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ABSTRACT
Correlated failures in large-scale clusters have significant effects on
systems’ availability, especially for streaming data applications that
run continuously and require low processing latency. Most state-
of-the-art distributed stream processing engines (DSPEs) adopt a
blocking recovery paradigm, which, upon correlated failure, would
block the progress of recovery until sufficient new resources for
recovery are available. As the arrival of new resources is usually
progressive, a blocking paradigm fails to minimize the recovery
latency. To address this problem, we propose a progressive and
query-centric recovery paradigm where the recovery of the failed
operators would be carefully scheduled to progressively recover the
outputs of queries as early as possible based on the current avail-
ability of resources. In this work, we propose and implement a
fault-tolerance framework which supports progressive recovery af-
ter correlated failures with minimum overhead during the system’s
normal execution. We also formulate the new problem of recov-
ery scheduling under correlated failures and design effective algo-
rithms to optimize the recovery latency. The proposed methods are
implemented on Apache Storm and preliminary experiments are
conducted to verify their validity.

1. INTRODUCTION
Fault tolerance is critical to Distributed Stream Processing En-

gines (DSPEs), such as Apache Storm [14] and Spark Streaming [3],
mainly due to the long running time and the low latency require-
ment of streaming data applications. Previous researches in this
area are mainly focused on individual and independent node fail-
ures and ignore correlated failures [7, 8], where a number of nodes
fail within a short interval. Correlated failures can be caused by
failures of shared hardwares, such as switches, routers, and power
facilities, or by software problems, such as bad software patches
applied across a number of nodes. Although large-scale correlated
failures occur less frequently than independent ones, they have sig-
nificant effects on a system’s availability [7].

Correlated failures exhibit characteristics that are very different
from independent failures. First of all, correlated failures would
incur the unavailability of a large amount of resources. One cannot
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assume an instant availability of sufficient resources to recover the
continuous queries from such failures. Repairing the failed nodes
or acquiring additional resources would take a significant amount
of time. For example, it may involve solving the software or hard-
ware problems, restarting the failed nodes, and adding them back to
the DSPE. Even if the DSPE is running on a cloud environment and
virtual resources can be easily allocated to replace the failed nodes,
negotiating and acquiring a large amount of new resources would
still incur a latency non-negligible for streaming data applications.
More importantly, the recovered or newly allocated nodes would
probably not become available simultaneously, but rather one after
another with noticeable time gaps between them. In other words,
the current assumption that all the resources needed for recovery
are available at the same time cannot be held.

Most existing DSPEs, such as Flink [1] and Storm [14], adopt a
blocking recovery approach in the sense that the recovery of all the
parallel operator partitions would be blocked until sufficient new
resources are acquired. However, due to the gradual availability
of resources in the recovery of correlated failures, such a blocking
approach fails to minimize the recovery latency. It is much more
desirable to adopt a progressive recovery approach, where the oper-
ator partitions can be recovered progressively upon the availability
of new resources. Furthermore, the existing systems also adopt an
operator-centric paradigm in the scheduling of the recovery, where
the operator partitions are scheduled for recovery individually in a
topological order. Note that the accurate outputs of a query can only
be generated if and only if all the operator partitions of this query
are executing normally, this operator-centric paradigm fails to min-
imize the latency of recovering the producing of query outputs. To
address the insufficiency of the existing approaches, we propose a
progressive and query-centric recovery paradigm where the recov-
ery of the failed operator partitions would be progressively sched-
uled to recover the outputs of queries as early as possible based
on the current availability of resources. More specifically, if corre-
lated failure happens, we gradually increase the number of recov-
ered queries following the arrival pace of the restarted or the newly
acquired nodes. Furthermore, unlike the operator-centric paradigm,
our query-centric paradigm attempts to schedule the recovery of the
failed partitions to produce the output of a query as soon as possi-
ble. This new paradigm would provide not only a shorter recovery
latency and earlier query results, but also a more responsive and
smoother transition from a failed state to a fully recovered one.

In summary, we propose a fault-tolerance framework that can
support progressive recovery during a correlated failure, which im-
poses minimum overhead during the system’s normal execution.
We also formulate the new problem of query-centric recovery schedul-
ing under correlated failures, which is an NP-hard problem. To
provide a solution for a large-scale job topology, we propose an ef-
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ficient and effective approximate algorithm. We implement the re-
covery framework and the scheduling algorithm on top of Apache
Storm, a popular and mature open-source DSPE and conduct mul-
tiple sets of experiments on Amazon EC2 to validate the effects of
progressive recovery.

2. RELATED WORK
Fault tolerance for DSPEs can be generally categorized into two

types [9]: passive approaches and active approaches. Passive tech-
niques include checkpoint [1], upstream buffer [6, 12] and source
replay [14, 1, 2]. Active approaches [4, 5, 13, 12] employ hot-
standby replicas to achieve faster failure recovery with higher re-
source consumption. The mainstream DSPEs, such as Samza [2],
Flink [1] and Storm [14] adopt source replay and checkpointing
techniques. Our checkpointing scheme is similar to the one used
in [1]. Both the works in [6, 12] combine checkpointing and up-
stream buffer to achieve fault tolerance as we do in this work, while
missing the optimization for recovery scheduling makes them not
suitable for progressively recovering large-scale correlated failures.
[13] presents a framework to combine both active and passive tech-
niques to maximize the accuracy of the fast tentative query outputs
in correlated failure. Different from [13], which mainly focuses
on optimizing resource assignment to improve the quality of ten-
tative outputs, our approach focuses on progressive recovery that
minimizes the latency of completely recovering correlated failures,
which is orthogonal to the problem studied in [13].

3. PRELIMINARIES
As in most of the mainstream DSPEs, such as Storm [14] and

Samza [2], we model a data tuple as a {key, value} pair, where
the default format of the key is string and the value is a blob that
is opaque to the system. The execution plan of a query consists of
multiple operators, each of which contains a user-defined function
and can subscribe the output streams of other operators. An oper-
ator can be parallelized into multiple operator partitions that have
identical computation logic defined by the user-defined function of
the operator. Each input stream of an operator is split into a set of
key groupings based on their keys. A union of the same key group-
ing from each of the input streams of an operator would form the
complete input of an operator partition, which is also referred to as
partition for simplicity throughout this work.

p11 p12 p13 p14
O1

p21 p22 p23 p24
O2

p31 p32
O3

Q1  Q2

Figure 1: An example topology which consists of two queries
Q1 and Q2, whose operator sets are {O1, O2} and {O1, O3},
respectively.

By denoting the operator partitions as vertex and data streams be-
tween the operator partitions as directed edges, the execution plan
of a query can be abstracted as a directed acyclic graph (DAG).
Figure 1 depicts an example DAG. The computation states, input
and output buffers for each partition are maintained separately from
each other. The output stream of an operator can be shared by
the execution plans of multiple queries. Therefore, the DAGs of
queries are connected by the shared vertex. We refer to the topology
that is composed by all the queries which are concurrently running
within the DSPE as the global topology. A user-specified prior-

ity, which is denoted as a numerical value (set as 1 by default), is
assigned to each query within the topology

4. FAULT TOLERANCE
In this section, we present the fault-tolerance framework that

supports progressive recovery and some implementation details.
Checkpointing We use punctuations to trigger checkpointing in

partitions and synchronize the progress of checkpoints. Punctua-
tions are generated periodically and inserted into the source streams
in a broadcasting fashion. On receiving the punctuations with the
same sequence number from all the input streams, a partition starts
the process of checkpointing and then broadcasts this punctuation
to its downstream neighboring partitions. As the punctuations are
not arriving simultaneously, data items arrive after the punctuations
must be buffered before the checkpoint is done. Assuming that the
last checkpoint of a partition is triggered by punctuation Pk−1, tu-
ples from Si which are received after Pk will be stored in the input
buffer. After receiving Pk from all the input streams, the partition
generates a checkpoint that stores its computation state and then
acknowledges the coordinator. The coordinator tracks the check-
pointing progress of the whole topology. Once the coordinator is
acknowledged that all the partitions have completed checkpointing
for punctuation Pk, it knows that a global synchronized checkpoint
of the entire topology for Pk, denoted by cp(Pk), is generated.

Adaptive Buffering. Source buffering is a widely adopted fault-
tolerance technique in DSPEs. With source buffering, the system
buffers the source data of which the processing state have not been
included in the latest global checkpoint. In other words, when a
global checkpoint of the entire topology is completely made, we
can trim the source buffers by removing those source data whose
processing are already reflected in the global checkpoint. It is im-
portant to note that the buffers for failure recovery differ from the
buffers used in data transfer. The latter can be easily trimmed
whenever the data are transferred to the downstream nodes. Due
to its simplicity and low overhead, the source buffering approach
is widely adopted in most existing operational DSPEs, including
Storm [14], Flink [1] and Samza [2]. Upstream buffering is an-
other bufffering technique that requires each partition to buffer its
own output until a global checkpoint is made. Due to its high over-
head during normal execution, this approach is not used in most
mainstream DSPEs.

However, source buffering cannot support progressive recovery,
because whenever we need to recover the state of a partition, we
have to replay the buffered data from the sources till the current
partition. Only recovering a part of the failed partitions makes
little sense because the recovery of any remaining one would re-
quire to redo the whole recovery again. This means the recovery
progress should be blocked until there are sufficient resources to
recover all the failed partitions. To solve the above problem, we
adopt an approach, called adaptive buffering, which would only in-
cur overhead during failure recovery. With adaptive buffering, we
only buffer at the sources during normal execution. Once a burst
of multiple node failures is detected within a time window, all the
partitions except for the sinks would buffer their outputs to support
progressive recovery. These output buffers are turned off when a
new global checkpoint is completely created, which indicates the
correlated failure is completely recovered.

Figure 2 presents an example of adaptive buffering. Before fail-
ure is detected, only the partition in the source operator (i.e., p1),
has output buffer. When partitions p3, p4, and p5 are detected to
be failed, at timestamp ts1, p3 and p4 are restarted and the out-
put buffer is turned on in partition p2 and p3. At ts2, after p5 is
restarted, it will first process the output buffer of partition p3. After
all the partitions are recovered, output buffer is turned off in the
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Figure 2: An example of adaptive buffering.

non-source partitions, only the output buffer in p1 is preserved.
Progressive Recovery. Once failure is detected, assuming that

Pk is the punctuation of the latest successful global checkpoint, the
failed partitions are restarted and the states of the whole topology
are restored or rollbacked with checkpoint cp(Pk). The system
would switch to the progressive recovery mode if the total number
of failed nodes is higher than a threshold within a specific time win-
dow, otherwise it would simply use the blocking recovery method.
With adaptive buffering, the output buffers in all the partitions are
now turned on and the input data with a greater sequence number
than Pk will be replayed from the sources. These output buffers
could be used to resume the progress of the failed partitions that
are recovered when new recovery resources arrive.

Note that node failures may not occur simultaneously during a
correlated failure. In other words, it is possible that additional fail-
ures could be detected before the current recovery is completed.
With the adaptive upstream buffers, instead of rolling back the
states of the whole topology to cp(Pk) again, we only restore the
states of the newly failed partitions with cp(Pk) and replay the data
buffered in their upstream neighbors. However, as the progress of
the newly restored partitions fall behind their downstream neigh-
bors that have been recovered, the downstream may receive dupli-
cated tuples and therefore have to perform duplicate elimination to
guarantee exactly-once processing.

However, for a partition pi with multiple input streams, as the
tuples from different upstream partitions may arrive in different or-
ders, pi may produce outputs in different orders across different re-
plays. To solve this problem, we enforce Order-Preserved process-
ing during recovery to ensure that pi processes its input in an iden-
tical order across different replays. The order-preserved processing
is turned on in the beginning of the recovery. The source-buffered
data would be divided into mini-batches and each partition attaches
a local sequence number that increases monotonically to each of
its output tuples. For a partition pi, tuples within the same batch
are stored in its input buffer. When it receives all the data from a
batch from all its inputs, pi starts processing these data from each
input stream in a predefined round-robin order. In this way, the or-
der of the output data are guaranteed to be identical across multiple
replays. With order-preserved processing, the downstream of pi
can skip duplicate tuples by checking the sequence numbers of tu-
ples from pi. After the recovery is completed, the order-preserved
processing will be turned off together with adaptive buffering.

Implementation. We implement our system on Enorm [11],
which is a distributed stream processing system built on Apache
Storm [14]. In our system, a special bolt, called control bolt, is
automatically generated and appended to the user-submitted job
topology. The responsibilities of the control bolt include collecting
workload statistics and handling node failure. The fault tolerance
coordinator in the control bolt detects node failures by checking
their heartbeats in ZooKeeper. Upon a failure is detected, the co-
ordinator calls the optimization algorithm presented in Section 5 to
schedule failure recovery following the pace of acquiring new re-
sources. The control bolt is stateless, if failed, it will be restarted
by Nimbus in Storm on another node and the interrupted recovery

scheduling will be resumed.

5. OPTIMIZING RECOVERY PLAN
In this section, we define the problem of optimizing the recovery

scheduling and present an outline of our optimization algorithm.
Given a global topology T , we denote the resource consumption
of operator Oi in T as Ci, the parallelization degree of Oi as mi

and the resource consumption of pij , the jth partition of Oi, as cij .
We have Ci =

∑mi
j=1 cij . Queries can be assigned with priorities

according to their importance and Qi’s priority is denoted by prti.
If the amount of available resources is not enough to recover

all the failed partitions of a correlated failure, we have to select a
subset of the failed partitions for recovery. Whenever a set of new
nodes are available, a set of failed partitions will be scheduled for
recovery, which is referred to as a partial recovery plan. A failed
query is called recovered if and only if all of its failed partitions
are recovered. We present a formal definition for the problem of
optimizing recovery plan as follows:

RECOVERY PLAN OPTIMIZATION: For a global topology T , a
set of failed queries QS, and the amount of computation resources
R available for failure recovery, choose a subset of the failed op-
erator partitions for recovery such that the sum of the priorities of
the recovered queries is maximized.

The RECOVERY PLAN OPTIMIZATION problem is NP-hard, as
it can be reduced from the Set Union Knapsack problem, which has
been proved to be NP-hard [10]

Considering that operators can be shared by multiple queries, it
is natural to prioritize recovering the queries whose operators are
shared by more queries. Furthermore, as the failed queries have
various recovery costs and priorities, we should consider the profit
that can be achieved by using per unit of resource while generating
the recovery plan. Taking the above two factors into consideration,
we define Profit Density, referred to as PDi, of query Qi and use
it to rank the recovery priorities of the failed queries. PDi is cal-
culated as follows:

PDi =
prti∑Ok∈Qj Ck

fk

In the above equation, Ck is the cost of recovering the failed par-
titions in operator Ok, fk is the frequency that Ok is shared by
the other failed queries. The approximate optimization algorithm
starts by calculating the profit density of each failed query. The
failed queries are put into a list and sorted in descending order ac-
cording to their profit density. Next, the list is traversed from the
beginning to find the query, Qi, whose recovery cost is smaller
than the amount of currently available resources. The failed parti-
tions belonging to Qi will be put into the recovery plan. The profit
density of the other failed queries will be updated and the list of
failed queries are re-sorted. The above loop continues until the re-
source constraint is reached. The time complexity of this algorithm
is O

(
M2 · logM

)
, where M is the number of the failed queries.

6. EVALUATION
All the experiments are conducted on Amazon EC2 using the

m3.large instance. We use a real data set consisting of 569,382
tweets crawled from Twitter, which are repeatedly emitted in order
into the source operator to emulate a long-standing application.

To explore the time of attaching new nodes to a cluster on a cloud
platform, e.g., Amazon EC2, we conduct experiments to record the
time interval between when the instance acquiring is started and
when the newly attached node is ready to host processing task. We
collect in total 180 samples and present their distribution in Fig-
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Figure 4: Topology used in the
experiment of progressive re-
covery.

ure 3. One can see that, even on the cloud platform, the newly
attached nodes are not arriving simultaneously. The time to attach
a new node varies from 2 minutes to 6 minute. This result consoli-
dates our motivation for progressive recovery.
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Figure 5: Average relative latency of recovered queries and the
number of available queries after correlated failure.

Figure 4 shows the structure of the job topology used in the re-
covery experiments. There are 15 queries in this topology. The sink
operator of query Qi is denoted as Oi. The parallelization degree
is set as 1 for the Source and 5 for the other operators. The Source
operator emits tweets in the rate of 1000 tuples per second. On re-
ceiving a tweet, the Parser emits a tuple for each hashtag within the
tweet. Operator O1, O2, O3, and O4 conduct sliding-window ag-
gregates, which count the hashtag frequency with various window
settings and output the updates of the window instances. Opera-
tor Oi, 4 ≤ i ≤ 14, maintains the states of the sliding-window
aggregates it subscribes.

End-to-end processing latency is a critical performance metric
for most streaming data applications. As recovering a large-scale
correlated failure would inevitably incur significant increment on
processing latency, we propose two metrics that are relevant with
processing latency to measure the effectiveness of the compared re-
covery schemes. Assuming that the latencies of queries before the
failure are stable, we propose Relative Latency that measures the
difference of a query’s latency before and after failure. Denoting
ls as a query’s latency before failure and lr as that after failure,
its relative latency, RL, is calculated as lr

ls
. Therefore, after query

Qi is recovered, RLi would gradually approximate 1. Within a
time interval ∆T , if the average RLi of Qi is smaller than Θ, e.g.,
Θ = 1.2 in this set of experiments, Qi is considered as an Avail-
able Query, which means it has recovered to a normal state. The
cluster initially consists of 10 nodes, and we manually kill the 8
nodes where the sink operators of the 15 queries are deployed to
inject a correlated failure, and then 8 new nodes are acquired and
attached to the cluster to perform recovery.

Figure 5(a) and Figure 5(b) present the relative latency of the
recovered queries and the number of available queries using dif-
ferent recovery paradigms. In both figures, BestCase denotes the
case where all the new nodes become available simultaneously af-
ter 3 minutes and the recovery of all the failed partitions are started
immediately after that. Sample-1-PRG and Sample-2-PRG are two
different runs using progressive recovery and OPC represents the

blocking operator-centric recovery.
As one can see in Figure 5, BestCase outperforms the others

in both the relative recovery latency and the number of available
queries, this is because all the failed partitions are recovered only
3 minutes after the failure. On the contrary, OPC has the worst re-
covery performance as its recovery is started after all the new nodes
are ready, which results in that OPC has more input tuples buffered
than the others before the recovery is started. The relative latency
of OPC is nearly 50% higher than that of BestCase at the begin-
ning of the recovery, and it also takes more time for the average
relative latency of OPC to return to the stable level than BestCase.
The relative recovery latency and the number of available queries
with progressive recovery are between those of BestCase and OPC,
as the failed partitions are gradually recovered following the pace
of resource acquiring. This experiment shows that, compared to
the blocking and operator-centric recovery, adopting progressive
recovery brings better latency and less time for the failed queries to
become available.

7. CONCLUSION
In this work, we present a query-centric progressive recovery

framework to improve the efficiency of recovering correlated fail-
ure in DSPEs. Following the arriving pace of the newly acquired
resources after a correlated failure, failed partitions are scheduled
to be progressively recovered such that the outputs of failed queries
can be generated as early as possible. We present an effective ap-
proximate algorithm to optimize the recovery plan. Experimental
results show that, compared to the paradigm of blocking operator-
centric recovery, our approach exhibits significant advantages while
recovering correlated failures.
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