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ABSTRACT

Planning user trips in an effective and efficient manner has
become an important topic in recent years. In this paper,
we introduce Group Trip Scheduling (GTS) queries, a novel
query type in spatial databases. Family members normally
have many outdoor tasks to perform within a short time for
the proper management of home. For example, the members
of a family may need to go to a bank to withdraw or deposit
money, a pharmacy to buy medicine, or a supermarket to
buy groceries. Similarly, organizers of an event may need to
visit different points of interests (POIs) such as restaurants
and shopping centers to perform many tasks. Given source
and destination locations of group members, a GTS query
enables a group of n members to schedule n individual trips
such that n trips together visit required types of POIs and
the total trip distance of n group members is minimized. The
trip distance of a group member is measured as the distance
between her source to destination via the POIs. We develop
an efficient approach to process GTS queries for both Eu-
clidean space and road networks. The number of possible
combinations of trips among group members increases with
the increase of the number of POIs that in turn increases the
query processing overhead. We exploit geometric properties
to refine the POI search space and prune POIs to reduce
the number of possible combinations of trips among group
members. We propose a dynamic programming technique to
eliminate the trip combinations that cannot be part of the
query answer. We perform experiments using real and syn-
thetic datasets and show that our approach outperforms a
straightforward approach with a large margin.

1 Introduction

Family members normally have many outdoor tasks to per-
form within a short time for the proper management of their
home. The members of a family may need to go to a bank to
withdraw or deposit money, a pharmacy to buy medicine, or
a supermarket to buy groceries. Similarly, organizers of an
event may need to visit different points of interests (POIs)
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like supermarkets, banks, and restaurants to perform many
tasks. In reality, all family or organizing members do not
need to visit every POI and they can distribute the tasks
among themselves. These scenarios motivate us to introduce
a group trip scheduling (GTS) query that enables a group
(e.g., a family) to schedule multiple trips among group mem-
bers with the minimum total travel distance.

Users have some routine work like traveling from home
to office or office to home, and they would prefer to visit
other POIs on the way to office or returning home. Given
source and destination locations of n group members, a GTS
query returns n individual trips such that n trips together
visit required types of POIs, each POI type is visited by a
single member of the group, and the total trip distance of n
group members is minimized. The trip distance of a group
member is measured as the distance between her source to
destination via the POIs that the group member visits. If the
total travel distance is reduced, it will obviously cut down
the cost for arranging an event or managing a set of tasks,
which is very much desired. In this paper, we propose an
efficient approach to process GTS queries for both Euclidean
space and road networks.
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Figure 1: An example of a GTS query

In Figure 1, we consider a group or a family of four mem-
bers. Every member has preplanned source and destination
locations which may be home, office or any other place.
Group members u1, u2, u3, and u4 have source destination
pairs, < s1, d1 >, < s2, d2 >, < s3, d3 >, and < s4, d4 >,
respectively. Here, pkj denotes a POI of type cj with ID k.

For example, POI p21 in the figure is of type c1, which rep-
resents a bank. The group has to visit four POI types: a
bank (c1), a supermarket (c2), a hospital (c3), and a restau-
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rant (c4). For each POI type, there are many options. For
example, in real life, banks have many branches in differ-
ent locations. A GTS query considers all options for each
type of POIs, and returns four trips for four group members
with the minimum total trip distance, where each POI type
is included in a single trip. Figure 1 shows four scheduled
trips: s1 → p12 → p14 → d1, s2 → d2, s3 → p31 → d3 and
s4 → p33 → d4.

A major challenge of our problem is to find the set of POIs
from a huge amount of candidate POI sets that provide the
optimal answer in real time. For example, California City has
about 87635 POIs with 63 different POI types [2]. For each
POI type, there are on average 1300 POIs. If the required
number of POI types is 4 then the number of candidate POI
sets for a GTS query is (1300) × (1300) × (1300) × (1300)
= (1300)4 = 2.86e+12, a huge amount of candidate POI
sets. We exploit elliptical properties to bound the POI search
space, i.e., to prune POIs that cannot be part of the optimal
answer. Though elliptical properties have been explored in
the literature for processing other types of spatial queries [5,
7, 12, 13, 18] those pruning techniques are not directly ap-
plicable for GTS queries.

Furthermore, a GTS query needs to distribute the POIs
of required types in a candidate set among group members.
The candidate set contains exactly one POI from each of
the m required POI types. The number of possible ways to
distribute a candidate POI set of m POIs among n group
members is nm. Thus, the efficiency of a GTS query depends
on the refinement of the POI search space and the tech-
nique to schedule trips among group members. We develop
a dynamic programming technique to reduce the number of
possible combinations while scheduling trips among group
members. The technique eliminates the trip combinations
that cannot be part of the optimal query answer.

Planning trips for a single user or a group in an effec-
tive and efficient manner has become an important topic in
recent years. A trip planning (TP) query [13] for a single
user finds the set of POIs of required types that minimize
the trip distance with respect to the user’s source and des-
tination locations. To evaluate a GTS query, applying a trip
planning algorithm for every user independently for all pos-
sible combinations of required POI types requires multiple
traversal of the database and would be prohibitively expen-
sive. A group trip planning (GTP) query [8] identifies the set
of POIs of required types that minimize the total trip dis-
tance with respect to the source and destination locations of
group members. In a GTP query, each required POI type is
visited by all group members. On the other hand, in a GTS
query, separate trips are planned for every group member
and each required POI type is visited by only a single group
member. For the example scenario mentioned in Figure 1, in
Figure 2 we show the resultant trips for a GTP query, where
the group members visit all required POI types together. A
GTS query is also different from traveling salesman prob-
lem (TSP) [11] and its variants [4, 6, 15, 20]. The TSP and
its variants assume a limited set of POIs and cannot han-
dle a large dataset like a huge amount of POIs stored in a
database.

To the best of our knowledge, we propose the first ap-
proach for GTS queries. In summary, the contributions of
this paper are as follows:

• We introduce a new type of query, the group trip
scheduling (GTS) query in spatial databases.
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Figure 2: An example of a GTP query

• We present an efficient GTS query processing algo-
rithm. Specifically, we refine the POI search space for
processing GTS queries efficiently using elliptical prop-
erties and develop an efficient dynamic programming
technique to schedule trips among group members.
• We perform extensive experimental evaluation of the

proposed techniques and provide an comparative anal-
ysis of experimental results using both real and syn-
thetic datasets.

2 Problem Definition

A GTS query for a group is formally defined as follows.
Definition 1.[Group Trip Scheduling(GTS) Queries.]
Given a set P of POIs of different types in a 2-dimensional
space, a set of n group members U = {u1, u2, . . . , un} with
independent n source locations S = {s1, s2, . . . , sn} and cor-
responding n destination locationsD = {d1, d2, . . . , dn}, and
a set of m POI types C = {c1, c2, . . . , cm}, a GTS query
returns a set of n trips, T = {T1, T2, . . . , Tn} that mini-
mizes the total trip distance, AggTripDist of group mem-
bers, where a trip Ti corresponds to a group member ui,
group members together visit required types of POIs in C,
and a POI type in C is visited by a single member of the
group.

For any two point locations x1 and x2 in a 2-dimensional
space, let Function Dist(x1, x2) return the distance between
x1 and x2, where the distance can be measured either in the
Euclidean space or road networks. The Euclidean distance
is measured as the length of the direct line connecting x1

and x2. On the other hand, the road network distance is
measured as the length of the shortest path between x1 and
x2 on a given road network graph G = (V,E,W), where each
vertex v ∈ V represents a road junction, each edge (v, v′) ∈ E

represents a direct path connecting vertices v and v′ in V,
and each weight wv,v′ ∈W represents the length of the direct
path represented by the edge (v, v′).

A trip Ti of group member ui starts at si, ends at di,
goes through POIs in Ai, where Ai includes at most m

POIs of types specified in C and m = |C| =
∑n

i=1 |Ai|.
The total trip distance of group members is measured as
AggTripDist =

∑n

i=1 TripDisti. Let pj denote a POI of
type cj ∈ C. Without loss of generality, for Ai = {p1, p2, p3}
and {c1, c2, c3} ∈ C, the trip distance TripDisti of Ti

is computed as Dist(si, p1) + Dist(p1, p2) + Dist(p2, p3) +
Dist(p3, di), if the POI order p1 → p2 → p3 gives the mini-
mum value for TripDisti.
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3 System Architecture

Figure 3 shows an overview of the system architecture. The
coordinator of the group sends a GTS query request to a
location based service provider (LSP). The coordinator pro-
vides the source and destination locations of group members
and the required POI types that the group members need
to visit combinedly. The LSP incrementally retrieves POIs
from the database, processes GTS queries and returns sched-
uled trips to the coordinator of the group that minimizes the
total trip distance of the group members.

Scheduled Trips

GTS QueriesLocation Based
Service Provider

Retrieve POIs

Data Storage
(R∗-tree)

Coordinator of
a user group

Figure 3: System architecture

4 Related Work

Trip planning techniques exist for both single user and group
in the literature. Trip planning (TP) queries have been in-
troduced in [12] for a single user. TP queries allow a user to
find an optimal route to visit POIs of different types while
traveling from her source to destination location. In parallel
to the work of TP queries, in [18], Sharifzadeh et al. ad-
dressed the optimal sequenced route (OSR) query that also
focuses on planning a trip with the minimum travel distance
for a single user for a fixed sequence of POI types (e.g., a
user first visits a restaurant then a shopping center and a
movie theater at the end). In [5], a generalization of the
trip planning query, called the multi-rule partial sequenced
route (MRPSR) query has been proposed that supports mul-
tiple constraints and a partial sequence ordering to visit POI
types, and provides a uniform framework to evaluate both
of the above mentioned variants [12, 18] of trip planning
queries. In [16], the authors proposed an incremental algo-
rithm to find the optimal sequenced route in the Euclidean
space and then determine the optimal sequence route in road
networks based on the incremental Euclidean restriction. A
GTS query is different from TP and OSR queries as GTS
queries schedule trips among group members.

A group trip planning query that plans a trip with the
minimum aggregate trip distance to visit POIs of different
types with respect to source and destination locations of
group members has been first proposed in [8]. In [3, 17],
the authors proposed efficient algorithms to process GTP
queries for a fixed sequence of visiting POI types. In [7],
the authors developed an efficient algorithm to process GTP
queries in both Euclidean space and road networks. In a
GTP query, all group members visit all POI types in their
trips, whereas in a GTS query, each POI type is visited by
a single member in the group.

A traveling salesman problem (TSP) and variants that
focus on planning routes with a limited set of locations are
well studied problems in the literature. A generalized trav-
eling salesman problem (GTSP) [6] and multiple traveling
salesman problem (MTSP) [4] are well known variations of
TSP. A GTSP assumes that from groups of given locations,

a salesman visits a location from every group such that the
travel distance for the route becomes the minimum. The
MTSP allows more than one salesman to be involved in the
solution. In MTSP, if the salesmen are initially based at
different depots then this variation is known as the multi-
ple depot multiple traveling salesman problem (MDMTSP).
However, the limitation of the proposed solutions for TSP
and its variants is that they cannot handle a large dataset
(e.g., POI data) stored in the database, a scenario that is
addressed by a GTS query.

Elliptical properties have been used in the literature to re-
fine the search region for queries like group nearest neighbor
queries [14], trip planning queries [12], group trip planning
queries [7] and privacy preserving trip planning queries [19].
Though all of these refinement techniques present the re-
fined search region with an ellipse, they differ on the way to
set the foci and the length of the major axis of the ellipse.
In this paper, we develop two novel techniques to refine the
search region using ellipses for GTS queries.

5 Our Approach

In this section, we present our approach to process GTS
queries in the Euclidean space and road networks. In a GTS
query, the coordinator of a group sends the query request to
the LSP and provides required information like group mem-
bers’ source and destination locations, and the required POI
types. POI information is indexed using an R∗-tree [1] in
the database. The LSP incrementally retrieves POIs from
the database until it identifies the trips that minimize the
total travel distance of the group members. The underly-
ing idea of the efficiency of our approach is the POI search
region refinement techniques using elliptical properties and
the dynamic programming technique to schedule multiple
trips among the group members.
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Figure 4: Known region and search region

We use the concept of known region and search region [7,
12] for the retrieval of POIs from the database. The known
region represents the area which has already been explored,
that means all POIs inside the known region have been re-
trieved from the database. The search region represents the
refined space that we need to explore for the optimal so-
lution. In Figure 4, suppose the LSP retrieves the nearest
POIs p12 and p11 with respect to the geometric centroid G of
source and destination locations of a group of three mem-
bers, where p11 is the farthest POI from G among POIs p12
and p11 that have been already retrieved. The circular region
centered at G with radius equal to the distance between G

and p11 is the known region. We refine the POI search region
with respect to the retrieved POIs in the known region us-
ing multiple ellipses, and call it simply a search region. In
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Figure 4, based on current retrieved POIs, p12 and p11, the
search region is the union of three ellipses.

Find an initial POI set with respect to geometric centroid G,

which includes at least one POI from each required POI type

Compute n trips from initial POI set that provide the

minimum total trip distance

Update n scheduled trips

Find the next nearest POI with

respect to G within search region

Compute search region

Stop

No

Yes

Is search

region is

included

by known

region?

Figure 5: Overview of our approach for GTS queries

Figure 5 shows an overview of our developed approach for
processing GTS queries. Our approach initially incremen-
tally retrieves the nearest POIs from G until at least one
POI from each required POI type has been retrieved. Us-
ing the initial retrieved POI set, our approach schedules n

trips that provide the minimum total travel distance for the
group members, and refines the search region to prune POIs
that cannot be the part of the query answer. Then the pro-
posed approach checks whether the known region includes
the search region. If yes, then our approach has retrieved all
POIs that are required to find the optimal answer and the
approach terminates the search. Otherwise, our approach
continues to incrementally retrieve the next nearest POIs
within the search region, updates scheduled n trips, refines
the search region, and checks the termination condition of
the search until the condition becomes true. In the following
sections, we elaborate the steps of our approach for process-
ing GTS queries.

5.1 Computing the known region

For both Euclidean and road network spaces, our approach
incrementally retrieves the Euclidean nearest POIs with re-
spect to the geometric centroid G of n source-destination
pairs of group members. It uses the best-first search (BFS)
to find the POIs of required POI types that are assumed to
be indexed using an R∗-tree [1] in the database. The BFS
search also prunes the POIs whose types do not match with
the required POI types and returns the remaining POIs.

Let the BFS discover pj as the first nearest POI with
respect to G. The circular region centered at G with radius
r equal to the Euclidean distance between G and pj is the
known region. With the retrieval of the next nearest POI, r
is updated with the Euclidean distance from G to the last
retrieved nearest POI from the database.

5.2 Refinement of the search region

The key idea of our search region refinement techniques is
based on elliptical properties. A smaller search region de-
creases the number of POIs retrieved from the database,
avoids unnecessary trip computations, and reduces I/O ac-
cess and computational overhead significantly. We present
two novel techniques in Theorems 1 and 2 to refine the search
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Figure 6: Search region refinement

region using multiple ellipses, and based on these two refine-
ment techniques, we develop our algorithm to process GTS
queries in Section 5.5. The notations that we use in our the-
orems are summarized below:
• Tmini

: the minimum trip distance for a group member
ui, i.e., the distance between si and di without visiting
any POI type.
• Tmaxi

: the maximum trip distance for a group member
ui, i.e., the trip distance from si to di via required m

POI types.
• TripDisti: the current trip distance of a group member

ui among the scheduled trips.
• AggTripDist: the current minimum total trip distance

of the group.
Above notations are measured in terms of Euclidean dis-

tances if a GTS query is evaluated in the Euclidean space,
and in terms of road network distances if a GTS query is
evaluated in the road networks. Theorems 1 and 2 show two
ways to refine the search region for a GTS query in the Eu-
clidean space and road networks.

Theorem 1. The search region can be refined as the
union of n ellipses E1 ∪ E2 ∪ . . . ∪ En, where the foci of
ellipse Ei are at si and di, and the major axis of the ellipse
Ei is equal to Tmaxi

.

Proof. Let a POI p lie outside the search region, E1 ∪
E2 ∪ . . . ∪En, and AggTripDistp be the total trip distance
of the group, where a group member ui’s trip includes POI
p as shown in Figure 6(a). We have to prove that POI p can
not be a part of the optimal solution, i.e., AggTripDistp >

AggTripDist. Let TripDist
p
i be the trip distance for the

group member ui whose trip includes POI p. An elliptical
property states that the Euclidean distance between two foci
via a point outside the ellipse is greater than the length of
the major axis. Since the road network distance is greater
than or equal to the Euclidean distance, the road network
distance between two foci via a point outside the ellipse is
also greater than the length of the major axis. As POI p lies
outside the ellipse Ei, for both Euclidean and road network
spaces we have,

TripDist
p
i > Tmaxi

(1)
Tmaxi

represents the trip distance of user ui for visiting
m POI types. Any trip passing through the POI p outside
the ellipse Ei can not give better trip distance for user ui.
Thus, any POI outside the union of ellipses E1, E2, . . . , En

can not improve the total trip distance AggTripDist for the
group and can not be a part of an optimally scheduled group
of trips. Thus, AggTripDistp > AggTripDist.

Theorem 2. The search region can be refined as the
union of n ellipses E1 ∪ E2 ∪ . . . ∪ En, where the foci of
ellipse Ei are at si and di, and the major axis of the ellipse
is equal to AggTripDist−

∑n

l=1,l 6=i
Tminl

.
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Figure 7: Steps of our approach

Proof. Let a POI p lie outside the search region, E1 ∪
E2 ∪ . . . ∪En, and AggTripDistp be the total trip distance
of the group, where a group member ui’s trip includes POI
p as shown in Figure 6(b). We have to prove that POI p can
not be a part of the optimal solution, i.e., AggTripDistp >

AggTripDist.
Let TripDist

p
i be the trip distance for the group member

ui whose trip includes POI p. An elliptical property states
that the Euclidean distance between two foci via a point out-
side the ellipse is greater than the length of the major axis.
Since the road network distance is greater than or equal to
the Euclidean distance, the road network distance between
two foci via a point outside the ellipse is also greater than
the length of the major axis. As the POI p lies outside the
ellipse Ei, for both Euclidean and road network spaces we
have,

TripDist
p
i > AggTripDist−

n∑

l=1,l 6=i

Tminl

Rearranging the equation we get,

TripDist
p
i +

n∑

l=1,l 6=i

Tminl
> AggTripDist (2)

By definition we know,

AggTripDist
p = TripDist

p
i +

n∑

l=1,l 6=i

TripDist
p

l (3)

and
n∑

l=1,l 6=i

TripDist
p

l ≥
n∑

l=1,l 6=i

Tminl
(4)

From Equations 3 and 4, we get,

AggTripDist
p ≥ TripDist

p
i +

n∑

l=1,l 6=i

Tminl
(5)

Combining inequalities of 2 and 5,
AggTripDist

p
> AggTripDist

Thus, any POI outside the search region E1∪E2∪ . . .∪En

can not improve the total trip distance for the group and can
not be a part of an optimally scheduled group of trips.

Our approach refines the ellipses of every group member
independently using both bounds proposed in Theorems 1
and 2, and selects the bound that provides the minimum
length for the major axis of the ellipse. For the same foci,
the smaller major axis represents a smaller ellipse. It may
happen that for an ellipse of a member, Theorem 1 pro-

vides the minimum length of the major axis and for another
member’s ellipse, Theorem 2 provides the minimum length
of the major axis. The refined search region is computed as
the union of the smaller ellipses of all group members.
For a GTS query, our approach retrieves an initial set of

nearest POIs that includes at least one POI of each required
type. From the initial set of POIs, our approach schedules
trips with the minimum total trip distance for the group
using the dynamic programming technique shown in Sec-
tion 5.4, and refines the search region using Theorems 1
and 2. With the incremental retrieval of the nearest POIs
from G within the refined search region, our approach checks
and updates the scheduled trips, if the newly discovered
POIs improve the current scheduled trips. The newly up-
dated trips may improve the bound Tmaxi

for a group mem-
ber or the total trip distance of the group AggTripDist,
which can further refine the search region.
Figure 7(a) shows the initial set of retrieved POIs

p11, p
2
1, p

1
2, p

1
3, p

1
4, the known region, and four scheduled trips

using the initial POI set for a group of four members. Note
that the initial set may include more than one POIs of same
POI type (e.g., p11 and p21) because the incremental near-
est POI retrieval continues until the initial set includes at
least one POI from every required POI type. Using bounds
from Theorem 1 and 2, we compute and refine the search
region. Figure 7(b) shows the refined search region as the
union of four ellipses. After retrieving the next nearest POI
p31, the known region expands, which has the radius equal to
Dist(G, p31). Our approach checks whether this new POI can
improve the current solution. In this example, the new POI
p31 decreases the trip distance for group member u3 and thus,
the updated trip for u3 is s3 → p13 → p31 → d3. It also im-
proves the total trip distance and shrinks the search region
for all group members. In Figure 7(c), the dotted lines show
the scenario before retrieving POI p31 and the shaded areas
with solid lines show the updated scenario after retrieving
the POI p31. With the retrieval of the nearest POIs from the
database, the known region expands and the search region
shrinks or remains same.

5.3 Terminating condition for POI retrieval

When the known region covers the search region, no more
minimization in the total trip distance is further possible.
At this point, we can terminate traversing R∗-tree and re-
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trieving POIs. Figure 8 shows that the known region covers
the search region.
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Figure 8: Terminating condition: the known region includes
the search region

5.4 Dynamic programming technique for
scheduling trips

Scheduling the trips among the group members is an essen-
tial component of GTS query processing approach. After re-
trieving the initial POI set, our approach schedules the trips
among the group members such that the total trip distance
of the group is minimized. Each time our approach retrieves
new POIs, it again schedules trips using new POIs, if the new
trips improve the total trip distance of the group. Thus, the
efficiency of our approach largely depends on the computa-
tional cost of scheduling trips among the group members.
We propose a dynamic programming technique to schedule
the trips among the group members. The technique reduces
the number of trip combinations that we need to consider to
find the set of trips with the minimum total trip distance.
The distances computed in our dynamic programming tech-
nique are Euclidean distances, if a GTS query is processed
in the Euclidean space, and the distances are road network
distances, otherwise.

Our dynamic programming technique minimizes the fol-
lowing objective function:

n∑

i=1

TripDisti

satisfying constraints that a group of n members together
visit m different POI types and each POI type is visited by
a single group member. Let CTi

be the set of POI types
visited by trip Ti of user ui, where 0 ≤ |CTi

| ≤ m. Formal
representation of the constraints are as follows. The dynamic
programming technique satisfies,

n∑

i=1

|CTi
| = m,

n⋃

i=1

CTi
= C and ∀i,j(CTi

∩ CTj
) = ∅

For the GTS query, we have a set of m POI types

Table 1: Structure of dynamic table νy, where 0 ≤ y ≤ (m− 1)

{u1} . . . {un} {u1u2} . . . {u1u2 . . . un−1}
{c1, c2, . . . , cy}
{c1, c3, . . . , cy}
...

Table 2: Structure of dynamic table νm
{u1} . . . {un} {u1u2} . . . {u1u2 . . . un}

{c1, c2, . . . , cm}

C={c1, c2, . . . , cm}, where a group member visits any num-
ber of POI types from 0 to m. Thus, there are

∑m

y=0(
mCy)

ways to choose any y POI types from m(= |C|) differ-
ent POI types, where 0 ≤ y ≤ m. Suppose CCy de-
notes the set of all possible y chooses from the set of POI
types C. Let (CCy)

j represent the jth member of the set
CCy. Suppose we have a set of m = |C| = 4 POI types,
C = {c1, c2, c3, c4}. For y = 2, the number of ways to

choose y POI types from m(= |C|) POI types is |C|Cy =
4C2 = 6 and the set all possible y chooses from the set C is
CCy = {{c1, c2}, {c1, c3}, {c1, c4}, {c2, c3}, {c2, c4}, {c3, c4}},
where (CCy)

1 = {c1, c2}, (
CCy)

2 = {c1, c3}, . . . , (
CCy)

6 =
{c3, c4}.

For each member of the set CCy, we calculate optimal trips
for each group member in U = {u1, u2, u3, . . . , un} and store
trip distances for future computations. This is the initial step
for our dynamic programming technique. We define m + 1
dynamic tables, ν0, ν1, ν2, . . . νm to store the trip distances
of every group member and the combined trip distances of
the group members. Table νy has mCy rows, where jth row
corresponds to jth member of the set CCy, i.e., (

CCy)
j .

Each table has two types of columns : single member
columns and combined member columns. Each table has
n single member columns, where each column corresponds to
a member of the group U = {u1, u2, u3, . . . , un}. The cells of
these columns store the minimum trip distances for the cor-
responding column’s member to visit the POI types of the
corresponding rows. Each dynamic table except νm has (n−
2) combined member columns u1u2, u1u2u3, . . . , u1u2..un−1,
where the cells of the corresponding columns store the com-
bined trip distances of the corresponding column’s multiple
members. For example, each cell of the column u1u2 stores
the minimum combined trip distance of user u1 and u2 to
visit the POI types of the corresponding row, where a POI
type is visited either by u1 or u2. Table 1 shows the structure
of νy where 0 ≤ y ≤ (m− 1). Table 2 shows the structure of
νm that has an extra column u1u2 . . . un to store the mini-
mum total trip distance for n scheduled trips, where n trips
together visit m required POI types and every POI type is
visited by a single trip. The table has only one row which
contains all m POI types.

In addition to storing the minimum trip distance, each
cell of the dynamic tables stores the set of POIs for which

Table 3: Possible number
of POI type distributions
between u1 and u2

u1 u2

3 0
2 1
1 2
0 3

Table 4: Candidate trips
with trip distances for cell
ν2[{c1, c2}][{u1}]

Candidate trips Distances

s1 → p12 → p11 → d1 65.55

s1 → p12 → p21 → d1 61.72

s1 → p11 → p12 → d1 60.44

s1 → p21 → p12 → d1 51.58
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Table 5: Dynamic tables for the example scenario
(a) Dynamic table ν0

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
∅ 51.55 93.33 68.84 81.78 144.88 213.72

(c) Dynamic table ν2

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
{c1, c2} 51.58 96.22 123.61 90.67 144.90 213.74
{c1, c3} 51.86 96.26 123.68 90.70 145.19 214.03
{c1, c4} 51.57 96.23 123.61 90.67 144.90 213.74
{c2, c3} 51.57 93.97 78.34 81.81 144.88 213.72
{c2, c4} 51.56 93.34 68.84 81.78 144.88 213.72
{c3, c4} 51.55 93.97 78.32 81.79 144.88 213.72

(e) Dynamic table ν4

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3} {u1u2u3u4}
{c1, c2, c3, c4} 51.90 96.28 123.69 90.71 145.20 214.03 295.53

(b) Dynamic table ν1

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
{c1} 51.57 96.22 123.61 90.67 144.90 213.74
{c2} 51.56 93.33 68.84 81.78 144.88 213.72
{c3} 51.55 93.97 78.31 81.79 144.88 213.72
{c4} 51.55 93.33 68.84 81.78 144.88 213.72

(d) Dynamic table ν3

{u1} {u2} {u3} {u4} {u1u2} {u1u2u3}
{c1, c2, c3} 51.90 96.26 123.68 90.70 145.19 214.03
{c1, c2, c4} 51.59 96.23 123.61 90.67 144.90 213.74
{c1, c3, c4} 51.88 96.28 123.68 90.71 145.19 214.03
{c2, c3, c4} 51.57 93.97 78.34 81.81 144.88 213.72

the minimum trip distance is obtained. For example, cell
ν3[{c1, c3, c4}][{u1}] stores the minimum trip distance and
the POI set < p3, p1, p4 >, for which u1 obtains the mini-
mum trip distance.

The size of a dynamic table νy is : mCy × (n + (n − 2)),
where 0 ≤ y ≤ (m−1), and the size of table νm is mCm×(n+
(n−2)+1). Thus, the total space required for dynamic tables

is
∑(m−1)

y=0 (mCy×(n+(n−2)))+(mCm×(n+(n−2)+1)) =

(2m+1 × (n− 1) + 1) units. Similarly, the processing time of
the dynamic programming technique is proportional to the
number of the dynamic tables and the number of cells in a
dynamic table, which vary with the values of m and n.

Contents of cells of the single member columns of a dy-
namic table are computed using already retrieved POIs from
the database. To compute the contents of cells of the com-
bined member columns of a dynamic table νy, we use the
single member columns of the same table, and both sin-
gle and combined member columns of ν0, ν1, . . . , νy−1. For
example, for computing each cell of combined member col-
umn u1u2 of ν4, we use the already calculated single mem-
ber columns of ν4, and both single and combined mem-
ber columns of ν0, ν1, ν2 and ν3 based on possible num-
ber of POI type distributions between members u1 and u2

of that corresponding column. For the example scenario,
to visit 3 POI types, possible ways to distribute the num-
ber of POI types between u1 and u2 are listed in Ta-
ble 3. Formally, the minimum trip distance stored in a
cell (e.g., νy[{c1, c2, . . . , cy}][{u1u2}] of table νy) is com-

puted as miny
g=0{min

mCg

j=1 {min
mCy−g

k=1 (νg[(
CCg)

j ][{u1}] +

ν(y−g)[(
CC(y−g))

k][{u2}])}}, where (
CCg)

j ∩(CC(y−g))
k = ∅.

The constraint guarantees that no POI type is considered
twice while computing the minimum trip distance.

Similar to the combined member column u1u2, for com-
puting each cell of combined member column u1u2u3 of ν4,
we use the same dynamic tables, and similar distribution
listed in Table 3 between combined members u1u2 (instead
of u1) and single member u3 (instead of u2). Thus, we incre-
mentally compute dynamic tables ν0, ν1, ν2, . . . , νm, one by
one and finally we get our desired result for a GTS query.

We elaborate our dynamic programming tech-
nique with an example. Suppose a group of 4 mem-
bers, {u1, u2, u3, u4}, together want to visit 4 POI types
{c1, c2, c3, c4} with the minimum total trip distance, and

each POI type is visited by a single member. Here, n = 4,
m = 4, and a group member can visit any number of POI
types between 0 to m.

Figure 7(a) shows the initial set of retrieved POIs:
p11, p

2
1, p

1
2, p

1
3, p

1
4 and the known region. The initial set in-

cludes at least a POI from every POI type. Using these
POIs, we first compute all possible trips for the group mem-
bers and then schedule the trips using our proposed dynamic
programming technique.

We define (m + 1), i.e., 5 tables, ν0, ν1, ν2, ν3 and ν4 to
store the computed trip distances and combined trip dis-
tances of the group members. Each dynamic table νy has
m=4Cy rows, where each row corresponds to a member of the
set CCy. Each table has n = 4 single member columns, where
a column corresponds to a group member in {u1, u2, u3, u4},
and n−2 = 2 combined member columns, u1u2 and u1u2u3.
Table ν4 contains an extra column u1u2u3u4 to store the
minimum total trip distance of the 4 scheduled trips for 4
users that together visit 4 POI types, where each POI type
is visited by a single user. Tables 5 (a-e) show ν0, ν1, ν2, ν3
and ν4 for the considered example.

Computing single member columns: In the dynamic
tables, columns u1, u2, u3 and u4 are the single member
columns. Each cell of these columns of a table stores the
minimum trip distance for the corresponding column’s user
passing through POI types of the corresponding row of that
table. For example, in Table 5(c), cell ν2[{c1, c2}][{u1}] con-
tains the minimum trip distance for user u1 passing through
POI types c1 and c2. For computing this trip distance, we
consider user, u1’s source (s1) and destination (d1) loca-
tions along with candidate POIs in the initial set: {p11, p

2
1}

and {p12} with POI types c1 and c2, respectively. All can-
didate trips for cell ν2[{c1, c2}][{u1}] using these POIs with
the corresponding trip distances are listed in Table 4.

Among the candidate trips listed in this table, the min-
imum trip distance 51.58 for trip s1 → p21 → p12 → d1 is
stored in cell ν2[{c1, c2}][{u1}]. Similarly, our dynamic pro-
gramming technique populates all cells of the single member
columns of ν1, ν2, ν3 and ν4. Table ν0 is a trivial one that
stores trip distances for particular user’s trip from her source
to destination location only.

Computing combined member columns: Using the sin-
gle member columns and already calculated combined mem-
ber columns, we dynamically calculate the combined mem-
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ber columns of ν0, ν1, ν2, ν3 and ν4 one by one.
In ν0, cell ν0[∅][{u1u2}] contains the minimum total trip

distance of trips T1 and T2, where the trips correspond to
users u1 and u2, respectively, and visit no POI type. Table 6
shows the candidate combinations that are used to compute
the cell value, where trip distances are for users’ trips from
their source to destination locations.

Table 6: Candidate combined combinations with trip dis-
tances for cell ν0[∅][{u1u2}]

Combined Combinations Distances Total

ν0[∅][{u1}] + ν0[∅][{u2}] 51.55 + 93.33 144.88

Table 7: Candidate combined combinations with trip dis-
tances for cell ν1[{c1}][{u1u2}]

Combined Combinations Distances Total

ν1[{c1}][{u1}] + ν0[∅][{u2}] 51.57 + 93.33 144.90
ν0[∅][{u1}] + ν1[{c1}][{u2}] 51.55 + 96.22 147.77

To compute the cells of the combined member columns for
other table νy, we need to consider all dynamic tables from
ν0 to νy. For example, in ν2, cell ν2[{c1, c2}][{u1u2}] stores
the minimum total trip distance of trips T1 and T2, where the
trips correspond to users u1 and u2, respectively. Here a user
(u1 or u2) can visit any number (0 or 1 or 2) of POI types,
but u1 and u2 together visit the POI types {c1, c2}, and
each POI type is either visited by u1 or u2. For computing
the cell value, we use stored single member trip distances
and multiple member trip distances in ν0, ν1 and ν2. Using
ν0, ν1 and ν2 (Tables 5(a-c)), Table 8 shows the candidate
combinations of POI types for u1 and u2 along with the trip
distances for computing the value for cell ν2[{c1, c2}][{u1u2}]
in ν2 (Table 5(c)). Among candidate combinations listed in
Table 8, the minimum total trip distance 144.90 is stored in
cell ν2[{c1, c2}][{u1u2}].

Table 8: Candidate combined combinations with trip dis-
tances for cell ν2[{c1, c2}][{u1u2}]

Combined Combinations Distances Total

ν2[{c1, c2}][{u1}] + ν0[∅][{u2}] 51.58 + 93.33 144.91
ν1[{c1}][{u1}] + ν1[{c2}][{u2}] 51.57 + 93.33 144.90
ν1[{c2}][{u1}] + ν1[{c1}][{u2}] 51.56 + 96.22 147.78
ν0[∅][{u1}] + ν2[{c1, c2}][{u2}] 51.55 + 96.22 147.77

Similarly, our dynamic programming technique popu-
lates all cells of the combined member columns of ν0,
ν1, ν2, ν3 and ν4. Candidate combinations with trip dis-
tances for cell ν1[{c1}][{u1u2}] , ν3[{c1, c2, c3}][{u1u2}] and
ν4[{c1, c2, c3, c4}][{u1u2}] are listed in Table 7, Table 9 and
Table 10, respectively.

Table 9: Candidate combined combinations with trip dis-
tances for cell ν3[{c1, c2, c3}][{u1u2}]

Combined Combinations Distances Total

ν3[{c1, c2, c3}][{u1}] + ν0[∅][{u2}] 51.90 + 93.33 145.23
ν2[{c1, c2}][{u1}] + ν1[{c3}][{u2}] 51.58 + 93.97 145.55
ν2[{c1, c3}][{u1}] + ν1[{c2}][{u2}] 51.86 + 93.33 145.19
ν2[{c2, c3}][{u1}] + ν1[{c1}][{u2}] 51.57 + 96.22 147.79
ν1[{c1}][{u1}] + ν2[{c2, c3}][{u2}] 51.55 + 96.22 147.77
ν1[{c2}][{u1}] + ν2[{c1, c3}][{u2}] 51.56 + 96.26 147.82
ν1[{c3}][{u1}] + ν2[{c1, c2}][{u2}] 51.57 + 93.97 145.54
ν0[∅][{u1}] + ν3[{c1, c2, c3}][{u2}] 51.55 + 96.26 147.81

Table 10: Candidate combined combinations with trip dis-
tances for cell ν4[{c1, c2, c3, c4}][{u1u2}]

Combined Combinations Distances Total

ν4[{c1, c2, c3, c4}][{u1}]+ν0[∅][{u2}] 51.90+93.33 145.23

ν3[{c1, c2, c3}][{u1}]+ν1[{c4}][{u2}] 51.90+93.33 145.23

ν3[{c1, c2, c4}][{u1}]+ν1[{c3}][{u2}] 51.59+93.97 145.56

ν3[{c1, c3, c4}][{u1}]+ν1[{c2}][{u2}] 51.88+93.33 145.21

ν3[{c2, c3, c4}][{u1}]+ν1[{c1}][{u2}] 51.57+96.22 147.79

ν2[{c1, c2}][{u1}]+ν2[{c3, c4}][{u2}] 51.58+93.97 145.55

ν2[{c1, c3}][{u1}]+ν2[{c2, c4}][{u2}] 51.86+93.34 145.20

ν2[{c1, c4}][{u1}]+ν2[{c2, c3}][{u2}] 51.57+93.97 145.54

ν2[{c2, c3}][{u1}]+ν2[{c1, c3}][{u2}] 51.57+96.23 147.80

ν2[{c2, c4}][{u1}]+ν2[{c1, c3}][{u2}] 51.56+96.26 147.82

ν2[{c3, c4}][{u1}]+ν2[{c1, c2}][{u2}] 51.55+96.22 147.77

ν1[{c1}][{u1}]+ν3[{c2, c3, c4}][{u2}] 51.55+96.26 147.81

ν1[{c2}][{u1}]+ν3[{c1, c3, c4}][{u2}] 51.55+96.23 147.78

ν1[{c3}][{u1}]+ν3[{c1, c2, c4}][{u2}] 51.56+96.28 147.84

ν1[{c4}][{u1}]+ν3[{c1, c2, c3}][{u2}] 51.57+93.97 145.54

ν0[∅][{u1}]+ν4[{c1, c2, c3, c4}][{u2}] 51.55+96.28 147.83

We gradually combine trips of other users, u3 and u4, and
update the other combined member columns one by one.
For example, in ν2, cell ν2[{c1, c2}][{u1u2u3}] contains the
minimum total trip distance of trips T1, T2 and T3, where
the trips correspond to users u1, u2 and u3, respectively, and
together visit the POI types {c1, c2}. Using ν0, ν1 and ν2
(Tables 5(a-c)), Table 11 shows the candidate combinations
of POI types for combined members u1u2 and single member
u3 along with the trip distances for computing the value for
cell ν2[{c1, c2}][{u1u2u3}] in ν2 (Table 5(c)).

Table 11: Candidate combined combinations with trip dis-
tances for cell ν2[{c1, c2}][{u1u2u3}]

Combined Combinations Distances Total

ν2[{c1, c2}][{u1u2}]+ν0[∅][{u3}] 144.90 + 68.84 213.74

ν1[{c1}][{u1u2}]+ν1[{c2}][{u3}] 144.90 + 68.84 213.74

ν1[{c2}][{u1u2}]+ν1[{c1}][{u3}] 144.88 + 123.61 268.49

ν0[∅][{u1u2}]+ν2[{c1, c2}][{u3}] 144.88 + 123.61 268.49

Similarly we compute all combined member columns of
ν0 to ν4. The rightmost cell of the final table νm, which is
ν4[{c1, c2, c3, c4}][{u1u2u3u4}] in our example scenario, con-
tains the minimum total trip distance of four trips T1, T2, T3

and T4, where the trips correspond to users u1, u2, u3 and
u4, respectively. These trips together visit all required POI
types {c1, c2, c3, c4} and each POI type is visited by a single
user. This is actually the minimum total trip distance of the
group for the dynamic scheduling based on the retrieved ini-
tial POIs: p11, p

2
1, p

1
2, p

1
3, p

1
4. The minimum total trip distance

295.53 is stored in cell ν4[{c1, c2, c3, c4}][{u1u2u3u4}].
Note that the rightmost cell of the final table

ν4[{c1, c2, c3, c4}][{u1u2u3u4}] contains the minimum total
trip distance of the group which is AggTripDist that we
have mentioned in Section 5.2. To get the values of Tmini

and Tmaxi
for each user ui, we simply take the minimum and

maximum values from Table 5(a) and Table 5(e), respec-
tively. Tmini

and Tmaxi
values for users {u1, u2, u3, u4} are
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{51.55, 93.33, 68.84, 81.78} and {51.90, 96.28, 123.69, 90.71},
respectively. Using these values we refine the search region
based on Theorems 1 and 2. For user u1, based on The-
orem 1, the major axis for the elliptic region E1 is 51.90.
On the other hand, based on Theorem 2, the major axis is
295.53 − (93.33 + 68.84 + 81.78) = 51.58. We take the best
bound among them which is 51.58, the second one.

Each cell of ν0, ν1, ν2, ν3 and ν4 also stores the set of
POIs for which the minimum trip distance is obtained. For
the sake of clarity we do not show them in the tables.

5.5 Algorithms

Algorithm 1: GTS Approach(S,D,C)

input : S, D, C
output: A set of trips, T

1 Initialize();
2 InitDynTables(|S|, |C|,V);
3 ComputeTable(ν0);
4 Enqueue(Qp, root,MinD(G, root));
5 while Qp is not empty do
6 if end = 1 then
7 break;

8 {p, dmin(p)} ← Dequeue(Qp);
9 r ← dmin(p);

10 if p is not a POI then
11 foreach child node pc of p do
12 Enqueue(Qp, pc,MinD(G, pc));

13 else if τ(p) ∈ C and p ∈
⋃n

i=1 Ei then
14 P ← InsertPOI(p);
15 if init = 0 and CheckInclude(P,C) then
16 ComputeTrip(S,D,C, P,V);
17 init← 1;
18 isup← true;

19 else if init = 1 then
20 isup← UpdateTrip(τ(p), S,D,C, p,V);

21 if isup = true and init = 1 then
22 {T,Mx,Mi} ← UpDynTables(|S|, |C|,V);
23 ellipregions← UpEllipticRegions(T,Mx,Mi);

24 if IsInCircle(G, r, ellipregions) then
25 end← 1;

26 return T

Algorithm 1 shows the pseudocode of our approach to
evaluate GTS queries for both Euclidean space and road
networks. It takes the set of source and destination locations,
S and D, respectively for a group of n members and the set
of required m POI types C as input. The output is the set
of n scheduled trips T = {T1, T2, . . . , Tn}, where n trips
together visit all POI types in C and no POI type is visited
by more than one trip.

As the first step, using function Initialize(), Algorithm 1
initializes G to the geometric centroid of source and destina-
tion locations, a priority queue Qp to ∅, and other variables
as follows: r = 0, end = 0, isup = false, and init = 0.
The variable r represents the radius of current known re-
gion. Flags end and isup indicate whether the terminating
condition is true and a user’s trip has been updated, respec-
tively. Variable init is used to keep track between compute

and update trip operations. Initialize() also declares n el-
liptic regions for n users as ellipregions = {E1, E2, . . . , En},
where the foci of each ellipse Ei is initialized to the source
and destination locations of a user and the length of the
major axis is set to ∞.

Function InitDynTables(|S|, |C|,V) initializes the set
of dynamic tables V = {ν0, ν1, . . . , νm}. After that
ComputeTable(ν0) computes the values for single member
columns and combined member columns of the first dynamic
table ν0. The stored trip distances in ν0 are Euclidean dis-
tances if the GTS is query is processed in the Euclidean
space, and they are road network distances, otherwise.

The algorithm starts searching from the root of the R∗-
tree and inserts the root with MinD(G, root) into a priority
queue Qp. Qp stores its elements in order of their minimum
distances from G, dmin(p) that are determined by Function
MinD(G, p). For both Euclidean space and road networks,
MinD(G, p) returns the minimum Euclidean distance be-
tween G and p, where p represents a POI or a minimum
bounding rectangle of a R∗-tree node. After that the algo-
rithm removes an element p along with dmin(p) from Qp.
At this step, the algorithm updates r, the radius of current
known region. If p represents a R∗-tree node, then algorithm
retrieves its child nodes and enqueues them into Qp. On the
other hand, if p is a POI then it is added to candidate POI
set P , if the POI type is specified in C and falls inside any
user’s ellipse Ei. The algorithm uses function τ(p) to deter-
mine the POI type of a POI p.

Function CheckInclude(P,C) checks whether the POI
set P contains at least one POI from each POI type in
C. When the initial POI set has been found, Function
ComputeTrip(S,D,C, P,V) computes possible trips for all
users and populates the single member columns of ν1 to νm
using our dynamic programming technique. The algorithm
sets init to 1 and isup to true. As mentioned before, the
stored trip distances in the dynamic tables are Euclidean
distances if the GTS is query is processed in the Euclidean
space, and they are road network distances, otherwise.

After computing the trips from the initial POI set, if
the algorithm retrieves any new POI p, it uses Function
UpdateTrip(τ(p), S,D,C, p,V) to compute new trips using
p and update the single member columns of ν1 to νm, if new
trips can improve the stored trip distances in the tables. The
function also updates isup accordingly.

If isup is true and the initial set is already found (i.e.,
init = 1), Function UpDynTables(|S|, |C|,V) updates com-
bined member columns of tables from ν1 to νm based on
the logic described in Section 5.4. The function takes n, m
and the set of all dynamic tables V as input, updates the
combined member columns of the dynamic tables and re-
turns T , Mx and Mi, where T represents the scheduled
trips, Mx and Mi represent the sets {Tmax1 , . . . , Tmaxn}
and {Tmin1 , . . . , Tminn}, respectively. Tmaxi

and Tmini
for

1 ≤ i ≤ n are defined in Section 5.2.

Then using UpEllipticRegions(T,Mx,Mi), the algo-
rithm updates the elliptic bound for all n users, where
ellipregions represents the elliptic search regions of the
users. The bounds for the elliptic search regions are de-
termined using both Theorem 1 and 2. The algorithm
checks the terminating condition of our GTS queries us-
ing Function IsInCircle(G, r, ellipregions). This function
checks whether all n elliptic search regions is included by
the current circular known region or not. If the terminating

398



condition is true, the algorithm updates the terminating flag
end to 1. At the end of the algorithm, it returns scheduled
trips T for n users that provide the minimum total distance.

6 A Straightforward Approach

To the best of our knowledge, we introduce GTS queries
in spatial databases and thus, there exists no approach to
process GTS queries in the literature. To validate the effi-
ciency of our proposed approach in experiments, we develop
a straightforward approach for processing GTS queries, S-
GTS, using existing trip planning algorithms.

A straightforward way to process a GTS query would be
independently evaluating optimal trips for every group mem-
ber and for all possible combinations of POI types, and then
selecting n trips that together satisfies the conditions of GTS
queries and provides the minimum total trip distance for the
group. This approach requires multiple independent searches
into the database and accesses same POIs multiple times.

Algorithm 2: S-GTS Approach(S,D,C)

input : S, D, C

output: A set of trips, T
1 m← |C|;
2 n← |S|;
3 InitDynTables(|S|, |C|,V);
4 ComputeTable(ν0);
5 for group member ui do
6 for g ← 1 to m do
7 foreach member tc of CCg do
8 νg[tc][{ui}]← GTP (si, di, tc);

9 {T,Mx,Mi} ← UpDynTables(n,m,V);
10 return T

Algorithm 2 shows the pseudocode of the S-GTS approach
to evaluate GTS queries in the Euclidean and road network
spaces. It takes the following parameters as input: the set
of source and destination locations, S and D, respectively,
for a group of n members and the set of required m POI
types C. The output is the set of n scheduled trips T =
{T1, T2, . . . , Tn}, where n trips together visit all POI types
in C and no POI type is visited by more than one trip.

In the first step, Algorithm 2 initializes the dynamic ta-
bles ν0 to νm using the function InitDynTables(|S|, |C|,V),
which we mentioned in Section 5.4. After that
ComputeTable(ν0) computes single member columns
and combined member columns of the first dynamic table
ν0. After updating table ν0, for each member ui of the group
and for each dynamic table νg, the algorithm calculates
trips for mCg possible sets of POI types using function
GTP (si, di, tc), and populates the dynamic tables ν1 to νm.
The function takes the source and destination locations
of ui, and a set of POI types tc from C as input and
returns the optimal trip with the trip distance in the
Euclidean space or road networks, where the trip starts
from si, passes through POI types in tc and ends at di.
The GTP (si, di, tc) function considers all possible orders of
POI types in tc while computing trip distances and returns
the minimum one. For the function GTP (si, di, tc), any
existing trip planning algorithm or group trip planning
algorithm (by assuming one group member) can be used. In

our experiment, we use the most recent and efficient group
trip planning algorithm [7] for this purpose. However, in
the S-GTS approach, the function GTP (si, di, tc) is called
multiple times, and a same POI may be accessed in the
database more than once. On the other hand, our GTS
approach requires a single traversal on the database and
ensures that a single POI is accessed once in the database.

Finally, the algorithm uses the same function
UpDynTables(n,m,V) as Algorithm 1 to select the fi-
nal n scheduled trips for the group. The function updates
the combined member columns of the dynamic tables
from ν1 to νm, and returns T , and Mx and Mi, where T

represents the scheduled trips, Mx and Mi are not used for
the S-GTS approach.

Although for the S-GTS approach, we apply the similar
dynamic programming that we use for our GTS approach
in Section 5, two approaches are different. In the S-GTS
approach, we use the dynamic programming technique once
to find the final scheduled n trips from the already calculated
optimal trips of users. On the other hand, the GTS approach
incrementally retrieves POIs from the database, calculates
the trips of users based on the retrieved POIs, and applies
the dynamic programming technique every time with the
retrieval of a new POI to check whether the new POI can
improve the scheduled trips.

7 Experiments

In this section, we evaluate the performance of our approach
for processing GTS queries through extensive experiments.
Since there is no existing work for GTS queries in the lit-
erature, we compare our proposed GTS approach with the
straightforward approach (S-GTS) discussed in Section 6 by
varying a wide range of parameters.

We evaluate our approach in both Euclidean and road
network dataspaces using synthetic and real world datasets.
For the real dataset, we used California [2] dataset that con-
tains 87635 POIs of 63 different types. The road network of
California has 21048 nodes and 21693 edges. We generated
the synthetic datasets of POIs of different types using the
uniform random distribution. The whole data space is nor-
malized to 1000x1000 sq. units for both real and synthetic
datasets. An R∗-tree is used to store all the POIs of a dataset
and a in-memory graph data structure is used to store the
road network.

We performed several set of experiments by varying the
following parameters: (i) the group size n, (ii) the number of
specified POI types m in a GTS query, (iii) the query area
A, i.e., the minimum bounding rectangle covering the source
and destination locations, and (iv) the dataset size ds (only
in the Euclidean space).

Table 12: Parameter settings
Parameter Values Default
Group size(n) 2, 3, 4, 5, 6, 7 3
Number of POI

types (m)
2, 3, 4 , 5 , 6 4

Query area(A)
(in sq. units)

50x50, 100x100, 150x150,
200x200, 250x250, 300x300

100x100

Dataset size(ds)
(number of POIs in

thousands)
5, 10, 20, 40, 80, 160 -

Dataset
distribution

Uniform -
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Table 12 shows the range and default values used for each
parameter. To observe the effect of a parameter in an exper-
iment, the value of the parameter is varied within its range,
and other parameters are set to their default values. We use
an Intel Core i5 machine with 2.30 GHz CPU and 4GB RAM
to run the experiments. For each set of experiments, we mea-
sure two performance metrics: the average processing time
and average I/O overhead (I/O access in R∗-tree). The met-
rics are measured by running 100 independent GTS queries
having random source and destination locations, and then
taking the average of processing time and I/O access. Since
both GTS and S-GTS approaches require the same amount
of storage for storing dynamic tables, we do not show them
in our experiments.

7.1 Euclidean Space

Effect of group size (n): Figures 9(a) and 9(b) show the
processing time and I/O access, respectively, for our GTS
and S-GTS approaches. We observe that both processing
time and I/O access slightly increase with the increase of
the group size. Our GTS approach requires significantly less
processing time and I/O access than the S-GTS approach,
which is expected. The S-GTS approach computes the op-
timal trips for each group member and for every possible
combination of POI types independently, and thus, accesses
the same POIs multiple times in the database. On the other
hand, our GTS approach accesses a POI in the database only
once and gradually refines the search regions based on the
scheduled trips using the dynamic programming technique.
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Figure 9: Effect of group size (n) (California dataset)

Effect of m: Figures 10(a) and 10(b) show that the pro-
cessing time and I/O access, respectively, increase with the
increase of m. The results show that our GTS approach out-
performs the S-GTS approach by a large margin in terms of
both I/O access and processing time. Specifically, the im-
provement for the I/O access is more pronounced for the
larger values of m. We observe in Figure 10(b) that the I/Os
required by the GTS approach remains almost constant, and
the number of I/O access for the S-GTS approach sharply
increases with the increase of m. The reason is as follows.
For the change ofm tom+1, the number of independent trip
computations in the S-GTS approach for each group mem-
ber increases by

∑m+1
y=0 (m+1Cy)−

∑m

y=0(
mCy), whereas the

I/O access of the GTS approach depends on the size of its
search region. For an additional POI type, the search region
only slightly increases since the AggTripDist and Tmaxi

for
any user ui increase by only a small amount.

Effect of A: Figures 11(a) and 11(b) show experimental
results for different values of the query area A. We see that
for both approaches, the processing time and I/O access
increase with the increase of A. This is because the POI
search region becomes large if the source and destination
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Figure 10: Effect of number of types (m) (California dataset)

locations are distributed in a large area of the total space.
For both metrics, our GTS approach outperforms the S-GTS
approach, which is for the similar reasons mentioned for the
experiments of varying n.
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Figure 11: Effect of query area (A) (California dataset)

Effect of dataset size (ds): In this experiment, we ex-
amine the performance difference of the two approaches with
respect to data set size (ds). Figures 12(a) and 12(b) show
that as the size increases, processing time and I/O access
increase for both approaches, which is expected. Like other
experiments, the GTS approach takes much less processing
time (approx. 192 times) and I/O access (approx. 570 times)
than the S-GTS approach for any dataset size.
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Figure 12: Effect of dataset size (ds) (Synthetic dataset)

7.2 Road Networks

Experimental results for processing GTS queries in road net-
works using our proposed approach, GTS, show similar per-
formance and trends like the Euclidean space except that
the GTS approach requires on average 6.6 times more query
processing time compared to the required processing time in
the Euclidean space.
Effect of group size (n): Figures 13(a) and 13(b) show

that the query processing time and I/O access increase with
the increase of group size n for both approaches, GTS and
S-GTS. This is because the number of road network distance
computations increase with the increase of n. On the other
hand, with the increase of group size n, for our GTS ap-
proach, the number of I/O access slightly changes, whereas
for the S-GTS approach, the I/O access increases signifi-
cantly due to the access of same POIs multiple times. For
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both metrics, the GTS approach outperforms the S-GTS
approach.
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Figure 13: Effect of group size (n) (California dataset)

Effect of m: Figures 14(a) and 14(b) show the perfor-
mance of the GTS approach and the S-GTS approach for
varying the total number of POI types m. We observe that
the performance trends are similar to those for the Euclidean
space. For any number of types, the GTS approach outper-
forms the S-GTS approach in terms of both I/O access and
processing time.
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Figure 14: Effect of number of types (m) (California dataset)

Effect of A: Figures 15(a) and 15(b) show that both
query processing time and I/O access increase with the in-
crease of A for both approaches, and the GTS approach
performs significantly better than the S-GTS approach for
both metrics.
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Figure 15: Effect of query area (A) (California dataset)

8 Conclusion

In this paper, we have introduced a new type of query, a
group trip scheduling (GTS) query in spatial databases that
enables a group of users to schedule multiple trips among
themselves with the minimum total trip distance of the
group members. We propose the first solution to evaluate
GTS queries in both Euclidean space and road networks.
The refinement technique of the POI search space and the
dynamic approach to schedule trips among group members
are the key ideas behind the efficiency of our approach. Ex-
periments show that our approach is on average 107 times
faster and requires on average 635 times less I/Os than the
straightforward approach for the Euclidean space. For road

networks, we observed that our approach requires on average
30 times less processing time and 1768 times less I/O access
than the straightforward approach. In the future, we aim to
protect location privacy [9, 10] of users for GTS queries.
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