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ABSTRACT
With the recent resurgence of interest in graph data man-
agement, there has been a flurry of research on the design
and engineering of graph query languages. On the design
side, there is a large body of theoretical results that have
been obtained regarding graph languages. On the engineer-
ing side, many sophisticated scalable solutions for graph
query processing have been developed and put into practice.
While both areas are focusing on the study of graph query
languages, there has been relatively little work bridging the
results on both sides. This tutorial will survey the state of the
art in this landscape with a particular focus on uncovering
and highlighting indicative research issues that are ripe for
collaboration and cross-fertilization between the engineering
and theoretical studies of graph database systems.

1. MOTIVATION
The mathematical concept of a graph is somewhat a re-

discovered old friend in the database community. Predating
relational database systems, the CODASYL network data
model resembles essentially graph data. In the 1980s and
early 1990s, with the rise of object-oriented programming and
advent of object-oriented database systems, research consid-
ered graph-based data models and graph query languages [2].
With the continued dominance of relational DBMSs, none of
these efforts got any sustainable traction in industry. In the
last decade, however, the graph concept has a considerable
revival with three major trends driving it.

The first driver is the Semantic Web movement [8]. The
idea of the semantic web gave rise to the RDF [38] data model,
which structures data as a labeled graph. This propelled
the publication and maintenance of thousands of open RDF
datasets on the internet, most famously DBpedia [3]. It also
sparked research in every corner of the database community –
ranging from works investigating the fundamental properties
of query languages for labeled graphs to the design of storage
structures and query engines for RDF data.
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The second driver is agility with respect to the management
of data. New application domains (e.g. [16, 39]) as well as
novel development methods [7] increased the demand for
data models that are less rigid and schema-oriented but
more ad-hoc and data-oriented. Graph data models typically
excel in this regard as new nodes and edges can be added
anytime, regardless of their properties. This propelled the
proliferation of the Property Graph model and corresponding
DBMSs, such as Neo4j1 and Apache TinkerPop Blueprints2

implementations. By now also major DBMS vendors such as
IBM and Oracle have put their weight behind the Property
Graph model and are developing Property Graph-based data
management solutions.

The third driver is a shift in interest of analytics from
merely reporting towards data-intensive science and discov-
ery [17]. One major method in this discipline is network
analysis, which puts the focal point of interest on the connec-
tivity of entities. The toolbox of network analysis offers a rich
set of algorithms and measures. These tools give incentives
to consider the graph structure of data collections in a wide
range of application fields, further increasing the demand for
scalable graph data management solutions.

Today, graph data management has become a major topic
in the database community, in research as well as industry.
There are several new challenges of graph data management
which fundamentally distinguish it from tabular or nested
(XML, JSON) data. An exemplification of how much trac-
tion graph data management has gained is the Linked Data
Benchmark Council (LDBC).3 In LDBC, research and indus-
try are jointly developing standardized benchmarks for graph
data management workloads to accelerate the maturing of
graph management systems by increasing competition.

A rather new LDBC initiative is the Graph Query Lan-
guage Standardization Task Force. The query language is one
of the most crucial elements of a DBMS. It defines the func-
tionality of a DBMS and how it is exposed to the user. At the
same time, it sets the tone for the DBMS implementation by
requiring certain functionality. Establishing a standardized
graph query language, such as SQL for relational systems, is
the next step towards more competition and progress. The
task force brings together a group of researchers from engi-
neering and theory as well as developers and representatives
from industry.

One early lesson learned in the task force is that there exist
two disparate bodies of work surrounding graph query lan-

1http://neo4j.com/
2http://tinkerpop.apache.org/
3http://ldbcouncil.org/
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guages. One body of work focuses on the foundational issues
arising in the design of graph query languages, their function-
ality, semantics, and formal properties such as decidability,
query complexity, and containment. The other body of work
focuses primarily on the engineering of systems, considering
the design of storage and indexing solutions and scalable
query processing engines for graph data. Due to this divide
in research, it is clear that we will not get the best systems
possible with the knowledge available. With both sides rather
oblivious to more recent advances of the other, particularly
challenges at their intersection often remain untouched.

This tutorial aims at uncovering and highlighting indica-
tive research issues that are ripe for collaboration and cross-
fertilization. In the core fields of design of declarative query
languages and query processing, we will give an overview of
recent advances. We will also point out their rich connec-
tions and new research challenges which arise from bringing
theory and engineering together. Overall, we aim to moti-
vate and stimulate such bridges, towards a broader coherent
understanding and further improvements in the design and
engineering of graph database systems.

2. SCOPE OF THE TUTORIAL

Audience. The tutorial is relevant for EDBT as well as
ICDT attendees. The intended audience of the tutorial
includes:

• Researchers interested in novel open challenges in graph
data management or who are particularly interested
in collaboration and cross-fertilization between theory
and practice and want to have a kick start.

• Professionals that work in graph database system en-
gineering and graph query language design and are
interested in foundational background and broadening
their scope of interesting query features.

Apart from basic knowledge about graph and database con-
cepts there are no special requirements for this tutorial.

Coverage. The attendees of this tutorial will take home:
(i) an overview of the landscape of declarative graph query

languages covering the most important features with
their different functionality and properties from a prac-
tical as well as theoretical standpoint;

(ii) a survey of the foundations and recent advances ac-
complished by engineering and theory in graph query
processing and optimization; and,

(iii) insights into open challenges for both foundational and
engineering work and in particular for research topics
at the intersection of both.

Scope. We scope the tutorial to core topics in graph query
language design and processing. We look at the selected
topics from a data management perspective, i.e., the focus
is on concepts and techniques relevant to the engineering
of graph data management system with a declarative query
language interface. With this specific focus, there is already
a wealth of results and open research challenges.

In particular, we will not discuss the design of streaming,
distributed, federated, or parallel processing solutions. We
will also not cover analytical topics such as graph search,
graph clustering, graph pattern mining, etc. It would be
impractical to also cover these topics in a focused 3-hour

tutorial. Furthermore, there have been excellent tutorials on
these topics recently (e.g., [19, 20, 21, 42]).

3. TUTORIAL OUTLINE
After a short illustrative introduction to the distinctive

properties of graph data and graph queries, the tutorial
will cover two core research areas in graph query languages:
language design and query processing including data repre-
sentation and query optimization aspects. Within each area,
we will present the current state of the art in both theory
and engineering and discuss important bridges between the
bodies of work in these areas.

3.1 Graph query languages

Advances in theory. As indicated already, there is a long
history of the study of graph query languages. The theoretical
study of graph query languages (expressive power, evaluation
complexity) has advanced ahead of the engineering of graph
databases, e.g., the study of regular path queries since the
1980s. We will give a systematic presentation of the current
design space of graph query languages in the theory commu-
nity, including a historical perspective on this development.
Major languages here include subgraph matching queries,
path algebras, regular path queries, and reachability [4, 6,
10, 12, 13, 24, 34, 35, 40, 43].

Advances in engineering. With the recent proliferation of
graph database system such as Neo4j, Virtuoso4, and many
others in industry and open source communities, there is a zoo
of graph query languages available today. All of them offer
some flavor of subgraph matching and reachability querying
functionalities. We will give a structured overview of the
major players in the field such as SPARQL 1.1, openCypher5,
declarative pattern matching in Gremlin, and PGQL [37]
and point out their main functional and distinctive features.
A look at the LDBC benchmark [11] queries will complement
this to a summary of the functional features available and
required from a practical, use case-driven standpoint.

Challenges. By contrasting the theoretical design space
with practical query languages and use cases, we point out
certain matches and mismatches, that give opportunities for
knowledge transfer or give rise to new research challenges.
Recently, for instance, practical query languages such as
SPARQL 1.1 and openCypher have introduced support for
regular path queries, which are very well studied in theory,
while there is much room for aligning practical languages
with this literature. Another area where many open research
challenges remain is in aligning recent engineering efforts
centered around the Property Graph model, on the one hand,
with theoretical results applying mainly to labeled graphs,
on the other. In particular, the impact which operations
on graph properties might have on fundamental language
properties must be considered. Finally, practical querying
languages demand for functionalities is not considered in-
depth from a theory perspective yet, such as aggregation
queries, top-k queries, or diversity in path queries. Other
aspects we will cover are: closedness/composability versus
views; and, path logics versus traversal DSLs.

4http://virtuoso.openlinksw.com/
5http://www.opencypher.org/
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3.2 Graph query processing

Advances in theory. The complexity of static query analy-
sis (query containment, equivalence) is well understood for
variations of graph path queries [9, 22, 34]. We will provide
tutorial participants with an overview of the fundamental
results for the languages surveyed in Section 3.1, with a partic-
ular focus on the demarcation between decidable and undecid-
able extensions of regular path queries. Tractable language-
independent characterizations of graph query languages have
been established in terms of the structure of a given graph
instance. These characterizations are the basis for index
data structures for path query evaluation/acceleration. We
will provide an overview of recent advances in the theory
of structural indexing and compression methods for graph
data and their formal connections to the graph query lan-
guages [15, 25]. We will also discuss recent advances in the
theory of worst-case optimal joins algorithms, as applied to
graph query processing [1, 29].

Advances in engineering. In query processing, algorithms
and graph representation go hand in hand. Node and edge
tables, compressed sparse row format, and triple tables are
the most common techniques used for primary graph data
representation. Recent works considered various refinements
of these techniques to increase efficiency by compression [1,
28], partitioning [31], triple indexing [23, 28, 44], and path
indexing [14, 36]. Other advances concern the updatability
of the data structures used [26, 28, 44]. Within the tutorial,
we will give a crisp intro into the common base techniques
and provide an overview of main ideas of the refinements.
On the algorithm side, we will concentrate on advances in
join processing for graph queries, since these advances are
relevant for many of the query classes from the design space.
In the tutorial, we will cover automata [41] and two-way
join-based approaches [23, 26, 28, 33] as well as approaches
that improve the utilization of high combined selectivities
in graph queries, such as sideways information passing [27]
and worst-case optimal n-way joins [1, 30]. We also highlight
current challenges in scalability and efficiency [5].

Challenges. Research on worst-case optimal joins actually
stretches from theory to engineering and excellently exem-
plifies the benefits of bridging both realms. We will use this
example to illustrate to the tutorial participants how bridg-
ing effort can result in coherent understanding and advanced
solutions. With this motivation in place, we point out further
bridging challenges. For instance, while structural indexing is
a very promising method from theory it has not been echoed
much in system implementation. In engineering, though, up-
datability is an important concern, which theory is challenged
to give more consideration. Further bridging challenges we
will point out are n-way joins with multiset semantics and
algorithmic applications of static query analysis.

3.3 Looking ahead
We will round out the tutorial with a discussion of promis-

ing research advances which have not yet bridged the gap
between the theory and engineering of graph query languages.
These include topics such as the decidability, complexity, and
containment of graph query languages involving node and
edge creation [18, 32], features which are particularly ap-

propriate in the context of the Property Graph data model.
These developments have good potential for research impact
in the intersection of engineering and theoretical investiga-
tions of graph query languages.

The tutorial will conclude with a recap of the major areas
that we see for collaboration and cross-fertilization between
engineering and theory.
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