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ABSTRACT
In this demo, we present MovieFinder, a user-friendly movie
search system with following characteristics: it (1) searches movies
on social networks via the technique of top-k graph pattern match-
ing; (2) supports distributive computation to handle sheer size of
real-life social networks; (3) applies view-based technique to op-
timize local evaluation, and employs incremental computation to
keep cached views up to date; and (4) provides graphical interface
to help users construct queries, explore data and inspect results.

1. INTRODUCTION
In recent years, social networking sites have experienced fast

development, and are endowed with enormous commercial value.
One key issue to achieve commercial goals via social networks is
how to help uses find their interested objects on big social data.
In light of this, a host of techniques are developed, among which
graph pattern matching defined in terms of subgraph isomorphism
has been widely used and verified to be effective [5].

However, it is nontrivial to efficiently conduct graph pattern
matching on social networks due to the following reasons: (1)
graph pattern matching with subgraph isomorphism is computa-
tionally expensive as it is an NP-complete problem [3], and more-
over, there may exist exponentially many matches of a pattern
query Q in a data graph G; (2) real-life graphs are typically large,
e.g., Facebook has 1.18 billion daily active users, and the average
number of friends is 155 [1], it is hence prohibitively expensive to
query such big graphs; (3) social networks are often distributively
stored, which makes graph pattern matching more challenging or
even infeasible; (4) social networks evolve constantly, it is often
expensive to recompute matches starting from scratch when social
networks are updated with minor changes.

Example 1: Consider a fraction of IMDb [2] collaboration network
depicted as graph G in Fig. 1(a). Each node in G either denotes a
performer (p) (resp. director (d)), labeled by id, name; or a movie
(m), with attributes title, genres (g), rating (r) and release time (t).
Each directed edge from a performer (resp. director) to a movie in-
dicates that the performer (resp. director) played in (resp. directed)
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Figure 1: Pattern query Q, Views V and collaboration network G

the movie, where the edges connecting directors and movies are
marked in red. The graph G is geo-distributed to three sites S1, S2

and S3, each storing a fragment of G.
Suppose that one is looking for movies that he is interested in,

then the search conditions can be expressed as a pattern query Q
(Fig. 1(b)) as follows: (1) movies M should have high ratings, e.g.,
r > 7.0, and are with genres “action” and “adventure”; (2) the M
should be played by experienced performers P1 and P2. Specifi-
cally, P1 (resp. P2) played movie M1 (resp. M2) with r > 7.0,
g = “action” (resp. g = “adventure”) and t1 < t (resp. t2 < t),
where t (resp. t1, t2) is the release time of the M (resp. M1, M2).;
and (3) the M is marked as “output node” with “*”, i.e., users only
require the matches of M to be returned as search results.

The matches of Q, denoted as M(Q,G), consists of a set
of subgraphs in G that are isomorphic to Q. For exam-
ple, M(Q,G)= {{(P1,p11)(P2,p2)(M1,m9)(M2,mi)(M,m8)|i ∈
[3, 5]}, {(P1,p13)(P2,p11)(M1,m12)(M2,mj)(M,m16)|j ∈ [8, 9]},
{(P1,p11)(P2,p13)(M1,mk)(M2,m12)(M,m16)|k ∈ [8, 9]}}. Ob-
serve that (1) it takes O(|G|!|G|) time to compute M(Q,G), where
|G| is the size of G [3]; due to high computational cost, optimiza-
tion techniques, e.g., view based evaluation, are needed to speed up
query evaluation; (2) since the graph G is distributively stored, no
match can be found in a single site, which indicates that data has
to be shipped from one site to another to find matches. With this
comes the need for distributive techniques for graph pattern match-
ing; (3) as the “query focus” of Q is M, “At World’s End” and “Sky-
fall” are returned as query results. While in practice, users may be
interested in the best matches, rather than the whole set of matches
of “query focus” M, then a metric is needed to rank matches. For
example, compared with “At World’s End”, “Skyfall” and its corre-
sponding isomorphic subgraph have higher comprehensive rating,
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which makes it a better match than “At World’s End”. 2

In light of these, we present MovieFinder, a novel system to ef-
fectively identify movies in social networks via top-k graph pattern
matching. In contrast to previous graph search systems (see [7] for
a survey), MovieFinder (1) supports graph pattern matching with
subgraph isomorphism [3], and combines graph pattern matching
with result ranking, (2) evaluates top-k graph pattern matching in a
parallel manner, and (3) optimizes local evaluation by using mate-
rialized views, and maintains views via incremental techniques [6].

To the best of our knowledge, MovieFinder is among the first
efforts to search movies on large and distributed social networks
via graph pattern matching. It should also be remarked that movie
searching is just one application of the technique, one may apply
the technique to find e.g., people, hotels, restaurants and so on.

2. DISTRIBUTED TOP-K GRAPH PAT-
TERN MATCHING

We first review the notion of subgraph isomorphism. We then
introduce graph fragmentation, followed by the problem of dis-
tributed top-k graph pattern matching.

Subgraph isomorphism. Given a data graph G = (V,E, fA) and a
pattern query Q = (Vp, Ep, fv) , a match of Q in G via subgraph
isomorphism is a subgraph Gs of G that is isomorphic to Q, i.e.,
there is a bijective function h from Vp to the node set of Gs such
that (1) for each node u ∈ Vp, fv(u) = fA(h(u)); (2) (u, u′) is an
edge in Q if and only if (h(u), h(u′)) is an edge in Gs. We denote
by G[M(Q,G)] to be the union of all the matches Gs in M(Q,G).

To find matches of query focus, we extend Q by specifying one
node in Q as output node, denoted as uo. Then, the answer to Q in
G, denoted by M(Q,G, uo), is the set of nodes h(uo), that match
the output node uo of Q in Gs, for all matches Gs of Q in G.

Distributed graphs. A fragmentation F of a graph G = (V,E, fA)
is (F1, · · · , Fn), where each fragment Fi is specified by (Vi ∪
Fi.O,Ei, fAi) such that (1) (V1, · · · , Vn) is a partition of V ; (2)
Fi.O is the set of nodes v′ such that there exists an edge e = (v, v′)
in E, v ∈ Vi and node v′ is in another fragment; we refer to v′ as a
virtual node and e as a crossing edge; and (3) (Vi ∪Fi.O,Ei, fAi)
is a subgraph of G induced by Vi ∪ Fi.O. We assume w.l.o.g. that
each Fi is stored at site Si for i ∈ [1, n].

Distributed Top-k Graph Pattern Matching. Given an integer k, a
pattern query Q with output node uo and a fragmentation F of a
graph G, the distributed top-k graph pattern matching problem is
to find the best k matches to uo of Q in G.

We next show how MovieFinder supports distributed top-k
graph pattern matching via parallel computation that integrates
asynchronous message passing with optimized local evaluation.

3. THE SYSTEM OVERVIEW
The architecture of the MovieFinder, shown in Fig. 2, consists

of the following three components. (1) A Graphical User Interface
(GUI), which provides a graphical interface to help users formulate
pattern queries, manage data graphs and understand visualized re-
sults. (2) A coordinator that communicates with GUI and workers
(to be introduced shortly). Specifically, the coordinator (a) for-
wards various requests, received from GUI, to workers for their
local processing; (b) assembles partial results from workers; (c)
ranks matches and returns best k ones as search results. (3) Mul-
tiple worker machines (a.k.a.workers [4, 8]), which employ Query
Executor (QE) to compute local matches, and Incremental Com-
putation Module (ICM) to keep materialized views up to date. We
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Figure 2: Architecture of MovieFinder

next present the components of MovieFinder and their interactions.

Graphical User Interface. The GUI helps to interact with users,
e.g., graph data manipulation, pattern query formulation, and result
browse. Specifically, (1) It provides a task-oriented panel to facil-
itate users to manage graph data. (2) It is equipped with a query
panel, which allows users to (a) manually construct a pattern query
Q from scratch by drawing a set of query nodes and edges; (b)
specify the search conditions of query nodes (e.g., title=“Skyfall”,
g=“action & adventure”; r ≤ 7.0; t > t1); (c) indicate the par-
ticular “output” node for which users want to find matches (e.g.,M
in Example. 1); (d) specify the number k of matches to the “out-
put” node; and (e) designate query target from a list of data graphs.
(3) The GUI visualizes query results by layout algorithm, hence the
users can browse the matches with more intuition.

Coordinator. The coordinator interacts with GUI and workers
as following. It (1) sends users’ requests, received from GUI to
workers for their local precessing, and returns query results to GUI
for visualization; (2) collects partial results from workers, ranks
matches based on the ranking metric, and identify best k matches.

Results Ranking. As there may exist a large set of matches of the
output node uo, and users may be only interested in the best k ones.
The coordinator hence uses a ranking function to identify top-k
matches. Intuitively, the ranking function follows one observation
from social networks, that’s the higher the rating of v and the total
rating of Gs are, the better v is. To be more specific, given a pattern
query Q with output node uo, and a match Gs of Q with node v as
the match of uo, the rank of v is defined as:

f(v, uo) = v.r ∗ Σvi∈Gsvi.r

where v.r (resp. vi.r) indicates the rating of v (resp. vi).

Example 2: Recall Example 1, the highest rating of the match in
M(Q,G) that contains m8 (resp. m16) is 8.9+7.3+7.1=23.3 (resp.
7.2+7.3+7.8=22.3). Then “Skyfall” makes the top-1 match since
f(m16, uo) = 7.8 ∗ 22.3 = 173.94 is greater than f(m8, uo) =
7.1 ∗ 23.3 = 165.43. 2

Note that, though we used node attribute, e.g.,, movie rating, to
define f(), while in general cases, other metrics which can be used
to measure the “goodness” of matches can also be applied, and
readily supported by the system.

Workers. Each worker has two modules: Query Executor (QE)
and Incremental Computation Module (ICM).
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Query Executor. The main task of the QE is query evaluation. As
local information may not be sufficient to find matches, and query
evaluation is computational expensive, the QE hence (1) applies
multithreaded computation to collect necessary information from
other sites, and integrates collected information with current frag-
ment to conduct local evaluation; and (2) employs view-based tech-
nique to optimize evaluation of graph pattern matching.

(1) Local evaluation. Upon receiving pattern query Q from coor-
dinator, the QE starts one thread to do the following. (a) It checks
whether each virtual node v at current fragment Fi is a candidate
match of some pattern node u, i.e., v satisfies search conditions
specified by u. (b) For each candidate match v, it then sends node
pair ⟨u, v⟩ to the site Sj , where v accommodates; and requests
the subgraph GN

j (u, v) of fragment Fj , where GN
j (u, v) contains

neighborhood information of v in Fj , (see below for more details
about computation of GN

j (u, v)). (c) After all the GN
j (u, v) are

received and merged with Fi, the QE computes matches with algo-
rithm VF2 [3], and sends local results to the coordinator.

To response requests from other sites such that local evaluation
can be processed in parallel at each site, the QE at site Sj constantly
waits for messages from other sites, and initializes new threads
to compute GN

j (u, v) when receiving messages ⟨u, v⟩ from other
sites. Specifically, when message ⟨u, v⟩ sent from other site is
received by site Sj , a new thread is started by the QE at Sj to
conduct restricted breadth first search from v and u in Fj and Q,
respectively. For any node v′ (resp. u′) encountered during the
traversal in Fj (resp. Q), if v′ is a candidate match of u′, then v′

is inserted in GN
j (u, v), and also connected to its neighbor nodes,

which are already in GN
j (u, v).

Example 3: Recall pattern query Q in Example 1. Upon re-
ceiving Q, the QE at S2 identifies m15 and m16 as the candidate
match of the pattern nodes M1, M2 and M, and sends node pairs
⟨M1,m15⟩, ⟨M2,m15⟩, ⟨M,m15⟩, ⟨M1,m16⟩, ⟨M2,m16⟩, ⟨M,m16⟩
to S3. Once receiving requests, S3 computes GN

3 (u, v) as re-
sponse, e.g., GN

3 (M,m16), which includes two edges (p13,m12)
and (p13,m16) are returned to S2. After receiving the response,
the QE at S2 then merges GN

3 (u, v) with F2, invokes VF2 to com-
pute M(Q,F2), and sends result {(P1, p11)(P2, p13)(M1, mi)(M2,
m12)(M, m16)|i ∈ [8, 9]} to the coordinator. 2

(2) Optimization technique. As local evaluation involves subgraph
isomorphism checking, which is an NP-complete problem and often
computationally expensive, MovieFinder caches query results of
commonly issued pattern queries at workers and adopts view-based
technique to optimize local evaluation.

Suppose a set of view definitions V = {V1, · · · ,Vn} have their
extensions M(V, Fi) = {M(V1, Fi), · · · ,M(Vn, Fi)} cached at
site Si. Given pattern query Q, the QE at site Si computes matches
of Q using V and M(V, Fi) as following. It first verifies whether Q
can be answered using V by checking whether Q is the same as the
union of Q[M(Vk, Q)] (k ∈ [1, n]). If Q can be answered by using
V , the algorithm Match, which takes Q, V and M(V, Fi) as input
is then invoked to compute matches. Specifically, Match first ini-
tializes an empty pattern query Qs and an empty set S as the match
set of Qs. It then iteratively invokes Procedure Merge to “merge”
Qs with Vk, and matches in S with matches in M(Vk, Fi). In par-
ticular, Merge checks whether matches m1 of Qs can be merged
with matches m2 of Vk following the mapping λ that guides the
“merge” of Qs and Vk. If so, a new match m0 of the newly formed
pattern query Qs (merged with Vk) is formed by merging m1 with
m2, and the set S is updated by replacing m1 with m0. When the
termination condition, i.e., Qs = Q is met, the set S is returned as

Fragment at site 1 Cached views of Q with 5 nodes and 4 edges at site 1 Director with name Movie with genres

Construct pattern queries Update data graphs Summary of the fragmentPartition data graphs

Figure 3: Visual interface: MovieFinder Manager

the match set of Q at Si.

Example 4: Recall view definitions V = {V1,V2}, shown in
Fig. 1(c), their extensions M(V, F3) at S3 are listed in table below.

View definitions Extensions

V1 {(P1, p13)(M1, m12)(M, m16)}
V2 {(P1, p13)(M1, m12)(M, m16)}

At site S3, the QE computes matches of Q (see Fig. 1(b)) using
V and M(V, F3), as following. (1) It first determines that Q can be
answered using V since Q is the same as

∪
i∈[1,2] Q[M(Vi, Q)].

(2) It then invokes Match to compute matches. Since no match of
V1 and V2 can be merged, following the mapping which guides the
merge of V1 and V2, then no match of Q exists at site S3. 2

Incremental Computation Module. Real-life social networks
change constantly, hence the cached views M(V, Fi) at site Si

need to be updated, in response to the changes to Fi. However,
due to that subgraph isomorphism is computationally expensive
and the input, i.e., Fi, is often large, it is costly to recompute
M(V, Fi ⊕ ∆Fi) for each V ∈ V , where Fi ⊕ ∆Fi denotes Fi

updated by ∆Fi. Instead of recomputation, the ICM incrementally
identifies changes to M(V, Fi), in response to ∆Fi. As ∆Fi

is often small in practice, the incremental computation hence is
far more efficient than batch computation. The ICM applies the
incremental subgraph isomorphism algorithm of [6] to update
cached views, for both unit and batch updates.

Example 5: Recall Q, G in Example 1. Suppose that an edge e1
(marked in red in Fig 1(a)) is inserted into G , then the change to G
incurs four new matches: {(P1, p13)(P2, p11)(M1, m15)(M2, mi)(M,
m16)|i ∈ [8, 9]}, and {(P1, p11)(P2, p13)(M1, mj)(M2, m15)(M,
m16)|j ∈ [8, 9]}. Instead of recomputing M(Q,G ⊕ ∆G) from
scratch, the ICM only visits nodes that are 3 hops away from p13,
and identifies the new matches. 2

Remark. The MovieFinder identifies all the matches of Q by exact
algorithms, i.e., VF2 or our view-based technique, at all workers,
hence can find top-k matches of uo with 100% accuracy.

4. DEMONSTRATION OVERVIEW
The demonstration is to show the following: (1) the use of GUI

to formulate pattern queries and browse query results; (2) the effi-
ciency of computation of M(Q,G) and top-k matches of uo when
G is distributively stored; (3) effectiveness of view-based optimiza-
tion technique employed by the QE; and (4) efficiency of the incre-
mental technique applied by the ICM.
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Figure 4: Visual interface: Pattern Builder

Setup. To show the performance of MovieFinder, we used a frac-
tion of IMDb [2] with |V |=1.1M, |E|=1.7M, randomly partitioned
it into a set of fragments controlled by the number of fragments |F|.
The system is implemented in Java and deployed with fragments on
a cluster of 8 machines with 2.9GHz CPU, 8GB Memory.

Interacting with the GUI. We invite users to use the GUI, from
pattern query construction to intuitive illustration of query results.
(1) The Manager panel, which is the main control panel of
MovieFinder, is used to manipulate the system. As shown in Fig. 3,
users can access each module of the MovieFinder as listed in the
Tools menu, view both summarized and detailed information, e.g.,
fragment summary, node attributes, of the selected site.
(2) The Pattern Builder (PB) panel, shown in Fig. 4, facilitates
users’ construction of pattern queries. Specifically, the PB (a) pro-
vides users with a canvas to create new query nodes (resp. edges),
(b) allows users to specify search conditions on the query nodes,
set output node uo and the number k of its matches, and (c) sup-
ports users to save pattern queries, and reuse them afterwards.
For example, a pattern query Q, shown in Fig. 4, is constructed
to find movies that are (a) with genres “Drama” and “Comedy”,
(b) played by people (marked by node “0”) who had performed
“Romance” movies (marked by node “2”), and (c) directed by
people (marked by node “1”) who had directed “Action” movies
(marked by node “4”). The query focus is marked as “output” node
with dark border (node “3”). The pattern query Q can be saved for
future use if it is frequently issued.
(3) The GUI provides intuitive ways to help users interpret query
results. In particular, the GUI allows users to browse (a) all the
matches w.r.t. Q, and (b) top-k matches w.r.t. uo. As an example,
the query results of Q, given in Fig. 4, are shown in Fig. 5, and the
top-2 movies, i.e., “White Collar” and “Our Footloose Remake”
are marked with thickened border.

Performance of query evaluation. We also aim to show (a)
the performance of the parallel computation supported by the
MovieFinder, and (b) the performance of Query Executor (QE) and
Incremental Computation Module (ICM) supported by workers.

Performance of parallel computation. We will show efficiency and
scalability of parallel computation supported by MovieFinder. As
will be seen, when the number |F| of sites increases from 4 to 8,
the query time is reduced by 35%, in average.

Figure 5: Visual interface: Query results

Performance of QE. We will show (a) the efficiency of QE by re-
porting its performance on IMDb; and (b) how substantial the per-
formance is improved when view-based technique is applied. We
show that in average the query time can be reduced by 70% with
optimization technique.

Performance of ICM. We will also show the improvement of the
ICM compared to batch computation that recomputes the material-
ized views in response to updates. In particular, we will report the
performance of incremental computation by varying data graphs
with unit update (single edge insertion/deletion) as well as batch
updates (a list of edge insertions/deletions). As will be seen, the
ICM performs significantly better than its batch counterparts, when
data graphs are changed up to 30%.

Summary. This demonstration aims to show the key ideas and
performance of the movie search system MovieFinder, based on
the technique of distributed top-k graph pattern matching. The
MovieFinder is able to (1) evaluate pattern queries defined in terms
of subgraph isomorphism in parallel and identify top-k movies on
large, distributively stored social networks; (2) efficiently com-
pute matches with view-based technique; (3) incrementally main-
tain materialized views for dynamic social graphs; and (4) facilite
users’ use and understaing with intuitive graphical interface. These
together convince us that the MovieFinder can serve as a promising
tool for movie search on real-life social networks.
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