
Come and crash our database!
– Instant recovery in action

Caetano Sauer
TU Kaiserslautern, Germany

csauer@cs.uni-kl.de

Gilson Souza
TU Kaiserslautern, Germany
gsantos@rhrk.uni-kl.de

Goetz Graefe
Google, Madison, WI, USA
goetzg@google.com

Theo Härder
TU Kaiserslautern, Germany
haerder@cs.uni-kl.de

ABSTRACT
We present a demonstration of instant recovery, a family of
techniques to enable incremental and on-demand recovery
from different classes of failures in transactional database
systems. In contrast to traditional ARIES-based algorithms,
instant recovery allows transactions to run concurrently to
recovery actions—not only permitting earlier access to data
that requires recovery but also using the post-failure access
pattern to actually guide the recovery process. This mecha-
nism prioritizes data needed most urgently after a failure,
thus dramatically reducing the mean time to repair per-
ceived by any individual transaction.

We have implemented instant recovery in an open-source
storage manager and developed a Web-based interface to
showcase its recovery capabilities. Users of this demo ap-
plication are able to control the execution of various bench-
marks and inject different types of failures arbitrarily, ob-
serving the system behavior and recovery progress live in
a dashboard utility. Furthermore, since traditional ARIES
recovery is also implemented, users can select the type of
recovery and obtain a live graphical comparison of the dif-
ferent techniques.

1. INTRODUCTION
Database availability is a key challenge of scalable and re-

liable information systems. Improvements in availability can
be achieved on two main fronts: increasing mean time to fail-
ure (MTTF) and decreasing mean time to repair (MTTR).
Large businesses and Internet-scale services have invested
heavily on the first front with highly redundant hardware
configurations. The latter front, however, has not seen sub-
stantial improvements in the last decades, especially when
considering the algorithms for logging and recovery in trans-
actional database systems.

The vast majority of commercial and open-source database
systems rely on techniques similar in essence to the ARIES

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

family of recovery algorithms [5]. While ARIES works very
well on traditional disk-based architectures with moderate
transaction throughput and limited main-memory capacity,
modern hardware and the systems designed to fully exploit
its potential reveal severe limitations of traditional logging
and recovery. These limitations include: long time to repair
due to inefficient access patterns during recovery, inability
to incrementally recover and enable access to most impor-
tant data first, and high overhead on normal transaction
processing.

Instant recovery was proposed recently as an alternative
to ARIES that addresses its limitations on both traditional
and modern hardware scenarios. Instead of being restricted
to system failures and restart, it is designed to recover from
all classes of failures known in the database literature. Fur-
thermore, like ARIES, it relies on write-ahead logging with
physiological log records, which means it can be incremen-
tally implemented on an ARIES system, retaining all its
capabilities while eliminating its limitations. For further
elaboration on the limitations of previous techniques, the
contribution of instant recovery, and empirical evaluation of
the techniques, we refer to previous publications [1, 2, 7, 8].

This paper describes an interactive demo application de-
signed to showcase the benefits of instant recovery in com-
parison with ARIES. After a brief overview of instant recov-
ery in Section 2 below, the architecture and functionality of
the demo application is described in Section 3. We provide a
high-level description of the application and its interaction
with the underlying transactional system, focusing on the
user interaction and what attendees of the demonstration
can expect to see. Finally, Section 4 provides a summary
and some concluding remarks.

2. INSTANT RECOVERY IN A NUTSHELL
Instant recovery [1] is a family of algorithms designed to

address different classes of failures in transactional systems.
Table 1 summarizes such failure classes and their typical
causes and effects. Details of the specific recovery mecha-
nisms employed for each class are beyond the scope of our
demonstration and have been explored extensively in previ-
ous research [1, 2, 7, 8]. This section discusses the fundamen-
tal characteristic common to all instant recovery techniques:
the support for recovery actions that are executed concur-
rently to normal processing, provide incremental access to
already-recovered data items, and exploit workload access
patterns to guide recovery and prioritize data needed most

Demonstration

Series ISSN: 2367-2005 554 10.5441/002/edbt.2017.68

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.68

Failure class Loss Typical
cause

Response

Transaction Single-
transaction
progress

Deadlock Rollback

System Server process
(in-memory
state)

Software
fault,
power loss

Restart

Media Stored data Hardware
fault

Restore

Single page Local integrity Partial
writes,
wear-out

Repair

Table 1: Failure classes, their causes, and effects (from [8])

urgently. In order to summarize these techniques and pro-
vide an overview of how instant recovery works, we discuss
the case of restart after a system failure.

When a system failure occurs, the in-memory state of the
database server process is lost and must therefore be recov-
ered when the system comes back up. As in ARIES recovery,
this boils down to determining which transactions must be
rolled back in the UNDO phase (i.e., active transactions) and
which pages must have their updates replayed in the REDO

phase (i.e., dirty pages). Such information is collected with
a sequential log scan in the log analysis phase, which covers
the interval from the most recent checkpoint up to the last
persisted log record.

In essence, the key characteristic that distinguishes in-
stant restart from ARIES restart is that, once log analy-
sis information is collected, the REDO and UNDO phases
can be performed on a per-page and a per-transaction ba-
sis, respectively. In other words, recovery actions can be
scheduled according to a variety of policies, and not just the
schedule dictated by a sequential REDO or UNDO log scan.
This means that as soon as log analysis is complete (which
usually only takes a few seconds), transactions can immedi-
ately be admitted to the system and, as soon as they touch
a page in need of recovery (i.e., a page marked dirty dur-
ing log analysis) or incur a lock conflict with a transaction
in need of rollback (i.e., a transaction marked active dur-
ing log analysis), that single page or that single transaction
can be recovered on demand. The basic design features that
enable such on-demand recovery are (i) a per-page chain of
log records that is also the basis of single-page recovery [2];
and (ii) tracking acquired locks during checkpoints and log
analysis.

Fig. 1 illustrates the process of on-demand recovery dur-
ing instant restart. In this scenario, log analysis has de-
tected two dirty pages, A and B, whose expected page LSN
is x and y, respectively. Furthermore, two pre-failure active
transactions, T1, holding locks with identifiers b and d, and
T2, with lock on f , were also detected. After log analysis,
a new transaction is initiated—shown here as the gray box
on the top left corner. This transaction attempts to fix page
B in the buffer pool; because this page is marked as need-
ing recovery, on-demand REDO processing kicks in and log
records pertaining to this page are replayed by following a
backward chain of log records (which is exactly the same
process employed for single-page recovery [2]). Log replay
of this single page happens concurrently with replay of any
other page; in fact, it may even happen with asynchronous,
ARIES-style REDO based on a forward log scan.

...

PID LSN

Locks TID

Figure 1: On-demand recovery in instant restart

After page B is restored, the new transaction attempts
to acquire a lock on f . In this case, the lock table yields
a conflict with transaction T2; since this transaction is a
pre-failure one, its rollback is triggered by this lock conflict.
Because rollback of a pre-failure transaction works exactly in
the same way as a transaction abort during normal process-
ing (e.g., due to deadlock), the same logic is applied. Once
such rollback is completed, the locks held by T2 are released
and the lock is finally granted to the waiting post-failure
transaction.

The on-demand and incremental recovery schedules essen-
tially reduce the MTTR as perceived by a single transaction
by multiple orders of magnitude. ARIES restart recovery,
in contrast, usually requires at least a full REDO log scan—
which is typically the longest phase of recovery by far [6]—
before the first post-failure transaction can complete1.

In the next section, we describe the demo application pro-
posed by this paper. It is the first interactive user interface
ever developed for instant recovery, which can not only re-
produce some of our empirical measurements, but also allow
the user to interact with the workload, observe the system
behavior graphically, and, most importantly, inject failures
arbitrarily.

3. DEMONSTRATION
Instant recovery techniques such as single-page recovery,

instant restart, and instant restore have been implemented
over the past three years in the Zero 2 storage manager pro-
totype, which is a fork of the well-known Shore-MT [3]3.
Zero has also been incorporated into the MariaDB database
system (a modern fork of MySQL) as a storage engine mod-
ule that can be used as an alternative to the popular InnoDB
engine.

Our demonstration will provide a hands-on experience to
interact with these systems under a variety of benchmark
workloads. Focusing mainly on the logging and recovery
aspects, the demo program enables users to inject different
types of failures in a database workload running on Zero and
observe the recovery process live in an intuitive graphical
interface. Combined with a choice of parametrized work-
loads, this rich interface allows users to interactively explore

1Improvements to the ARIES algorithm aimed at enabling
earlier access during recovery have been proposed [5, 4], but,
in summary, none of them provides fully on-demand and in-
cremental recovery to fine-granular objects, especially those
needed most urgently by the application. The limitations
of these “extended” versions of ARIES are also discussed in
previous work [1, 8]
2https://github.com/caetanosauer/zero
3https://sites.google.com/site/shoremt/

555

HTTP server
Storage
Manager
Kernel

Server
process

System
counters

Transaction
log

Statistic
tables

Web
interface

REST API
1

2
3

4

5

6

Figure 2: Architecture of the demo program

the potential of instant recovery techniques in improving
database reliability.

To demonstrate the various instant recovery techniques
and compare them with traditional ARIES-based recovery,
we have developed a Web-based interface to control the exe-
cution of benchmarks and display relevant system statistics
in a graphical way. This section describes how our demo
program is organized, how it achieves these goals, and how
the user can interact with it.

3.1 Demo program architecture
The diagram in Fig. 2 illustrates the main components of

the demo program and their interaction. The Web interface
serves two main purposes: first, it sends commands to the
Zero storage manager (which may be running either inde-
pendently or as a storage engine inside MariaDB) to con-
trol the execution of workloads as well as adjust system and
benchmark parameters dynamically; and second, it serves as
a “dashboard” to visualize real-time statistics.

The communication between Web client and server is im-
plemented with a JSON-based REST API. Commands are
available to start and stop a certain benchmark workload
and—especially for the purposes of instant recovery—inject
system crashes and persistent storage failures. System crashes
cause the immediate destruction of all in-memory data struc-
tures of the server process—most importantly buffer pool,
transaction manager, and lock table. In Fig. 2, the process
of receiving a command via the REST API and forward-
ing it to the storage manager kernel is illustrated by arrow
number 1. The following paragraphs discuss the remainder
of the demo program architecture by referring to the num-
bered arrows.

While the storage manager kernel processes transactions,
it generates two types of information which are relevant for
the demo. First, a collection of system counters (arrow 2) is
used to keep track of system events for which only the total
number of occurrences is of interest. For example, counters
of transaction commits, page reads and writes, log volume
generated, number of active transactions, number of dirty
pages, etc. are typical measures of interest.

The second collection mechanism is through the transac-
tion log (arrow 3). By continuously analyzing the logs and
performing various aggregations, events can be collected in
a time-dependent manner, allowing more detailed statistics
than those provided by simple counters. The information
collected from the system counters and the transaction log
is stored in a collection of statistic tables (arrows 4 and 5),
which are finally serialized into the JSON format for display
in the demo (arrow 6).

3.2 Visualizing the recovery process
As mentioned above, the demo application provides com-

mands to inject failures into the running workload. We
support injection of three of the four classes summarized
in Table 1: system, media, and single-page failures. The
remaining class—transaction failure—is not supported be-
cause there is not much to demonstrate in that case, as the
abort of a single transaction does not cause any noticeable
impact on system behavior.

When injecting a failure, the user may also choose which
recovery method to employ: traditional ARIES or instant
recovery. In addition to system failures, users can also in-
ject a failure on persistent storage (e.g., single-page or whole-
device failures) independently of system failures—i.e., differ-
ent failure modes can be mixed and matched freely. Further-
more, failures can be re-injected at any time during recovery
from a previous failure, demonstrating the independence and
idempotency of recovery modes.

Regardless of whether recovery activities are being car-
ried on or not, the dashboard of the demo program con-
stantly displays statistics collected from the statistic tables
described above, some of which can be selected for plotting.
For instance, the user can observe the transaction through-
put along with the buffer pool hit ratio. During instant
restart after a system failure, these values should gradually
rise as on-demand, incremental recovery progresses.

In addition to statistics available during normal process-
ing, special statistics are collected and displayed during the
recovery process—for instance, progress bars indicate the
percentage of completion of each recovery phase (log analy-
sis, REDO, and UNDO).

3.3 Screenshot walk-through
Fig. 3 shows a screenshot of our demo application in which

a TPC-C workload is running and two recovery processes are
currently active: instant restart (from a system failure) and
instant restore (from a media failure). At the top, the IP ad-
dress of the server process is provided along with the chosen
workload—in this case TPC-C. An additional button opens
up a pop-up window in which system and workload param-
eters can be adjusted—some of which can also be changed
while the benchmark runs. Below that, three red buttons
are provided to inject a system, media, or single-page fail-
ure. In the latter case, the user can additionally specify what
kind of page should be selected for failure (in this case, a
root page of an index). These buttons remain available even
when recovery is already being carried out, allowing users
to simulate failure-on-failure scenarios.

The middle part of the screenshot shows the graphical
display component, in which three statistics are currently
selected—transaction commit rate, page reads, and page
writes. Using the“Choose counters”button on the top, users
can select different statistics to plot. A text output of all
stats and counters is also available but omitted here.

Finally, the bottom part shows the progress of currently
ongoing recovery processes. In this case, a system restart
is being carried on, and the progress bars show how much
of the REDO and UNDO phases has been completed. Be-
low that, a single progress bar displays the progress of a
concomitant restore process, in which segments of the failed
device are also restored incrementally. Note that transac-
tions are running despite the ongoing recovery—this is the
crucial feature of instant recovery.

556

Figure 3: Screenshot of the Instant Recovery Demo

4. SUMMARY AND CONCLUSIONS
Instant recovery drastically improves database system avail-

ability in the presence of failures, allowing incremental and
on-demand recovery. Using a prototype transactional stor-
age manager, we aim to demonstrate how these new recovery
techniques behave in a real system. The demo application
proposed here will enable attendees at the conference to in-
teractively inject failures into a running workload and ob-
serve the instant recovery process live. The dashboard util-
ity constantly collects relevant statistics from the database
server process and displays them graphically according to
customized selections made by the user. The Zero storage
manager on which the demo is based is the first—and so
far only—implementation of instant recovery. Therefore,
the demo application will also provide a novel experience
to most attendees.

5. REFERENCES
[1] G. Graefe, W. Guy, and C. Sauer. Instant Recovery

with Write-Ahead Logging: Page Repair, System
Restart, Media Restore, and System Failover, Second
Edition. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2016.

[2] G. Graefe and H. A. Kuno. Definition, Detection, and
Recovery of Single-Page Failures, a Fourth Class of
Database Failures. PVLDB, 5(7):646–655, 2012.

[3] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and
B. Falsafi. Shore-MT: a scalable storage manager for
the multicore era. In Proc. EDBT, pages 24–35, 2009.

[4] C. Mohan. A cost-effective method for providing
improved data availability during DBMS restart
recovery after a failure. In Proc. VLDB, pages 368–379,
1993.

[5] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method
supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst.,
17(1):94–162, 1992.

[6] C. Sauer, G. Graefe, and T. Härder. An empirical
analysis of database recovery costs. In RDSS (SIGMOD
Workshops), 2014.

[7] C. Sauer, G. Graefe, and T. Härder. Single-pass restore
after a media failure. In Proc. BTW, LNI 241, pages
217–236, 2015.

[8] C. Sauer, G. Graefe, and T. Härder. Instant restore
after a media failure. Under submission, 2016.

557

	Come and crash our database! – Instant recovery in actionCaetano Sauer, Gilson Souza, Goetz Graefe, Theo Härder

