
SDOS: Using Trusted Platform Modules for Secure
Cryptographic Deletion in the Swift Object Store

Tim Waizenegger
University of Stuttgart

Institute for Parallel and
Distributed Systems

waizentm@ipvs.uni-
stuttgart.de

Frank Wagner
University of Stuttgart

Institute for Parallel and
Distributed Systems

wagnerfk@ipvs.uni-
stuttgart.de

Cataldo Mega
University of Stuttgart

Institute for Parallel and
Distributed Systems

megaco@ipvs.uni-
stuttgart.de

ABSTRACT
The secure deletion of data is becoming increasingly im-
portant to individuals, corporations as well as governments.
Recent advances in worldwide laws and regulations now re-
quire secure deletion for sensitive data in certain industries.
Data leaks in the public and private sector are commonplace
today, and they often reveal data which was supposed to be
deleted. Secure deletion describes any mechanism that ren-
ders stored data unrecoverable, even through forensic means.
In the past this was achieved by destroying storage media or
overwriting storage sectors. Both of these mechanisms are
not well suited to today’s multi-tenant cloud storage solu-
tions.

Cryptographic deletion is a suitable candidate for these
services, but a research gap still exists in applying cryp-
tographic deletion to large cloud storage services. Cloud
providers today rarely offer storage solutions with secure
deletion for these reasons. In this Demo, we present a work-
ing prototype for a cloud storage service that offers crypto-
graphic deletion with the following two main contributions:

A key-management mechanism that enables cryptographic
deletion an on large volume of data, and integration with
Trusted Platform Modules (TPM) for securing master keys.

Keywords
secure data deletion, cryptographic deletion, data erasure,
records management, retention management, key manage-
ment, data shredding, trusted platform module, TPM

1. BACKGROUND
Cloud based storage solutions are popular services today

especially among consumers. They are used for synchroniz-
ing data across devices, for backup and archiving purposes,
and for enabling access at any time from anywhere. But the
adoption of such storage services still faces many challenges
in the government and enterprise sector. The customers,

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

as well as the providers, have a desire to move storage sys-
tems, or parts of these systems, to cloud environments in
order to reduce cost and improve the service. But security
issues often prevent customers from adopting cloud storage
services.

The providers often address these issues by offering some
type of data encryption. They differ in three aspects: i)
where the data encryption happens, ii) who has authority
over the encryption keys, and iii) how keys are managed.

In most offerings, the provider has authority over master
keys and encryption happens on the provider side [1]. This
allows the provider to read the customer’s data and enables
them to offer more advanced services and up-sell customers
in the future. If client side encryption is used and customers
have authority over master keys, no provider access is pos-
sible and less trust in the provider is required. Client side
encryption with customer side key authority enables the use
of cloud storage services for especially sensitive data.

We propose a cloud storage systems that employs client-
side encryption of content in order to address confidentiality
concerns of customers. We further propose a key manage-
ment that enables cryptographic deletion in order to assure
customers’ legal and regulatory compliance.

In this demo, we present a cloud storage system with the
two main contributions:

1. Transparent data encryption with support for crypto-
graphic deletion.

2. Trusted Platform Module integration that provides se-
cure deletion and confidentiality for master keys.

2. CRYPTOGRAPHIC DELETION
An often overlooked security aspect of cloud storage sys-

tems is the secure deletion of data. Secure deletion de-
scribes any mechanism that renders deleted data unrecov-
erable, even through forensic means. Recent advances in
worldwide regulation make secure deletion a requirement in
many industries like banking and law enforcement [2, 4, 5].
Even industries without explicit regulation have an interest
in securely removing deleted data in order to prevent fu-
ture leaks and exposure [6]. In the past, secure deletion was
achieved by destroying storage media or overwriting stor-
age sectors. Both of these mechanisms are not well suited
to today’s multi-tenant cloud storage solutions. Identifying
the physical disks that need to be destroyed, or the blocks
that need to be overwritten, becomes difficult to impossi-
ble [7]. In this work, we assume an untrusted cloud storage

Demonstration

Series ISSN: 2367-2005 550 10.5441/002/edbt.2017.67

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.67

1011
1100
010

1011
1100
010

1011
1100
010

Encrypt
data

Trusted local
storage allows
secure deletion

Untrusted cloud
storage; no secure
deletion possible

Store separately

Figure 1: Cryptographic deletion: Delete data indi-
rectly by securely deleting their encryption key.

system in which all deleted data can be restored later by
forensic means. Cryptographic deletion is a suitable can-
didate for these services, but a research gap still exists in
applying cryptographic deletion to large cloud storage ser-
vices [8]. As shown in Figure 1, cryptographic deletion works
by encrypting the data prior to storing it in an untrusted
location. The encryption key must be kept in a secure lo-
cation and can later be deleted in order to indirectly delete
the data. This requires that data encryption happens in the
customers trusted environment and that the customer has
authority over the encryption key. Cryptographic deletion
is therefore a function of the key management mechanism in
client-side encryption solutions.

2.1 The Key-Cascade
Our “Key-Cascade” key management mechanism is based

on a tree structure in which each node contains encryption
keys and child nodes are encrypted with a key from their
parent [3, 10]. Figure 4 shows an example of this structure
with Key 0 as the master key. Each inner node contains a
list of encryption keys and each key is used to encrypt one
of the node’s children. E.g. in Figure 4, Key 1 is used to
encrypt the child node containing Keys 17 through 21. Be-
cause this child node is encrypted with Key 1, it is called
Node 1. The leaves of this tree are nodes containing encryp-
tion keys for the actual data objects. Each (encrypted) node
is stored as an object inside the object store and identified
by its node ID. The IDs for keys, nodes, and objects are
used for accessing the Key-Cascade data structure. The IDs
are assigned so that only an object ID is needed to calcu-
late the list of node and key IDs along the path to this leaf.
This allows decoupling the retrieval and processing of the
encrypted nodes.

Figure 2 shows how cryptographic deletion is realized on
this data structure. The purpose of the Key-Cascade is
to transfer the property of secure deletion from the mas-
ter key (stored in TPM) to the large number of object keys.
This is achieved through the hierarchical dependency be-
tween the keys. Once a key becomes inaccessible, all its
child nodes become inaccessible as well, leading to cryp-
tographic deletion of the corresponding objects. Once the
master key is securely deleted (by the TPM), all the nodes
of the tree become inaccessible and all the objects become
securely deleted as well.

We use the logarithmic height of the tree in order to cryp-
tographically delete individual objects with minimal over-
head: Figure 2 shows how Object 7 is deleted by generating
a new (and deleting the old) master key and modifying a
path of nodes. The nodes along the path from master key
to Object 7 get copied and modified in two ways: i) internal
nodes are copied while the key for the child node on this
path is replaced by a newly generated one. ii) leaf nodes

N1

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

1011
1100
010

0 1 2 3 4 5 6 7

N2 N2’

N0’N0

mk
Old master key
securely deleted

Access to old
nodes lost

Unmodified
node

New master key

New node key

Modified &
re-keyed nodes

Access to
Object 7
removed

Object key
not copied

Figure 2: the Key-Cascade data structure after dele-
tion of object 7.

contain the object keys. This node is copied as well but the
object key (which should be deleted) is not copied. In both
cases the copied nodes are then re-encrypted with their new
parent key. All off-path branches remain unaffected and are
now accessible through the new master key and modified
nodes.

All the old nodes and objects become inaccessible because
the old master key was securely deleted by the TPM. It is
not possible to restore these deleted objects even if all the
old nodes can be restored, because the old master key is no
longer available. This recursive “re-keying” of nodes always
includes replacing the master key. In order to reduce cost,
deletions can be processed in batches. The master key then
only needs to be replaced once per batch.

2.1.1 Key-Cascade properties
The properties of the Key-Cascade are determined by two

parameters: The tree height h and the node size Sn. These
properties include the maximum number of object keys, the
number of nodes, and the size of the whole data structure.
In the following, we give two examples for these properties.
Each key has a size of 32 bytes in these calculations because
we use the AES256 encryption algorithm.

Example 1:
Tree height h = 2, node size Sn = 22 = 4.

This results in a cascade consisting of 5 nodes with
space for 16 object keys. When fully utilized, the Key-
Cascade needs 640 bytes to store the nodes. Re-keying
requires up to 12 operations. With data objects of 100
kilobytes average size, this cascade can store keys for
1.6 megabytes of data. The cascade therefore imposes
a storage overhead of 0.04%

Example 2:
Tree height h = 3, node size Sn = 28 = 256.

This more realistic parameter setting results in a cas-
cade consisting of 65,793 nodes with space for 16,777,216
object keys. When fully utilized, the Key-Cascade
needs 514 megabytes to store the nodes. Re-keying re-
quires up to 774 operations (note that these are small
in-memory operations). With data objects of 100 kilo-
bytes average size, this cascade can store keys for 1.6
terabytes of data. The cascade therefore imposes a
storage overhead of 0.03%

551

Swift
Object Store

Metadata
Warehouse

SDOS Core

Metadata
Extractor

Content
Identifier

Metadata
Replicator

Content
Management

Metadata
analytics

Retention
Manager

Message
Persistence

Tasks &
Scheduling

M
es

sa
gi

ng

Bulk
load/retrieveBluebox UI

 Apache Kafka

 Swift REST

Public/Private
 Cloud Border

HTTP

 SQL

Generic
Swift client

 Existing Component

 Newly Developed

UI back end

←
 P

rivate | P
ublic →

TPM

Figure 3: The architecture of the Micro Content
Management system with hardware Trusted Plat-
form Module (TPM).

3. THE MICRO CONTENT MANAGEMENT
SYSTEM (MCM)

In this demo, we present our proof-of-concept and bench
marking application MCM1. MCM’s functionality is based
on on-premise Enterprise Content Management systems like
IBM FileNet P8, but is designed to use outsourced cloud
storage and client-side encryption. MCM stores objects and
files inside storage containers in the Swift2 object store.
Whole containers can be transparently encrypted with a
key-management mechanism that allows secure deletion of
individual objects. MCM supports uploading and retriev-
ing files, setting retention dates and scheduling deletion, ex-
tracting and viewing metadata, and analyzing and graphing
analyses on this metadata. Our user interface also features
interactive visualizations of the underlying key management
data structures, which will be used in this Demo.

Figure 3 shows the high level architecture of MCM. The
central component for this Demo is SDOS, the Secure Delete
Object Store, which implements encryption as well as the
key management for cryptographic deletion and also has the
integration with the TPM.

We use three data management systems (bottom row of
Figure 3): An Apache Kafka streaming platform for loosely
coupled communication, an SQL database for storing and
analyzing unencrypted metadata, and a Swift object store
that holds all the encrypted data objects. Metadata is stored
unencrypted in MCM because this allows us to execute queries
on the cloud. The user can decide what metadata should be
extracted from files, depending on their sensitivity. Cloud
resources can then be used to query, search, filter, and an-
alyze this metadata. File and container names are always
stored as unencrypted metadata. If no further metadata
is extracted, users must always retrieve (and decrypt) files
before their content can be searched or analyzed locally.

1https://github.com/timwaizenegger/mcm-sdos
2http://docs.openstack.org/developer/swift/

Figure 4: Screenshot of the interactive visualization
for the key management data structure. Key 0 is
secured by the TPM.

We use the Swift REST-API protocol for our internal
components in MCM, as shown by the blue lines in Fig-
ure 3. This protocol is used by the Swift object store and
other large key/value stores (e.g. Ceph3) and their clients.
Encryption and cryptographic deletion are handled by our
SDOS component which is realized as such a Swift API-
proxy. This enables us to use any unmodified Swift backend
(e.g. SaaS) as well as any existing Swift clients. The API-
proxies form a flexible pipeline. All MCM components can
run multithreaded or distributed to enable horizontal scaling
and high availability.

The Kafka streaming platform is used for triggering the
execution of jobs for metadata extraction and replication as
well as scheduled deletion of old objects. We use a relational
database as a replicated metadata warehouse, as Swift lacks
advanced querying capabilities for metadata (only retrieving
and listing is possible). All the object metadata is primar-
ily stored in Swift and then replicated to the RDBMS for
analysis.

The location where the components from Figure 3 run is
critical to the security of the system. In order to guarantee
the secure deletion property, the content of the stored ob-
jects must never leave a trusted environment in unencrypted
form. The same must be guaranteed for the encryption keys.
Our SDOS encryption uses a tree structure for key manage-
ment of which only the root key must be kept secure. All
other keys are stored encrypted on Swift together with the
data objects.

One possible separation of trusted/untrusted environment
is given by the red line in Figure 3. It shows that all the data
storage system can be outsourced to the public (untrusted)
environment, because all sensitive data are encrypted. The
master key for our key management mechanism is stored in,
and never leaves the TPM.

3http://docs.ceph.com/docs/jewel/radosgw/swift

552

4. TRUSTED PLATFORM MODULES (TPM)
Trusted Platform Modules are a type of hardware security

module that is used in PCs, Laptops, and Servers. They are
already ubiquitous in those devices today and will achieve
even higher spread in the future since Microsoft now lists a
TPM as a mandatory hardware requirement for its Windows
10 operating system4. TPMs implement a specification by
the Trusted Platform Group that defines core capabilities
and security requirements [9]. TPMs generally contain a
small storage as well as processing unit inside a tamper re-
sistant physical package. Their most important feature is
that certain areas of their storage unit can only be accessed
by the internal processor. This means that some encryp-
tion keys can never leave the TPM but can only be used to
de/encrypt data that is loaded into the TPM. TPMs fur-
thermore have the capability to securely delete stored keys,
and replace them with newly generated ones. This provides
a secure basis for cryptographic deletion since a key is pos-
itively unrecoverable if it never leaves the TPM and is se-
curely deleted inside the TPM later on.

The TPM’s intended purpose is to support local disk and
data encryption, as well as verified device identification. For
data encryption, an encryption key is stored on disk but en-
crypted with the TPM master key. This encryption key
can only be used after it was decrypted by an authenticated
TPM. The actual data de- and encryption is then done by
the main CPU, only de and encryption of the key is done
inside the TPM. For device identification, TPMs contain an
“endorsement key” that was signed by a trusted manufac-
turer master key. Remote services can challenge the TPM
and verify the endorsement key in order to identify a cer-
tain machine. This is used for enterprise asset tracking as
well as licence management for digital media (digital rights
management).

TPMs can be used in custom applications with the lim-
itation that no custom code can be run inside the TPM.
Only the basic cryptographic operations are supported by
the processor inside the TPM [11]. TPMs offer physical
security and tamper resistance and can be used to secure
master keys to custom cryptographic applications.

In MCM we use a TPM in order to store the master key
on the SDOS core component. This master key (Key 0 in
Figure 4) encrypts the first level of keys in a tree. The master
key never leaves the TPM and is only used to en/decrypt
the first level of the tree by loading this node into the TPM
for processing.

5. DEMO OVERVIEW
This Demo will present a working prototype of a cloud

storage system that offers transparent encryption with cryp-
tographic deletion. We will show the theory behind our key-
management mechanism (Key-Cascade), present the archi-
tecture of the cloud storage system, and demonstrate the
integration with a Trusted Platform Module.

In our demo scenario we will first explain the layout of
the system and the physical location of the individual com-
ponents. We will then create new data containers with and
without cryptographic deletion and show data ingestion and
retrieval with different client applications. We will show
how the encryption keys for new objects are generated and

4https://msdn.microsoft.com/en-us/library/windows/
hardware/dn915086(v=vs.85).aspx

how they fit into the hierarchical Key-Cascade. We present
the operations on the Key-Cascade including cryptographic
deletion, show the capacity of the data structure as well as its
scaling behavior. We then show how the Trusted Platform
Module is integrated with the Key-Cascade and operations.

In this demo, the audience will learn about cryptographic
deletion and its application to practical storage systems.
Our integration of Trusted Platform Modules is relevant for
applications outside of cryptographic deletion as well. Any
system that employs cryptography can increase certain se-
curity aspects by integrating a TPM. Therefore, this demo
is also relevant for researchers working in other areas of ap-
plied cryptography. Finally, our solution makes heavy use of
the Swift object store and its REST-API which makes this
demo relevant for researchers interested in Swift as well.

Screenshots of the user interface, all the application code,
as well as more details about their capabilities, can be found
on our Github page: https://github.com/timwaizenegger/
mcm-bluebox

6. REFERENCES
[1] Amazon glacier with vault lock, SEC 17a-4(f) &

CFTC 1.31(b)-(c) compliance assessment. Technical
report, Cohasset Associates Inc., Aug. 2015.

[2] Regulation (EU) 2016/679: General data protection
regulation. Technical report, European Parliament
and Council, 2016.

[3] J. Barney, D. Lebutsch, C. Mega, S. Schleipen, and
T. Waizenegger. Deletion of content in digital storage
systems, March 2016. US Patent 9,298,951.

[4] S. Beresford. Deletion of records from national police
systems. Technical report, UK National Police Chiefs’
Council, May 2015.

[5] D. Brown, C. Arend, and A. Venkatraman. EU data
protection reform will drive growth in european
security and storage markets. IDC ESS02X, Oct. 2015.

[6] T. Conde. To delete or not delete - that’s the question:
A company’s obligations to preserve records under the
new electronic discovery rules. Technical report, Stoel
Rives LLP, 2009.

[7] S. M. Diesburg and A.-I. A. Wang. A survey of
confidential data storage and deletion methods. ACM
Comput. Surv., 43(1):2:1–2:37, Dec. 2010.

[8] S. Garfinkel and A. Shelat. Remembrance of data
passed: a study of disk sanitization practices. Security
Privacy, IEEE, 1(1):17–27, Jan. 2003.

[9] Trusted Computing Group. TPM 1.2 protection
profile, 2016.

[10] T. Waizenegger. Poster presentation: SDOS: Secure
deletion in the swift object store. In C. Nikolaou and
F. Leymann, editors, Proceedings of the 9th
Symposium and Summer School On Service-Oriented
Computing, volume RC25564 of IBM Research Report.
IBM, Dec. 2015.

[11] V. J. Zimmer, S. R. Dasari, and S. P. Brogan.
Tcg-based firmware, white paper by Intel corporation
and IBM corporation trusted platforms, 2009.

553

	SDOS: Using Trusted Platform Modules for Secure Cryptographic Deletion in the Swift Object StoreTim Waizenegger, Frank Wagner, Cataldo Mega

