
HDM: Optimized Big Data Processing with Data
Provenance

Dongyao Wu †,‡, Sherif Sakr †,‡,∗, Liming Zhu †,‡
†Data61, CSIRO, Sydney, Australia

‡School of Computer Science and Engineering, University of New South Wales, , Sydney, Australia
∗King Saud bin Abdulaziz University for Health Sciences, National Guard, Riyadh, Saudi Arabia

{firstname.lastname}@data61.csiro.au

ABSTRACT
Big Data applications are becoming more complex and expe-
riencing frequent changes and updates. In practice, manual
optimization of complex big data jobs is time-consuming and
error-prone. Maintenance and management of evolving big
data applications is a challenging task as well. We demon-
strate HDM, Hierarchically Distributed Data Matrix, as a
big data processing framework with built-in data flow op-
timizations and integrated maintenance of data provenance
information that supports the management of continuously
evolving big data applications. In HDM, the data flow of
jobs are automatically optimized based on the functional
DAG representation to improve the performance during ex-
ecution. Additionally, comprehensive meta-data related to
explanation, execution and dependency updates of HDM ap-
plications are stored and maintained in order to facilitate
the debugging, monitoring, tracing and reproducing of HDM
jobs and programs.

Keywords
Big Data; Data Flow Optimization; Provenance Manage-
ment

1. INTRODUCTION
We are experiencing the era of big data that has been fu-

elled by the striking speed of the growth in the amount of
data that has been generated and consumed. Several big
data processing frameworks (e.g., MapReduce [2], Spark [6]
and Flink [1], etc.) have been introduced to deal with the
challenges of processing the ever larger data sets [3]. These
frameworks significantly reduce the complexity of writing
large scale data-oriented applications. However, in practice,
as big data programs and applications have become more
and more complicated, it is almost impossible to manually
optimize the performance of programs written by diversified
programmers. Therefore, built-in optimizers are crucial for
tackling the challenges of improving the performance of ex-
ecuting those hand-written programs and applications. At

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

the same time, realistic data analytics applications are con-
tinuously evolving in order to deal with the non-stop changes
in the real world. In practice, managing and analyzing those
continuously evolving big data applications have resulted in
big technical debts [4]. Therefore, there are increasing re-
quirements for data provenance to support analyzing, trac-
ing and reproduction of historical versions of data analytics
applications.

In this paper, we demonstrate HDM, (Hierarchically Dis-
tributed Matrix) [5], a big data processing framework with
built-in data optimizations for execution and data prove-
nance supports for managing continuously evolving big data
applications. In particular, HDM is a lightweight, functional
and strongly-typed data representation which contains com-
plete information (such as data format, locations, dependen-
cies and functions between input and output) to support
parallel execution of data-driven applications [5]. Exploit-
ing the functional nature of HDM enables deployed appli-
cations of HDM to be natively integrable and reusable by
other programs and applications. In addition, by analyzing
the execution graph and functional semantics of HDMs, mul-
tiple optimizations are provided to automatically improve
the execution performance of HDM data flows. Moreover,
by drawing on the comprehensive information maintained
by HDM graphs, the runtime execution engine of HDM is
also able to provide provenance and history management for
submitted applications.

2. HDM FRAMEWORK

2.1 System Overview
Fig 1 shows the system architecture of the HDM runtime

engine which is composed of three main components:

• Runtime Engine: is responsible for the management of
HDM jobs such as explaining, optimization, schedul-
ing and execution. Within the runtime engine, the
AppManager manages the information of all deployed
jobs. TaskManager maintains the activated tasks for
runtime scheduling in the Schedulers; Planner and Op-
timizers interpret and optimize the execution plan of
HDMs in the explanation phases; HDM manager man-
ages the information and states of the HDM blocks in
the entire cluster; Execution Context is an abstraction
component to support the execution of scheduled tasks
on either local or remote nodes.

• Coordination Service: is composed of three types of co-
ordinations: cluster coordination, block coordination

Demonstration

 

 

Series ISSN: 2367-2005 530 10.5441/002/edbt.2017.62

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.62


Transportation Interface

Scheduler

Runtime Engine

Optimizer

Executor
ContextData Parser

Coordination
Service

Storage Interface

Planner

HDM
Manager

Task ManagerApp Manager

Cluster
Coordinator

HDM Block
Coordinator

Executor
Coordinator

1

Provenance
Manager

Execution
Trace

JobPlanning
Trace

Dependency
Trace

Messaging Interfaces

Figure 1: System Architecture of HDM Framework.

and executor coordination. They are responsible for
the coordination and management of node resources,
distributed HDM data blocks and executors on work-
ers, respectively.

• Data Provenance Manager : is responsible to interact
with the HDM runtime engine to collect and main-
tain data provenance information (such as Dependen-
cyTrace, JobPlanningTrace and ExecutionTrace) for
HDM applications. Those information can be queried
and obtained by client programs through messages for
the usage of analysis or tracing.

2.2 HDM Data Flow Optimization
One key feature of HDM is that, the execution engine

contains built-in planners and optimizers to automatically
optimize the functional data flow of submitted applications
and jobs. During explanation of HDM applications, the data
flow are represented as DAGs with functional dependencies
among operations. The HDM optimizers traverse through
the DAG to reconstruct and modify the operations based on
optimization rules to obtain more optimal execution plans.
Currently, the optimization rules implemented in the HDM
optimizers include: function fusion, local aggregation, oper-
ation reordering and data caching for iterative jobs [5].

• Function fusion. During optimization, the HDM plan-
ner combines the lined-up non-shuffle operations into
one operation with high-order function so that the se-
quence of operations can be compute within one task
rather than separate ones to reduce redundant inter-
mediate results and task scheduling. This rule can be
applied recursively on a sequence of fusible operations
to form a compact combined operation.

• Local Aggregation. Shuffle operations are very expen-
sive in the execution of data-intensive applications. If
a shuffle operation is followed with some aggregations,
in some cases, the aggregation or part of the aggrega-
tion can be applied before the shuffling stage. During
optimization, HDM planer tries to move those aggre-
gation operations forward before the shuffling stage to
reduce the amount of data that needs to be transferred
during shuffling.

• Operation reordering/reconstruction. Apart from ag-
gregations, there are a group of operations which fil-
ter out a subset of the input during execution. Those

operations are called pruning operations. The HDM
planner attempts to lift the priority of the pruning op-
erations while sinking the priority of shuffle-intensive
operations to reduce the data size that needs to be
computed and transferred across the network.

• Data Caching. For many complicated and pipelined
analytics jobs (such as machine learning algorithms),
some intermediate results of the job could be reused
multiple times by the subsequent operations. There-
fore, it is necessary to cache those repetitively used
data to avoid redundant computation and communica-
tion. In this case, HDM planner counts the reference
for the output of each operation in the functional DAG
to detect the potential points that intermediate results
should be cached for reusing by subsequent operations.

During optimization process, the rule above are applied
one by one to reconstruct the HDM DAG and the optimiza-
tion can last multiple iterations until there is no change in
the DAG or it has reached the maximum number of itera-
tions. The HDM optimizer is also designed to be extendable
by adding new optimization rules by developers when it is
needed.

2.3 Data Provenance Supports in HDM
It is normally tedious and complicated to maintain and

manage applications that are continuously evolving and be-
ing updated. In HDM, drawing on comprehensive meta-
data information maintained by HDM models, the runtime
engine is able to provide data provenance supports includ-
ing execution tracing, version control and job replay in the
dependency and execution history management component.

Basically, the HDM server maintains three types of meta-
data about each submitted HDM jobs including Execution-
Trace, JobPlanningTrace and DependencyTrace.

• DependencyTrace. For every submitted HDM program,
the server stores and maintains the dependent libraries
required for execution. The dependencies and update
history are maintained as a tree structure. Based on
this information, users are able to reproduce any ver-
sion of the submitted applications in the history.

• JobPlanningTrace. The HDM server also stores the
explanation and planning traces for every HDM appli-
cations. JobPlanningTrace includes the logical plan,
optimizations applied and final physical execution plan
after being parallelized.

531



Figure 2: Dataflow Visualization of HDM Applica-
tions.

• ExecutionTrace. During execution, the HDM server
also maintains all the runtime information (execution
location, input/output, timestamps and execution sta-
tus, etc.) related to each executed task and job. These
information are very meaningful to monitor and trace
back the process of execution of historical jobs and
applications.

Drawing on the three types of information maintained in
the HDM server, client-side programs can send messages to
query and obtain the history and provenance information, so
that users and administrators can profile, debug and apply
analysis to the deployed applications throughout their life
cycles.

3. DEMONSTRATION SCENARIOS
In this demonstration, we will present to the audience

the HDM framework1 from four main aspects: cluster re-
source monitoring, visualisation data flow optimization, exe-
cution history tracing, version-control and dependency man-
agement. The demonstration will be conducted on AWS
EC2 with one M3.Large instance as the master and 10 nodes
M3.XLarge instances as the workers.

To show how HDM optimizes the data flow and provides
data provenance support for its applications, we will present
an example of Twitter analysis scenario that consists of the
following two Tweets analysis programs2:

• The first program, presented in Listing 1, looks for the

1The source code of the HDM framework is available on
https://github.com/dwu-csiro/HDM
2A demonstration screencast is available on https://youtu.
be/Gsz7z5bQ1zI

Tweets that are related to recent election events by
checking the hashtag of the input Tweets.

• The second program, presented in Listing 2, finds out
the Tweets that are related to two candidates: “Trump”
and “Hillary” and count the amount for each of them.

Listing 1: Code Snippet of Finding out Tweets

val input = HDM("hdfs ://10.10.0.100:9091/ user/tweets")

val tweets = input.map{ line =>

val seq = line.split(",")

Tweet(seq)

}

val grouped = tweets.groupBy(t => t.hashTag)

val results = grouped.findByKey(_.contains("election"))

Listing 2: Code Snippet of Hashtag Counting for
Interested Tweets

val input = HDM("hdfs ://10.10.0.100:9091/ user/tweets")

val tweets = input.map{ line =>

val seq = line.split(",")

Tweet(seq)

}

val grouped = tweets.groupBy(t => t.hashTag)

val trumpN = grouped.findByKey(_ == "Trump").count

val hillaryN = grouped.findByKey(_ == "Hillary").count

println(trumpN / hillaryN)

Cluster Resource Management. In the first part of the
demo, we will show the cluster resource monitor of the HDM
manager. The HDM server maintains the resource-related
information of all the workers within the cluster. In the
HDMConsole, it is able to monitor the resource utilization
information (such as CPU, Memory, Network and JVM) for
each worker in real time. Therefore, cluster administrator
is able to use these information and easily supervise and
understand the status of every worker as well as the entire
cluster.

Dataflow Optimizations. The second part of the demo
shows how the Tweets programs are represented in the HDM
DAG and how it is explained, optimized and parallelized by
the planner.

• For the first program, the HDM optimizer applies op-
erations reordering to lift the pruning operation find-

ByKey to be in front of the shuffle operation groupBy.
Then the optimizer applies function fusion rule to com-
bine map and findBy into a single composite operation.

• For the second program, the HDM optimizer applies
operation reordering to move the findByKey operation
to be in front of groupBy then applies local aggrega-
tion count by adding local count in front of groupBy.
Lastly, it detects the input tweets that are reused by
two operations so that the optimizer can add a cache
point after the compute operation that generates the
output of tweets.

The HDM server maintains all the related meta-data (such
as the creator, original program, logical plan, physical plan,
etc.) to all the submitted HDM applications. In the demon-
stration, the HDM console visualizes the original logical
flow, optimized logical flow and parallelized physical graph

532



Figure 3: Execution Traces of HDM Applications.

Figure 4: Dependency Management and Version Control of HDM.

for each execution instances of the HDM applications (Fig-
ure 2).

Execution History Tracing. In the third part of the demo,
we will show how the execution process can be tracked dur-
ing and after execution. The HDM server collects and stores
the runtime information for each execution task and struc-
tures them into DAG based on the task dependencies. Dur-
ing or after the execution of the tasks, the HDM server also
updates the status in the stored meta-data when it has re-
ceived the notification messages. The HDM console also
summarizes those information and presented it into a view
of execution lanes for each core of the workers (Figure 3).

Dependency Management and Version Control. In the last
part of the demo, we will show how the HDM server manages
the dependencies and provides version control for submitted
applications. The dependency and history manager stores
all the updating history of each HDM applications and or-
ganizes them into a tree based structure. As a result, ad-
ministrator users are able to query, analyze and reproduce
the historical HDM applications using those dependencies
information (Figure 4).

Besides the framework demonstration, we will also dis-
cuss in more details about the design choices that we have
made on defining the different components of the framework.
In addition, performance comparison with the Spark frame-

work [6], using the example scenario, will be presented to
demonstrate the efficiency of the HDM optimization tech-
niques.

4. REFERENCES
[1] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,

S. Haridi, and K. Tzoumas. Apache flinkTM: Stream
and batch processing in a single engine. IEEE Data
Eng. Bull., 38(4):28–38, 2015.

[2] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. Commun. ACM, 51(1),
2008.

[3] S. Sakr. Big Data 2.0 Processing Systems - A Survey.
Springer Briefs in Computer Science. Springer, 2016.

[4] D. Sculley, G. Holt, D. Golovin, E. Davydov,
T. Phillips, D. Ebner, V. Chaudhary, and M. Young.
Machine learning: The high interest credit card of
technical debt. In SE4ML: Software Engineering for
Machine Learning, 2014.

[5] D. Wu, S. Sakr, L. Zhu, and Q. Lu. Composable and
Efficient Functional Big Data Processing Framework. In
IEEE Big Data, 2015.

[6] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica. Spark: Cluster Computing with Working
Sets. In HotCloud, 2010.

533


	HDM: Optimized Big Data Processing with Data ProvenanceDongyao Wu, Sherif Sakr, Liming Zhu

