130

 20 30 40 50

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(m

s)

Number of Clients

Apollo
Memcached

Fido

(a) Client Scalability

 200

 300

 400

 500

 600

 700

 800

 900

 94 95 96 97 98 99

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(m

s)

Percentiles

Apollo
Memcached

Fido

(b) Tail Latencies

 80

 90

 100

 110

 120

 130

04:00 08:00 12:00 16:00 20:00

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(m

s)

Time

Apollo
Memcached

Fido

(c) Learning Over Time

Figure 5: Experiment results for 20 minute TPC-W runs using Apollo, Fido, and Memcached (no prediction engine).

client, the next web interaction is chosen probabilistically based
on the previous interaction. We use a popular implementation [35]
of the TPC-W Benchmark specification.

The TPC-W benchmark represents an important use case for
Apollo since even small changes in latency can significantly im-
pact web traffic [20] and sales [30]. Further, it serves as a chal-
lenging workload for Apollo due to its inherent randomness and
large number of different queries. This randomness serves to test
the viability of Apollo’s predictive framework under a variable
workload.

We generated a 33 GB TPC-W database with 1,000,000 items.
We measured Apollo’s performance using the TPC-W benchmark
browsing mix executed for 20 minute measurement intervals while
scaling-up the number of clients using our default TPC-W param-
eters discussed in Section 4.7.

4.2.1 Performance Results. Figure 5(a) shows Apollo’s
performance for an increasing number of clients compared to
Memcached and Fido. Apollo significantly outperforms both Fido
and Memcached, enjoying a large response time reduction of up
to 33% over Memcached and 25% over Fido. Fido has slightly
lower response time than Memcached due to query-instance level
predictive caching but is unable to recognize query template pat-
terns and generalize to unseen queries, precluding it from being
competitive with Apollo. In the case of Memcached, we see its
warmed cache offers little advantage over Apollo’s and Fido’s
cold starts — invalidation and randomness limit the effects of
cache warming.

Each configuration shows a reduction in response time as the
number of clients increase, a consequence of the shared cache
between clients. However, shared caching is unable to compete
with our predictive caching scheme as in a shared cache, a client
must incur a cache miss, execute, and then store query results
before others can use it. Consequently, Apollo’s techniques of
query prediction and informed ADQ reload prove superior, even
as the client load is scaled up.

Figure 5(b) shows the distribution of tail response times for
each of the experimental configurations for 50 client TPC-W runs.
Apollo’s response times are significantly lower than any of the
other methods, particularly for the higher percentiles, due to an
improvement in cache hits. At the 97th percentile, Apollo reduces
tail latencies by 1.8x over Memcached and Fido. Again, Fido tends
to perform about as well as Memcached, despite its large training
set size, as it cannot generalize its patterns to query templates for
FDQ prediction and query reload.

Figure 5(c) shows average query response times in 4 minute in-
tervals. We see that Apollo exhibits a downward trend in response
time from the start of the measurement interval as it effectively

learns query correlations and parameter mappings, resulting in an
improvement of 30% over its average response time during the first
four minutes. Although the other systems’ performance oscillates
according to workload patterns, they do not learn query patterns
— their final average query response times are comparable to that
incurred in their first few minutes.

To ensure that Apollo can provide these response time reduc-
tions without undue resource overhead, we added instrumentation
to determine the time and memory needed to find and construct
new FDQs. On average, it takes less than 1% of response time
to discover new FDQs given a newly executed query, and less
than 2% of response time to construct an FDQ. We have observed
that Apollo uses scant system resources, requiring only 1.5% the
amount of memory used by the database for tracking the transi-
tion graph and query parameter mappings. Apollo’s predictive
techniques submit an additional 25% more queries to the remote
database compared to the Memcached configuration. Apollo’s
intelligent query caching techniques place little additional load on
the remote database and use meager resources, while still provid-
ing substantially lower average query response times than both
Fido and Memcached.

To answer the performance questions we had posed earlier in
Section 4.1, Apollo is indeed able to make accurate and useful
predictions for what to cache, predicting and retaining important
result sets in the cache for longer without significant computation
or memory overhead.

4.3 TPC-C Benchmark
The TPC-C Benchmark emulates an order-entry environment in
which multiple clients execute a mix of transactions against a
database system [1]. Each of these clients functions as a store-front
terminal, which submits orders for customers, confirms payments,
and updates stock levels. In contrast to TPC-W’s workload, TPC-
C’s OLTP workload features many short-running queries which
avoid contention by reduced locking of significant parts of the
database. As such, the TPC-C benchmark serves to directly test
the scalability of Apollo.

The TPC-C specification has two read-only transactions, Stock
Level and Order Status, both of which present opportunities for
predictive execution. Since the goal of our experimentation with
TPC-C is to show the scalability of predictive execution under high
numbers of clients, we scale up the mix of read-only transactions
to 95% with updates making up the remaining 5%. In doing so,
Apollo must track, construct, and execute far more opportunities
for predictive queries than in the TPC-W experiments. Thus, this
experiment’s purpose is to show how well Apollo can handle
hundreds of clients executing predictive queries simultaneously.

260

 55

 60

 65

 70

 75

 80

 85

 90

 95

 50 100 150 200

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(m

s)

Number of Clients

Apollo
Memcached

Fido

Figure 6: Experiment results for 20 minute TPC-C runs using
Apollo, Fido, and Memcached (no prediction engine).

Figure 7: Experiment results for changing the workload from
TPC-C to TPC-W using Apollo, Fido, and Memcached (no
prediction engine).

In our experiments, we use the OLTPBench TPC-C implemen-
tation from Difallah et al [18]. To properly assess scalability, we
modified the read/write mix, with a final percentage of 5% Pay-
ments, 47.5% Order Status, and 47.5% Stock Level Transactions.
This mix forces the prediction engines to construct and execute
significantly more predictive queries.

A TPC-C database of size 100 GB with 1000 warehouses was
generated and loaded into a US-West MySQL instance using the
data generation mechanism of OLTPBench. For the following
experiments, we used our default TPC-C parameters (discussed in
Section 4.7) with a 5% write mix. We choose the warehouse pa-
rameter in our queries according to a uniform distribution, which
results in more predictive executions than a skewed Zipf distribu-
tion — recall that Apollo will not predictively execute queries that
are already cached (Section 3.3).

4.3.1 Performance Results. Figure 6 shows the scalabil-
ity of Apollo, Fido, and Memcached for increasing numbers of
clients. Apollo exhibits a significantly lower average response
time than Memcached and Fido, even as the number of clients,
and therefore the number of predictive query executions, increases.
Apollo’s efficient data structures and algorithms for tracking and
prediction allow scaling even with a large number of clients. Fido
and Memcached perform about the same, even as we increase the
number of clients. With a large database, query parameters are
highly variable and rarely repeated, causing Fido’s non-template
approach to see few queries from its training set and in turn re-
ducing prediction accuracy. As the number of clients increase, the
positive effects of shared caching dwarf that of Fido’s predictions,
resulting in similar performance characteristics between Fido and
Memcached.

These results show that Apollo can deliver significant perfor-
mance gains while scaling effectively to hundreds of concurrent
clients continuously executing predictive queries.

4.4 Adapting to Changing Workloads
To assess Apollo’s ability to adapt to changing workloads, we
conducted an experiment in which the workload was changed
from our TPC-C workload described in Section 4.3 to TPC-W
partway through the experiment (Figure 7). We see that Apollo
quickly learns predictions for the TPC-C workload, resulting in
the performance gains shown in Figure 6. By contrast. Fido and
Memcached have relatively constant performance during the TPC-
C run since they are unable to generalize and make effective
predictions for upcoming queries (Section 4.3).

Once the workload switches, shown by a dashed vertical line
in Figure 7, each configuration experiences a brief penalty in
performance because the predictive engines cannot make any pre-
dictions for queries in the new workload, and no TPC-W queries
are cached. However, Apollo quickly returns to its typical perfor-
mance on TPC-W (Figure 5(a)) since it uses online learning to
discover query patterns. Fido and Memcached perform similarly
after the switch since Fido is unable to make predictions for an
untrained workload. Although Fido was trained for TPC-C in
this experiment, we note that its performance is comparable to
an appropriately trained Fido on the TPC-W portion. This obser-
vation further highlights the ineffectiveness of Fido’s prediction
scheme for the correlated query patterns, which Apollo excels at
predicting.

4.5 Geographic Latency Testing
To assess the effects of different geographic latencies between
Apollo and the database, we deployed TPC-W databases in the
US-East and Canada regions. Because Apollo, the cache and the
benchmark machine are all located in the US-East region, the
first configuration tests a “local” deployment, in which latency
among the machines is minimal (a few milliseconds). The second
configuration tests moderate latencies of 20 ms.

In both configurations (Figures 8(a) and 8(b)), we see that
Apollo preserves its lead over the other systems despite limited
geographic latency. Apollo reduces query response time by up
to 50% in the US East region and by up to 40% in the Canada
region. This improvement in the performance gap compared to the
higher latency experiments is because cache misses in low latency
environments have a larger effect on average performance than
when latency is high. The reason for this effect is that Apollo’s
advantage when caching expensive queries becomes even more
significant with reduced latency; prioritizing expensive and fre-
quently executed queries results in a substantial improvement and
failure to predictively cache them (as in Memcached’s and Fido’s
case) results in a relatively larger performance degradation.

These results are not to be interpreted as Apollo is “best” in
a local setting with near zero latency — the total response time
savings for the remote settings are larger than that of the local
setting. Apollo provides substantial reductions in average and
total response time in both settings, resulting in an enhanced user
experience.

4.6 Multiple Apollo Instances
Apollo can scale to high loads by partitioning clients among multi-
ple Apollo engine instances and cache stores. Each Apollo engine
maintains a consistent session for each client connected to it, with-
out interacting with the other instances or a centralized session
manager.

To determine Apollo’s scaling characteristics, we deployed
Apollo on less powerful m4.xlarge EC2 instances with 4 vCPUs

261

 0

 10

 20

 30

 40

 50

 60

 20 30 40 50

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(m

s)

Number of Clients

Apollo
Memcached

Fido

(a) TPC-W DB in US East Region (local to client)

 0

 10

 20

 30

 40

 50

 60

 20 30 40 50

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(m

s)

Number of Clients

Apollo
Fido

Memcached

(b) TPC-W DB in Canada Region

 90

 100

 110

 120

 130

 140

 150

 20 30 40 50 60 70 80 90 100

Q
ue

ry
 R

es
po

ns
e

T
im

e
(m

s)

Number of Clients

1 Instance
2 Instances
3 Instances

(c) Multiple Apollo Instances

Figure 8: Experiment results for 20 minute TPC-W runs in different geographic regions and when using multiple Apollo in-
stances.

and 16 GB of RAM. We use these less powerful machines as
they are individually unable to handle large numbers of clients,
necessitating a horizontal scale-out for Apollo instances. We test
three different Apollo configurations: one with a single Apollo
instance, another with two Apollo instances, and a third with three
Apollo instances. Each Apollo instance is given its own dedicated
cache, thereby avoiding the need to synchronize version vectors
across instances to maintain client sessions. Clients are evenly
distributed and pinned to Apollo instances.

The results of the experiment are shown in Figure 8(c). As
the client load increases, we see that it quickly overwhelms the
1-instance Apollo configuration, resulting in a large increase in
query response time. The 2-instance and 3-instance Apollo config-
urations show significantly improved scalability, though eventually
the 2-instance configuration begins to show a similar upward trend
in response time.

We observed that the 2-instance query response time at 20
clients is slightly lower than that of the 3-instance configuration.
This effect is primarily due to splitting the clients across three
machines rather than two, resulting in the 3-instance configu-
ration receiving fewer queries to learn from. ADQs are shared
among clients, which results in longer learning times to reach a
steady state with fewer clients. With a larger number of clients,
the increase in the amount of data to learn from and the com-
puting power available result in improved performance over the
2-instance configuration.

Although having multiple Apollo instances share models and
training data would reduce the effects of training data splitting, the
trade-off is increased synchronization between otherwise indepen-
dent nodes. We eschew this approach for two reasons. First, clients
should be split across Apollo instances only when a single instance
cannot handle the load. As seen in Figure 8(c), Apollo receives
enough training data from clients well before it reaches its load
capabilities, even on a less powerful machine. Second, slightly
increased training times are a small price to pay for horizontal
scalability. Addressing scalability issues in production systems is
challenging — learning for a few more minutes is a simple and
inexpensive solution to the insufficient data problem.

These multi-instance experiments demonstrate Apollo’s ability
to scale to large numbers of clients through horizontal scaling
and client-session consistency semantics. Since separate Apollo
instances do not need to communicate, Apollo demonstrates ex-
cellent scaling characteristics.

4.7 Sensitivity Analysis
A key feature of Apollo is its ability to be configured to operate
under different workloads and system deployments. This config-
urability is enabled by the provision of parameters that can be
set according to a particular workload and deployment. In this
section, we discuss the effects of these parameters on the overall
performance of the system as well as our choice of their default
settings.

For TPC-W, our default parameter choices were: ∆t = 15s,
τ = 0.01, and a reload cost threshold of α = 0. Per the specifica-
tion [42], TPC-W uses randomized think times with a mean of
7s. Each client has its own application state, which is determined
through a probabilistic transition matrix. Therefore, a client’s web
interactions do not generate a pre-determined chain of queries.

The maximal time separation ∆t and minimum probability
threshold τ are correlated. As ∆t decreases, the probability of
correlated query templates executing within this interval also
decreases, thereby requiring a lower τ value to capture the re-
lationship between query templates. Similarly, as ∆t increases,
the probability of two correlated query templates executing within
this interval also increases, so higher τ values are sufficient. If ∆t
is large and τ is small then it is likely that spurious relationships
between query templates will be discovered, but such spurious
relationships are filtered out by Apollo’s parameter mapping ver-
ification period, and are therefore seldom predictively executed.
Since TPC-W’s workload bottlenecks on the database, Apollo
filters out the spurious correlations in exchange for discovering
as many relationships as possible. To do so, we set a high value
of ∆t = 15s and a low threshold of τ = 0.01. These values were
empirically confirmed to yield the best results.

In Section 3.4.2, we defined α to be the minimum cost that an
ADQ must have to be reloaded. Note that the cost of an ADQ
is the mean response time multiplied by the probability of the
query executing. Hence as α is increased, only ADQs that are
both popular and expensive are reloaded. We experimented with
different values of α and found that for small values of α (less than
5% of the mean query response time), there was little change in
query response time. However, as α continued to be increased past
this threshold, the mean query response time grew by over 10%,
as valuable ADQs were not reloaded. To ensure that all ADQs
were reloaded, α was set to 0 in our experiments.

We observed similar trends with ∆t and τ in TPC-C as in TPC-
W; therefore, our default parameter choices for TPC-C were the
same. We left ∆t large and τ small to place additional pressure on
Apollo’s parameter mapping filtering functionality. These values
were empirically confirmed to yield the best results.

262

In our experiments, we used a cache 5% the size of the data-
base. We observed that increasing the cache beyond this size did
not affect the relative performance differences between Apollo,
Memcached, and Fido.

5 RELATED WORK
Fido [34], detailed in Section 4.1, uses an associative memory
model for predictive prefetching in a traditional client/server data-
base system. Query patterns in Apollo are tracked at the query
template level so a single relationship in Apollo can map to many
in Fido. Tracking individual data object accesses, or parameterized
queries, means that if Fido has not previously seen a particular
parameterized query it will not be able to make a prediction. In
contrast, if Apollo has seen the query template (regardless of
parameters), it can infer correlation between queries and predic-
tively execute. As Fido requires offline training, it cannot adapt to
changes in object access patterns. As we have shown, the online
nature of Apollo’s Markov model allows it to dynamically change
over time and thus adapt to new query patterns.

Keller et al. [24] describe a distributed caching system for
databases, which uses approximate cache descriptions to distribute
update notifications to relevant sites and execute queries locally on
caches. Each site’s cached data is tracked using query predicates.
Apollo differs from this work in that we focus on the predictive ex-
ecution of consequent queries derived from query patterns, which
Keller et al. do not consider.

Scalpel [10] tracks queries at a database cursor level, inter-
cepting open, fetch and close cursor operations within the JDBC
protocol. Since the JDBC API is translated to database specific
protocols, Scalpel functions as a client-side cache rather than a
mid-tier shared cache like Apollo. Unlike Apollo’s online learn-
ing model, Scalpel requires offline training to find the patterns
that it uses for query rewriting and prefetching. Scalpel employs
aggressive cache invalidation on writes and at the start of new
transactions, which differs from Apollo’s client-centric consis-
tency model. Given that Apollo supports mid-tier shared caching
across multiple clients, this makes Scalpel unsuitable for compari-
son against Apollo.

Pavlo et al. [7] implement Markov models in H-Store and use
them to optimize transaction execution for distributed database
physical design. The system constructs a series of Markov models
for stored procedures and monitors the execution paths under a set
of input parameters. Their model can be leveraged to determine a
base partition for stored procedures and to lock only partitions that
are predicted to be accessed during procedure execution. Apollo
operates beyond this stored procedure context, and provides bene-
fits through caching future queries rather than by analyzing query
execution paths.

DBProxy [5] is a caching system developed by IBM to cache
query results on edge nodes. DBProxy uses multi-layered in-
dexes and query containment to match queries to results, evicting
stale and unused results. Its single session guarantees differ from
Apollo’s per-client sessions and limit scalability, in addition to
not using online learning or predictive caching to improve perfor-
mance.

Ramachandra et al. [36] propose a method for semantic prefetch-
ing by analyzing the control flow and call graph of program binary
files. Given the source code for a database application, the system
analyzes and modifies it, adding prefetch requests into the code as
soon as the parameters are known and query execution guaranteed.
Since this work is limited to requiring access to the source code of

application binaries, it only works for fixed workloads. Because
Apollo analyzes query streams, it is able to adapt to changing
query patterns over time.

Although proprietary middleware caching solutions have been
developed [9, 16, 26], they do not use predictive analytics to
identify future queries and preload them in the cache.

Scheuermann et al. [40] propose the Watchman cache manage-
ment system, which uses query characteristics to improve cache
admission and replacement algorithms. Unlike Apollo, Watchman
does not discover query patterns for use in predictive execution
and instead focuses solely on cache management.

Holze et al. [23] have broached the idea of modeling workloads
using Markov models, but such work focuses only on determin-
ing when an application’s workload has been altered rather than
relying on statistical models for caching purposes, like Apollo.
They suggest a Markov model as a means to achieve an auto-
nomic database, enabling features such as self-configuration, self-
optimization, self-healing, and self-protection. In contrast, Apollo
uses Markov models of user workloads to predict future queries
and enables predictive query caching.

Promise [37] is a theoretical framework for predicting query be-
haviour within an OLAP database. Promise uses Markov models
to predict user query behaviour by developing state machines for
parameter value changes and transitions between OLAP queries,
but does not consider direct parameter mappings, FDQ hierar-
chies, or pipelining predictions. Unlike Apollo, Promise does not
validate its techniques through a system implementation.

Recent research in approximate query processing [6, 44] has
proposed using previous query results as a means for approximat-
ing the answer to future queries. These works develop statisti-
cal methods to provide accurate, approximate answers and error
bounds for upcoming queries, which differs from Apollo’s focus
on learning parameter mappings for predictive caching.

In the view selection problem [12], one must decide on a set of
views to materialize so that execution of the workload minimizes
some cost function and uses fixed amount of space. Most work in
this area requires knowledge of the workload ahead of time [2, 22],
with the remainder not considering machine learning techniques
for uncovering patterns for use in view selection [17, 25].

XML XPath templates have some similarities to query tem-
plates [31], but are not used for online learning in predictive
execution and caching. Instead, XPath views are selected using
offline training in a warm-up period [29, 43], similar to that of
Fido [34]. Similar ideas have been explored to cache dynamic
HTML fragments [14].

6 CONCLUSION
In this paper, we propose a novel method to determine and lever-
age hidden relationships within a database workload via a pre-
dictive learning model. We present the Apollo system, which
exploits query patterns to predictively execute and cache query
results. Apollo’s online learning method makes it suitable for
different workloads and deployments. Experimental evaluation
demonstrates that Apollo is a scalable solution that efficiently uses
a cache and outperforms both Memcached, an industrial caching
solution for different workloads and the popular Fido predictive
cache.

ACKNOWLEDGMENTS
Funding for this project was provided by the Cheriton Gradu-
ate Scholarship, Ontario Graduate Scholarship, and the Natural

263

Sciences and Engineering Research Council of Canada. We are
grateful for compute resource support from the AWS Cloud Cred-
its for Research program.

REFERENCES
[1] February 2010. The Transaction Processing Council. TPC-C Benchmark

(Revision 5.11). http://www.tpc.org/tpcc/. (February 2010).
[2] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Automated

Selection of Materialized Views and Indexes in SQL Databases. In PVLDB
(VLDB ’00). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
496–505. http://dl.acm.org/citation.cfm?id=645926.671701

[3] Akamai. 2010. New Study Reveals the Impact of Travel Site Performance on
Consumers. https://www.akamai.com/us/en/about/news/press/2010-press/
new-study-reveals-the-impact-of-travel-site-performance-on-consumers.jsp.
(2010).

[4] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B. Zdonik. 2012.
Learning-based Query Performance Modeling and Prediction. In 2012 IEEE
28th International Conference on Data Engineering. 390–401. https://doi.org/
10.1109/ICDE.2012.64

[5] K. Amiri, Sanghyun Park, R. Tewari, and S. Padmanabhan. 2003. DBProxy: a
dynamic data cache for web applications. In Proceedings 19th International
Conference on Data Engineering (Cat. No.03CH37405). 821–831. https:
//doi.org/10.1109/ICDE.2003.1260881

[6] Christos Anagnostopoulos and Peter Triantafillou. 2017. Efficient scalable
accurate regression queries in IN-DBMS analytics. Proceedings - International
Conference on Data Engineering (2017), 559–570. https://doi.org/10.1109/
ICDE.2017.111

[7] Stanley Zdonik Andrew Pavlo, Evan P.C. Jones. 2012. On Predictive Modeling
for Optimizing Transaction Execution in Parallel OLTP Systems. PVLDB 5, 2
(2012), 85–96.

[8] P.A. Bernstein, S. Pal, and D.R. Shutt. 2009. Prefetching and caching persistent
objects. (June 30 2009). https://www.google.com/patents/US7555488 US
Patent 7,555,488.

[9] Christof Bornhövd, Mehmet Altinel, Sailesh Krishnamurthy, C. Mohan, Hamid
Pirahesh, and Berthold Reinwald. 2003. DBCache: Middle-tier Database
Caching for Highly Scalable e-Business Architectures. In SIGMOD (SIGMOD

’03). ACM, New York, NY, USA, 662–662. https://doi.org/10.1145/872757.
872849

[10] Ivan Bowman and Kenneth Salem. 2004. Optimization of query streams using
semantic prefetching. SIGMOD (2004), 179–190.

[11] Nathan Bronson, Zach Amsden, George Cabrera, et al. 2013. TAO: Facebook’s
distributed data store for the social graph. Usenix ATC (2013), 49–60. https:
//doi.org/10.1145/2213836.2213957

[12] Rada Chirkova, Alon Y Halevy, and Dan Suciu. 2001. A formal perspective on
the view selection problem. In VLDB, Vol. 1. 59–68.

[13] James C Corbett, Jeffrey Dean, Michael Epstein, and Andrew Fikes. 2012.
Spanner : Google ’ s Globally-Distributed Database. OSDI (2012), 1–14.
https://doi.org/10.1145/2491245

[14] Anindya Datta, Kaushik Dutta, Helen Thomas, Debra V, Krithi Ramamritham,
and Dan Fishman. 2001. A comparative study of alternative middle tier caching
solutions to support dynamic web content acceleration. In In International
Conference on Very Large Data Bases (VLDB. 25.

[15] Khuzaima Daudjee and Kenneth Salem. 2004. Lazy Database Replication with
Ordering Guarantees. In ICDE. 424–435.

[16] Louis Degenaro, Arun Iyengar, Ilya Lipkind, and Isabelle Rouvellou. 2000. A
Middleware System Which Intelligently Caches Query Results. In IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware ’00).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 24–44. http://dl.acm.org/
citation.cfm?id=338283.338285

[17] Prasad M Deshpande, Karthikeyan Ramasamy, Amit Shukla, and Jeffrey F
Naughton. 1998. Caching multidimensional queries using chunks. In ACM
SIGMOD Record, Vol. 27. ACM, 259–270.

[18] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-
Mauroux. 2013. OLTP-Bench: An extensible testbed for benchmarking rela-
tional databases. PVLDB 7, 4 (2013), 277–288.

[19] Brad Fitzpatrick. 2016. MemCached. (4 2016). https://memcached.org/
Memcached Caching Software.

[20] Brady Forest. 2009. Bing and Google Agree - Slow Pages Lose Users. http:
//radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html. (2009).

[21] Google. 2017. Google’s Edge Network. https://peering.google.com/
infrastructure. (2017).

[22] Himanshu Gupta. 1997. Selection of Views to Materialize in a Data Warehouse.
In ICDT (ICDT ’97). Springer-Verlag, London, UK, UK, 98–112. http://dl.
acm.org/citation.cfm?id=645502.656089

[23] Marc Holze and Norbert Ritter. 2007. Towards Workload Shift Detection
and Prediction for Autonomic Databases. In Proceedings of the ACM First
Ph.D. Workshop in CIKM (PIKM ’07). ACM, New York, NY, USA, 109–116.
https://doi.org/10.1145/1316874.1316892

[24] Arthur M. Keller and Julie Basu. 1996. A Predicate-based Caching Scheme
for Client-server Database Architectures. VLDBJ 5, 1 (Jan. 1996), 035–047.
https://doi.org/10.1007/s007780050014

[25] Yannis Kotidis and Nick Roussopoulos. 1999. DynaMat: a dynamic view
management system for data warehouses. In ACM SIGMOD Record, Vol. 28.
ACM, 371–382.

[26] Per-Ake Larson, Jonathan Goldstein, and Jingren Zhou. 2004. MTCache:
Transparent Mid-Tier Database Caching in SQL Server. In ICDE (ICDE ’04).
IEEE Computer Society, Washington, DC, USA, 177–.

[27] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010. CloudCmp:
Comparing Public Cloud Providers. Proceedings of the 10th annual conference
on Internet measurement - IMC ’10 (2010), 1. https://doi.org/10.1145/1879141.
1879143

[28] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. 2014.
Tales of the Tail: Hardware, OS, and Application-level Sources of Tail Latency.
In Proceedings of the ACM Symposium on Cloud Computing (SOCC ’14).
ACM, New York, NY, USA, Article 9, 14 pages. https://doi.org/10.1145/
2670979.2670988

[29] Kostas Lillis and Evaggelia Pitoura. 2008. Cooperative XPath Caching. In
SIGMOD (SIGMOD ’08). ACM, New York, NY, USA, 327–338. https://doi.
org/10.1145/1376616.1376652

[30] Greg Linden. 2006. Make Data Useful. http://www.gduchamp.com/media/
StanfordDataMining.2006-11-28.pdf. (2006).

[31] Bhushan Mandhani and Dan Suciu. 2005. Query Caching and View Selection
for XML Databases. In PVLDB (VLDB ’05). VLDB Endowment, 469–480.
http://dl.acm.org/citation.cfm?id=1083592.1083648

[32] Oracle. 2017. Java SE 8 JDBC API. https://docs.oracle.com/javase/8/docs/
technotes/guides/jdbc/. (2017).

[33] Oracle. 2017. MySQL. https://www.mysql.com/. (2017).
[34] Mark Palmer and Stanley B. Zdonik. 1991. Fido: A Cache That Learns to Fetch.

In VLDB (VLDB ’91). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 255–264.

[35] Jose Pereira. 2016. TPC-W Implementation. (4 2016). University of Minho’s
implementation of TPC-W.

[36] Karthik Ramachandra and S. Sudarshan. 2012. Holistic Optimization by
Prefetching Query Results. In SIGMOD (SIGMOD ’12). ACM, New York, NY,
USA, 133–144. https://doi.org/10.1145/2213836.2213852

[37] Carsten Sapia. 2000. PROMISE: Predicting query behavior to enable predictive
caching strategies for OLAP systems. In International Conference on Data
Warehousing and Knowledge Discovery. Springer, 224–233.

[38] Mehadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, and Nigel Davies.
2009. The Case for VM-Base Cloudlets in Mobile Computing. Pervasive
Computing 8, 4 (2009), 14–23. https://doi.org/10.1109/MPRV.2009.82

[39] Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu, Wolfgang
Richter, and Padmanabhan Pillai. 2014. Cloudlets: at the Leading Edge of
Mobile-Cloud Convergence. Proceedings of the 6th International Conference
on Mobile Computing, Applications and Services (2014), 1–9. https://doi.org/
10.4108/icst.mobicase.2014.257757

[40] Peter Scheuermann, Junho Shim, and Radek Vingralek. 1996. WATCHMAN:
A Data Warehouse Intelligent Cache Manager. In Proceedings of the 22th
International Conference on Very Large Data Bases (VLDB ’96). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 51–62. http://dl.acm.org/
citation.cfm?id=645922.758367

[41] Jeff Shute, Mircea Oancea, Stephan Ellner, et al. 2012. F1: the fault-tolerant
distributed RDBMS supporting Google’s ad business. In SIGMOD. 777–778.

[42] TPC. 2000. TPC Benchmark W (Web Commerce). http://www.tpc.org/tpcw.
(2000).

[43] Liang Huai Yang, Mong Li Lee, and Wynne Hsu. 2003. Efficient Mining of
XML Query Patterns for Caching. In PVLDB (VLDB ’03). VLDB Endowment,
69–80. http://dl.acm.org/citation.cfm?id=1315451.1315459

[44] Barzan Mozafari Yongjoo Park, Ahmad Shahab Tajik, Michael Cafarella. 2017.
Database Learning: Toward a Database that Becomes Smarter Every Time.
SIGMOD (2017), 587–602.

[45] E. E. Yusufoglu, M. Ayyildiz, and E. Gul. 2014. Neural network-based ap-
proaches for predicting query response times. In 2014 International Con-
ference on Data Science and Advanced Analytics (DSAA). 491–497. https:
//doi.org/10.1109/DSAA.2014.7058117

264

	Apollo: Learning Query Correlations for Predictive Caching in Geo-Distributed SystemsBrad Glasbergen, Michael Abebe, Khuzaima Daudjee, Scott Foggo, Anil Pacaci

