
CAESAR: Context-Aware Event Stream Analytics
for Urban Transportation Services

Olga Poppe∗, Chuan Lei∗∗, Elke A. Rundensteiner∗, Dan Dougherty∗,
Goutham Deva∗, Nicholas Fajardo∗, James Owens∗, Thomas Schweich∗,

MaryAnn VanValkenburg∗, Sarun Paisarnsrisomsuk∗, Pitchaya Wiratchotisatian∗,
George Gettel∗, Robert Hollinger∗, Devin Roberts∗, and Daniel Tocco∗

*Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609
**NEC Labs America, 10080 N Wolfe Rd, Cupertino, CA 95014

*opoppe|rundenst|dd|godeva|nafajardo|jmowens|taschweich|mevanvalkenburg|
spaisarnsrisomsu|pwiratchotisatia|gtgettel|rhollinger|dtroberts|dtocco@wpi.edu,

**chuan@nec-labs.com

ABSTRACT
We demonstrate the first full-fledged context-aware event
processing solution, called CAESAR1, that supports applica-
tion contexts as first class citizens. CAESAR offers human-
readable specification of context-aware application seman-
tics composed of context derivation and context processing.
Both classes of queries are only relevant during their re-
spective contexts. They are suspended otherwise to save
resources and to speed up the system responsiveness to the
current situation. Furthermore, we demonstrate the context-
driven optimization techniques including context window
push-down and query workload sharing among overlapping
context windows. We illustrate the usability and perfor-
mance gain of our CAESAR system by a use case scenario
for urban transportation services using real data sets [2, 1].

1. INTRODUCTION
Context-Aware Event Stream Analytics. Complex

Event Processing (CEP) is a prominent technology for sup-
porting time-critical applications. Traditionally, CEP sys-
tems consume an event stream and continuously evaluate
the same query workload against the entire event stream.
However, the semantics of many streaming applications is
determined by contexts, meaning that the system reaction
to one and the same event may significantly vary depending
on the context. Therefore, most event queries are appro-
priate only under certain circumstances and can be safely
suspended otherwise to save valuable resources and reduce
the latency of currently relevant queries.

Running Demonstration Scenario. With the grow-
ing popularity of Uber and Lyft, their real-time systems

1CAESAR stands for Context-Aware Event Stream Analyt-
ics in Real time.

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

face a wide range of challenges, including but not limited
to extracting supply/demand sequence patterns from event
streams, real-time aggregation, geospatial prediction, traffic
data monitoring and alerting. These data intensive event
queries continuously track the status of drivers, riders, and
traffic, such as driver dispatched, rider waiting for pickup,
road congestion, etc. An intelligent event processing system
receives both vehicle and rider position reports and their
associated messages, analyzes them, infers the current sup-
ply and demand situation in each geolocation, and reacts
instantaneously to ensure that riders reach their destina-
tions in a timely and cost-effective manner. Early detection
and prompt reaction to critical situations are indispensable.
They prevent time waste, reduce costs, increase riders’ sat-
isfaction and drivers’ profit.

Figure 1: The CAESAR model

System reaction to a position report should be modulated
depending on the current situation on the road. Indeed,
if HighDemand is detected, all drivers close by are noti-
fied and a higher fee is charged in this area to attract more
drivers and reduce the waiting time of riders (Figure 1). If
a road segment becomes Congested, drivers may be alerted
and alternate routes should be advised so as to smooth traf-
fic flow. If a road segment is Normal, none of the above

Demonstration

Series ISSN: 2367-2005 590 10.5441/002/edbt.2017.77

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.77

actions should take place. Clearly, current application con-
texts must be rapidly detected and continuously maintained
to determine appropriate reactions of the system at all times.

The hierarchical application logic in Figure 1 is drilled
down into the HighDemand specification, while the inte-
rior structures of all other processes are rolled up and thus
abstracted to increase readability. Three contextual stages
are differentiated during the HighDemand context. First,
all drivers in proximity are notified and a higher base fee
is computed (Preparation). Afterwards, only new nearby
drivers are notified and the high base fee is used to compute
the cost of each trip (Operation). Lastly, the base fee is re-
duced once demand is satisfied (Completion). Appropriate
event queries are associated with each context. For example,
new drivers are detected during the Operation phase in a
high demand geolocation (Figure 1).

Conditions implying an application context can be com-
plex. They are specified on both the event streams and the
current contexts. For example, if over 50 cars per minute
move with an average speed less then 40 mph and the current
context is no Congestion then the context-deriving query
updates the context to Congestion for this geolocation. To
save resources and thus to ensure prompt system responsive-
ness, such complex context detection should happen once.
Its results must be available immediately and shared among
all queries that belong to the detected context. In other
words, context-processing queries are dependent on the re-
sults of context-deriving queries. A synchronization mecha-
nism ensuring their correct execution must be employed.

Challenges. To enable real-time responsiveness of such
applications, the following challenges must be tackled.

Context-aware specification model. Many streaming ap-
plications have context-driven semantics. Thus, they must
support application contexts as first class citizens and enable
linkage of the appropriate event query workloads to their re-
spective contexts in a modular format to facilitate on-the-fly
reconfiguration, easy maintenance, and avoid fatal specifica-
tion mistakes.

Context-exploiting optimization techniques. To meet the
demanding latency constraints of time-critical applications,
this context-aware application model must be translated into
an efficient physical query plan. This is complicated by the
fact that the duration of a context is unknown at compile
time and potentially unbounded. Furthermore, contexts are
implied by complex conditions. They are interdependent
and may overlap.

Context-driven execution infrastructure. An efficient run-
time execution infrastructure is required to support mul-
tiple concurrent contexts. To ensure correct query execu-
tion, the inter-dependencies between context-deriving and
context-processing queries must be managed effectively.

State-of-the-Art Approaches. Traditional CEP win-
dows fail to express variable-length inter-dependent context
windows. Indeed, tumbling and sliding windows [8] have
fixed length, while predicate windows [6] are defined inde-
pendently from each other.

Most graphical models express either only the workflow [4]
or only single event queries [3]. Some models and event lan-
guages can express contexts by procedures [7] or queries [5].
However, they do not allow for the modular specification of
context-driven applications – placing an unnecessary bur-
den on the designer [9, 10]. Furthermore, optimization tech-
niques enabled by contexts are yet to be developed.

Contributions. We demonstrate the following contribu-
tions of the CAESAR technology: (1) The easy-to-use graph-
ical interface to illustrate the powerful CAESAR model [9,
10]. It visually captures application contexts, transitions be-
tween them, context-deriving and context-processing queries.
(2) The optimization techniques enabled by contexts sus-
pend those queries that are irrelevant to the current con-
text and share computations between overlapping contexts.
(3) The CAESAR infrastructure guarantees correct and effi-
cient context management at runtime. (4) We illustrate the
usability and performance gain of the CAESAR technology
using the real-world urban transportation scenario [2, 1].

2. CAESAR SYSTEM OVERVIEW
Figure 2 provides an overview of the CAESAR system.

Figure 2: The CAESAR system

Specification Layer. The designer specifies the CAE-

SAR model (Section 3.1) using the visual context editor. The
model is then translated it into an algebraic query plan.

Optimization Layer. The query plan is optimized us-
ing the context-driven optimization techniques (Sections 3.2
and 3.3) to produce an efficient execution plan.

Execution Layer. The optimized query plan is for-
warded to the scheduler that guarantees correct context deriva-
tion and processing at runtime (Section 3.4).

Storage Layer. Context windows and history are com-
pactly stored and efficiently maintained at runtime.

3. KEY INNOVATIONS OF CAESAR

3.1 Context-aware Event Query Model
While the CAESAR model is formally defined in [9, 10],

below we briefly summarize its key components and benefits.
Application Contexts are real-world higher-order situ-

ations the duration of which is not known at their detection
time and potentially unbounded. This differentiates con-
texts from events. The duration of an application context
is called a context window. For example, Congestion is a
higher-order situation in the traffic use case. Its bounds are
detected based on position reports of cars in the same area
at the same time. As long as a road remains congested,
the context window Congestion is said to hold. Hence, the
duration of a context window cannot be predetermined.

At each point of time, the CAESAR model re-targets all ef-
forts to the current situation by activating only those context-

591

deriving and context-processing queries which handle the
current contexts. Irrelevant queries are suspended to save
resources. For example, Uber surge pricing kicks in only
during HighDemand on a road. This query is neither rele-
vant in the Normal nor in the Congestion contexts. Thus,
it is evaluated only during HighDemand and suspended in
all other contexts.

Context-Deriving Queries are associated with a par-
ticular context and determine when this context is termi-
nated and when a particular other context is initiated based
on events. For example, once many slow cars on a road are
detected during the Normal context the system transitions
into the Congestion context. Thereafter, the query detect-
ing Congestion is no longer evaluated. All event queries that
are evaluated during Congestion leverage the insight de-
tected by the context-deriving query rather than re-evaluating
the Congestion condition at each individual query level.

Context-Processing Queries react to events that ar-
rive during a context in an appropriate way. Contexts pro-
vide queries with situational knowledge that allows to specify
simpler event queries. For example, if the query comput-
ing surge pricing is evaluated only during the HighDemand
context, the complex conditions that determine that there is
a high demand in this geolocation are already implied by the
context. Thus, there is no need to repeatedly double-check
them in each of the context-processing queries.

3.2 Context Window Push-Down Optimization
Our CAESAR algebra consists for the following six oper-

ators: Context initiation, context termination, context win-
dow, filter, projection, and pattern [10]. With filter, pro-
jection and pattern common in stream algebras [12], tra-
ditional multi-query optimization techniques [11] are ap-
plicable to our CAESAR queries. In addition, we propose
two context-driven optimization techniques, namely we push
context windows down and share workloads of overlapping
contexts. Pushing context windows down in a query plan
prevents the continuous execution of operators “out” of their
respective contexts and thus reduces the costs. To guarantee
correctness, we group event queries by contexts. By defini-
tion, a context window specifies the scope of its queries.
Thus, pushing a context window down in each group of
queries does not change the semantics of these queries.

In contrast to traditional predicates, context windows are
not just filters on a stream that select certain events to be
passed through. Context windows suspend the entire query
plan “above them” as long as the application is in different
contexts. Furthermore, our context-driven stream router
directs entire stream portions during contexts to their re-
spective queries (Section 3.4) rather than filtering events
one by one at the individual event level which is a resource-
consuming process.

3.3 Context Workload Sharing Optimization
Similar computations may be valid in different contexts.

For example, an accident on a road is detected during all
contexts in Figure 1. In such cases, substantial compu-
tational savings can be achieved by sharing workloads be-
tween overlapping contexts. For example, Congestion and
HighDemand may overlap. To avoid repeated computa-
tions and storage, we split the original user-defined over-
lapping context windows into finer granularity context win-
dows and group them into non-overlapping context windows

by merging their workloads. Within each newly produced
non-overlapping context window, we apply traditional multi-
query optimization techniques [11]. Our context window
grouping strategy divides the query workload into smaller
groups based on their time overlap. As additional benefit,
the search space for an optimal query plan within each group
is substantially reduced compared to the global space.

3.4 CAESAR Execution Fabric
The core of the CAESAR execution fabric consists of the

context derivation, context-aware stream routing, context
processing, and scheduling of these processes (Figure 2).
While we briefly describe these components below, we refer
an interested reader to our full paper [10] for more details.

Context Derivation. For each stream partition (a ge-
olocation in the traffic use case), the context bit vector W
maintains the currently active contexts. This vector W has
a time stamp W.time and a one-bit entry for each context.
The entry 1 (0) for a context c means that the context c
holds (does not hold) at the time W.time. Since contexts
may overlap, multiple entries in the vector may be set to 1.
W.time is the application time when the vector W was last
updated by the context-deriving queries. This time stamp is
crucial to guarantee correctness of interdependent queries.

Context-Aware Stream Routing. Based on the con-
text bit vector, the system is aware of the currently active
contexts. For each current context c, the system routes all
its events to the query plan associated with the context c.
Query plans of all currently inactive contexts do not receive
any input. They are suspended to avoid waste of resources.

Context Processing. The CAESAR model uses contexts
to specify the scope of queries. When a user-defined con-
text ends, all associated queries are suspended and thus will
not produce new results until they become activated again.
Hence, their partial results, called Context history, can be
safely discarded. However, if a user-defined context c with
its associated query workload Qc is split into smaller non-
overlapping contexts c1 and c2, then partial results of the
queries Qc must be maintained across these new contexts c1
and c2 to ensure completeness of the queries Qc.

Correctness. Context-processing queries are dependent
on the results of context-deriving queries. To avoid race
conditions and ensure correctness, these inter-dependencies
must be taken into account. To this end, we define a stream
transaction as a sequence of operations that are triggered by
all input events with the same time stamp. An algorithm
for scheduling read and write operations on the shared con-
text data is correct if conflicting operations2 are processed
by sorted time stamps. While existing stream transaction
schedulers could be deployed in the CAESAR system, we
currently deploy a time-driven scheduler.

4. DEMONSTRATION SCENARIO
In this section, we demonstrate the above key innovations

of the CAESAR system based on the urban transportation
services using two real data sets [2, 1] that contain millions
of taxi and Uber trips in New York city in 2014 and 2015.

Visual CAESAR Model Design. The audience will
view and edit CAESAR models using simple drag-and-drop
interaction tools. Figure 1 shows that the model captures

2Two operations on the same value such that at least one of
them is a write are called conflicting operations.

592

the complex application logic in a succinct and readable
manner. The audience can view the specification at dif-
ferent levels of abstraction. There are three composed con-
texts, namely, Normal, Congestion, and High Demand. All
other contexts are atomic. The composed contexts can be
collapsed and expanded with a click of a button. For ease
of follow-through, color schemas of composed contexts and
their interior structures are consistent. To keep the model
clean and readable, the contexts and transitions between
them are depicted in the middle panel separately from their
respective context-deriving and context-processing queries
shown in the bottom panel. When the cursor is over a tran-
sition, its corresponding context-deriving query appears as
a label of the transition. When the designer clicks on a
label, (s)he can conveniently edit it in the bottom panel.
Similarly, when the designer clicks on a context, the list of
context-processing queries appears in the bottom panel. We
will demonstrate the ease with which CAESAR models can
be dynamically reconfigured by editing contexts, transitions
between them, and their respective queries.

Execution Visualization. At runtime, the model view
provides insights into event-driven context transitions (Fig-
ure 1). The current context and triggering transitions are
temporally highlighted. Besides the real-time monitoring,
the model view offers a slow-motion-replay mode that allows
the users to step-through the history of prior execution to
better understand, debug, and reconfigure the model. This
functionality provides the audience a visual opportunity to
learn how the CAESAR model functions.

Figure 3: Analytics view

Execution Optimization. The analytics view will al-
low the audience to monitor the effect of the context-driven
optimization techniques. The audience will first chose to
show statistics either about contexts, or drivers, or riders in
the top panel of Figure 3. Also, the audience can specify
the time interval of interest in the top panel. Thereafter,
charts visualizing runtime statistics will appear in the mid-
dle panel. They provide a summary about the chosen topic
during the time interval of interest. For example, to summa-
rize the contextual information, the number of high demand
occurrences, average duration of this context, as well as the
price, wait time, and driver vs. rider ratio during 8 hours
are compactly presented in Figure 3.

Interactive City Map offers the audience an abstract
view of the current situation by highlighting the areas in
different colors depending on their contexts. For example, a
high demand area is identified in the middle panel in Figure 4
highlighted by a red circle. Green and blue circles visualize
riders outside of the high demand area. In addition to the
map, runtime statistics are shown in the top panel. They

include the number of current high demand or congested
areas, the number of recent requests and current trips, the
number of available drives and waiting riders.

In addition to the complex events that are automatically
derived by queries, the audience will learn about common
manual actions which include area specific information such
as accidents, road construction, gas prices, police cars etc.
This information will be added by clicking on the respective
location on the map and choosing the information in a drop-
down menu. A respective icon will appear on the map. For
example, one traffic hazard is depicted in Figure 4. Based
on this information, travel time and cost will be estimated
to compute the best route of each trip.

Figure 4: Map view

Conclusion. The CAESAR technology offers a principled
end-to-end solution for context-aware stream analytics.

Acknowledgement. This work was supported by NSF
grants IIS 1018443, IIS 1343620, IIS 1560229, and CRI 1305258.

5. REFERENCES
[1] Uber TLC FOIL Response.

https://github.com/fivethirtyeight/uber-tlc-foil-response.

[2] Unified New York City Taxi and Uber data.
https://github.com/toddwschneider/nyc-taxi-data.

[3] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient
pattern matching over event streams. In SIGMOD, pages
147–160, 2008.

[4] R. Alur and D. Dill. Automata for modeling real-time systems.
In ICALP, pages 322–335, 1990.

[5] A. Arasu, S. Babu, and J. Widom. The CQL continuous query
language: semantic foundations and query execution. VLDB
Journal, 15(2):121–142, 2006.

[6] T. M. Ghanem, W. G. Aref, and A. K. Elmagarmid. Exploiting
predicate-window semantics over data streams. SIGMOD Rec.,
35(1):3–8, 2006.

[7] A. Grosskopf, G. Decker, and M. Weske. The Process: Business
Process Modeling using BPMN. Meghan Kiffer Press, 2009.

[8] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. Tucker. No
pane, no gain: Efficient evaluation of sliding-window aggregates
over data streams. In SIGMOD, pages 39–44, 2005.

[9] O. Poppe, S. Giessl, E. A. Rundensteiner, and F. Bry. The HIT
model: Workflow-aware event stream monitoring. In TLDKS,
pages 26–50. 2013.

[10] O. Poppe, C. Lei, E. Rundensteiner, and D. Dougherty.
Context-aware event stream analytics. In EDBT, pages
413–424, 2016.

[11] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and
extensible algorithms for multi query optimization. In
SIGMOD, pages 249–260, 2000.

[12] E. Wu, Y. Diao, and S. Rizvi. High-performance Complex Event
Processing over streams. In SIGMOD, pages 407–418, 2006.

593

	CAESAR: Context-Aware Event Stream Analytics for Urban Transportation ServicesOlga Poppe, Chuan Lei, Elke Rundensteiner, Dan Dougherty, Goutham Deva, Nicholas Fajardo, James Owens, Thomas Schweich, MaryAnn VanValkenburg, Sarun Paisarnsrisomsuk, Pitchaya Wiratchotisatian, George Gettel, Robert Hollinger, Devin Roberts, Daniel Tocco

