
Big Spatial Data Processing Frameworks:
Feature and Performance Evaluation

- Experiments & Analyses -

Stefan Hagedorn
TU Ilmenau, Germany

stefan.hagedorn@tu-
ilmenau.de

Philipp Götze
TU Ilmenau, Germany
philipp.goetze@tu-

ilmenau.de

Kai-Uwe Sattler
TU Ilmenau, Germany
kus@tu-ilmenau.de

ABSTRACT
Nowadays, a vast amount of data is generated and collected
every moment and often, this data has a spatial and/or
temporal aspect. To analyze the massive data sets, big
data platforms like Apache Hadoop MapReduce and Apache
Spark emerged and extensions that take the spatial charac-
teristics into account were created for them. In this paper,
we analyze and compare existing solutions for spatial data
processing on Hadoop and Spark. In our comparison, we
investigate their features as well as their performances in a
micro benchmark for spatial filter and join queries. Based
on the results and our experiences with these frameworks,
we outline the requirements for a general spatio-temporal
benchmark for Big Spatial Data processing platforms and
sketch first solutions to the identified problems.

1. INTRODUCTION
In the Big Data era, almost every piece of information

produced is also stored and used for analyses. The pro-
duced information can be of any kind: plain web server
logs, sensor readings from home or environment monitor-
ing, (mobile) location-aware devices that periodically report
their position, complex entities in Open Data sets like Wiki-
pedia/WikiData, or structured event information extracted
from news articles and other text sources. Often these types
have at least two features in common: a time and a location
component. For scalable processing of large datasets, data
parallel architectures like Hadoop MapReduce and Apache
Spark have been introduced and have widely been accepted.
However, their general data model does not take spatial or
temporal relations of the data items into account and there-
fore cannot efficiently answer spatial, temporal, or spatio-
temporal queries.

In this paper, we present results of an experimental study
comparing existing solutions for spatial data processing on
Apache Hadoop and Apache Spark. Particularly, we con-
sider the Hadoop extensions Hadoop-GIS [1] and Spatial-

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Hadoop [2] as well as the Spark-based systems SpatialSpark
[3], GeoSpark [4], and our own implementation STARK1.
We investigate their features and also compare their per-
formance in a micro benchmark for spatial filter and join
queries. Finally, we will conclude with an outlook to a gen-
eral spatial and spatio-temporal benchmark.

2. EXISTING SOLUTIONS FOR BIG SPA-
TIAL DATA PROCESSING

The first approach to implement spatial operations as an
extension for Hadoop MapReduce is SpatialHadoop [2, 5].
It is built on top of Hadoop and provides spatial operators
for range queries, k nearest neighbors, and joins that can be
integrated into any Hadoop MapReduce program. Further-
more, spatial partitioning and indexing is available, too.

Another approach that extends the plain Hadoop MapRe-
duce framework with spatial operators is Hadoop-GIS [1].
Similarly to SpatialHadoop, Hadoop-GIS utilizes a two-level
indexing: a global partition indexing and an optional lo-
cal spatial indexing. The query processing engine RESQUE
(written in C++), uses these indexes to identify partitions
to load and to speed up processing the required partitions.
The RESQUE engine provides spatial operators for filters
and joins and is integrated into the Hive ecosystem.

While Hadoop is a very fault tolerant environment for par-
allel execution, writing all intermediate results to disk makes
the execution slow. Hence, the in-memory execution model
of Spark became very popular as it reduces the execution
time drastically, compared to MapReduce jobs. Currently,
there are two systems that implement spatial operators for
Spark: GeoSpark and SpatialSpark.

GeoSpark [4,6] is a Java implementation that comes with
four different RDD types: PointRDD, RectangleRDD, Poly-
gonRDD, and CircleRDD. These special RDDs internally main-
tain a plain Spark RDD that contains elements of the re-
spective type, i.e., points, rectangles, polygons, and cir-
cles. GeoSpark supports k nearest neighbor queries, range
queries, as well as joins and each of these queries can be
executed with or without using an index.

The main goal of the SpatialSpark approach described
in [3] is to provide a parallel join technique for large spatial
data sets. For this, they focus on data processing on parallel
hardware like multi-core CPUs and GPUs. SpatialSpark
implements a broadcast join, where the right relation is read
into memory and distributed to all workers. If the relation is

1https://github.com/dbis-ilm/stark

Poster Paper

 

 

Series ISSN: 2367-2005 490 10.5441/002/edbt.2017.52

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.52


Table 1: Feature comparison of Hadoop- and Spark-based Big Spatial Data processing platforms

Hadoop-GIS SpatialHadoop GeoSpark SpatialSpark STARK
Query Language / DSL X X × × X
Spatio-Temporal Data × × × × X
Spatial Partitioning X X X X X
Indexing X X X X X

Persistent Indexes X X × X X
Filter no partitioning

Contains X X X (X- w/o Index) X
ContainedBy X X × (X- w/o Index) X
Intersects X X X (X- w/ Index) X
WithinDistance X X × (X- w/o Index) X

Join X X (X- pred. limit.) (X- returns IDs) X
k Nearest Neighbors X X X × X
Clustering × × × × X

too big for main memory, a spatial partitioning and indexing
is utilized [7].

In the next sections, we will have a deeper look into the
supported features and limitations of the mentioned systems
and will also compare the performances of their operators.

3. FEATURE COMPARISON
The DE-9IM [8] defines all possible relations between two

spatial objects and the Open Geospatial Consortium re-
leased a standard for spatial data types and operations,
which is implemented in many spatial DBMS. In Table 1
we compare the five engines based on a subset of these stan-
dards and additionally include aspects like query language,
spatial partitioning, indexing, and data analysis operators.

Query Language.
Hadoop-GIS is integrated into Hive and implements the

SQL/Spatial MM standard and includes a complete set of
predicates, according to DE-9IM that can be used with filter
and join operators. For SpatialHadoop the authors intro-
duced the Pigeon [9] language that extends Pig Latin with
spatial functions. In Pigeon, fields of type bytearray are
implicitly converted to a geometry type when needed. Spa-
tialHadoop programs can also be written as plain MapRe-
duce programs, but as we did not find any documentation
we found it hard to set the correct classes to parse spatial
data and set parameters for a simple range query correctly.
Furthermore, SpatialHadoop provides a command line script
that can be used to run a single query/join.

GeoSpark can be used via its Java API, which however
does not integrate well into the Spark API. Unlike in Spark
where transformations are defined as methods on an RDD,
in GeoSpark users have to create extra instances of, e.g.,
PointRDD and pass in the base JavaRDD. For the operations,
again a new instance of the operator class, e.g., RangeQuery
has to be created which accepts the GeoSpark-RDD to work
on. This makes it tedious to write complex programs and to
represent a data flow. The main drawbacks of GeoSpark are
these special RDDs, which can only hold geometries of one
certain type (points in PointRDD, polygons in PolygonRDD,
...). On the one hand, this makes it impossible to load a
dataset that contains different geometry types in one column
and, on the other hand, all other columns are removed when
putting the data into these spatial RDDs. This also means

that it is not possible to process the data in subsequent
steps since related columns such as an ID are not available
anymore.

It seems that SpatialSpark should be used only via the
command line and run single queries/operations. However,
the internal Scala classes can be used in other programs as
well, although there is very little documentation.

STARK provides an integrated DSL (domain specific lan-
guage) for spatio-temporal query processing that seamlessly
integrates into any (Scala) Spark program. Spatial Joins
and filters can be called directly as transformations on stan-
dard RDDs. Additionally, it allows defining custom distance
functions and predicates for its operators.

To the best of our knowledge from the found literature and
provided documentation, only SpatialHadoop and STARK
are able to also process temporal or spatio-temporal data.

Spatial Partitioning and Indexing.
Hadoop-GIS comes with a recursive grid partitioning and

a global index (R-tree, R∗-tree). This index is stored in
the HDFS and used to identify partitions that need to be
loaded, i.e., that contribute to the result. Furthermore, ob-
jects within a partition (tile) can be indexed as well on de-
mand. SpatialHadoop also employs two index levels: on a
global level an index partitions data across all nodes while a
local index organizes data inside each partition. The indexes
hold a copy of the data to avoid random HDFS lookups [10].
The number of generated partitions is calculated depending
on the input file size, the HDFS block size, and an over-
head ratio. These indexes are used on read to eliminate
records that do not contribute to the final result. As index
structures, SpatialHadoop supports grid files, R-tree, and
R+-trees.

GeoSpark comes with several partitioning techniques: R-
tree partitioning as well as Voronoi, Hilbert, and fixed grid
partitioning. As described in [4], it supports R-trees and
quadtrees to create an ad hoc index on the RDDs. However,
during the evaluation, we found that choosing quadtrees is
not possible and respective settings are ignored. Persisting
indexes in GeoSpark seems not to be possible, since there is
no way to load and index or assign it to an RDD.

SpatialSpark includes a fixed grid partitioning, binary space
partitioning (BSP), as well as tile partitioning. Indexes have
to be created and written to disk/HDFS before they can be

491



used within a program, i.e., there is no possibility for live
on-the-fly indexing.

STARK includes a fixed grid partitioner as well as a cost
BSP, which ensures partitions with almost same cost (amount
of data items). Indexes in STARK can be created on-the-
fly within a program and can also be materialized for later
use. However, in STARK an index that should be material-
ized can also be used within the same program, while in the
other frameworks, this index has to be created in an extra
run and then has to be explicitly loaded. Currently, STARK
uses only R-trees for indexing.

Spatial Filter & Join Operators.
Hadoop-GIS and SpatialHadoop are DE-9IM compatible

and spatial filter and join operators can be used with many
predicates.

GeoSpark only provides a contains and intersects predi-
cate for spatial filters. For spatial joins only contains and,
for joining two point data sets, withinDistance is supported.
For joins spatial partitioning is obligatory, but indexing can-
not be used.

SpatialSpark supports spatial filter queries with the pred-
icates contains, within (containedBy), and withinDistance.
However, a spatial partitioning cannot be applied in com-
bination with the filter operator. When querying a persis-
tent index for these range queries the intersects predicate
is compulsorily used. Internally, they expect RDDs with an
ID and a geometry object, which are processed when calling
the specific query object (like RangeQuery or BroadcastSpa-
tialJoin). SpatialSpark does not allow other payload fields
but the ID and, furthermore, the result of a join returns
only the matched pairs IDs, which requires additional joins
afterwards to retrieve the complete tuple in the application.

STARK includes a wide range of spatial predicates (that
can also be used for spatio-temporal data) which are applica-
ble for filter and join. While other systems neglect payload
data and only work with IDs and geometries, STARK keeps
any payload data throughout all operations.

Other Data Analysis Operators.
All considered frameworks support a k-nearest neighbor

operator, except SpatialSpark. However, they provide a
1-nearest-neighbor join predicate. A clustering operator is
only available in STARK, which implements DBSCAN.

4. PERFORMANCE EVALUATION
In the following experiments, we focus on a micro bench-

mark comparing the execution times for single operators
with different settings. The benchmarks are executed on
our cluster of 16 nodes with an Intel Core i5 processor and
16 GB RAM on each node. The nodes are interconnected
with a 1 Gbit/s network. The Spark jobs are executed with
32 executors and 2 cores for each executor. The data genera-
tor, test programs, settings, as well as more experiments and
results are available on GitHub2 . To run our experiments,
we first had to fix issues in GeoSpark3. The most important
problem was that operations that use an index for querying
returned the candidate set returned by the index (R-tree).
We added the candidate pruning step to obtain the correct
results. Furthermore, the contains predicate was actually a

2https://github.com/dbis-ilm/spatialbm
3We further had to use version 0.3 as the newer version 0.3.2
crashed with out-of-memory errors for the same settings.

containedBy (the operands were swapped).
The first experiment executes a spatial filter operator over

a 50,000,000 polygon data set (880 GB, uniform distribu-
tion) with a contains predicate to find those polygons that
contain a given query point. We used all available spatial
partitioners of each framework and executed the operation
without indexing as well as with live (on-the-fly) index cre-
ation, if possible. In this experiment, STARK performed
best with only 47 (BSP, live index) or 52 seconds (BSP, no
index). SpatialSpark is very limited in its usability as a spa-
tial partitioning is not allowed in combination with a filter.
The run without spatial partitioning and indexing took 3866
seconds (more than 1 hour). GeoSpark needed 1237 seconds
(20 minutes) without partitioning but was not able to pro-
cess this data set at all with a spatial partitioner and crashed
after several hours for each partitioner. While investigating
this problem we executed the program on a smaller poly-
gon data set with 1,000,000 entries (17,6 GB). In the best
case, it took 54 seconds with Hilbert partitioning. That is
the same time that STARK needed to process 880 GB. For
SpatialHadoop (as a representative of the Hadoop based sys-
tems) we used their command line program, but were not
able to receive a correct result: The program finished after
39 minutes with zero results. The problem is that a point
query option is not available and so we provided a point as
query range. A visualization of the execution times along
with a more detailed analysis that includes the overhead of
the partitioning can be found in our GitHub repository2 .

Our next experiment examines the influence of the query
range size to the execution time. For this, we used a point
data set with 50,000,000 points and executed a filter opera-
tor with a containedBy predicate to find all points contained
by a given polygon. While the data set has a value range
of [-180, 180] for x coordinates and [-90,90] for y, we exe-
cute the filter with 5 different squares created as polygons.
These squares have the side lengths: 1, 5, 10, 50, and 100.
Additionally, there is a query range that covers the com-
plete data space. Figures 1 to 3 show the execution times
for all partitioner/indexing combinations. Partitioners that
require setting the number of partitions in advance all use
the same amount (8100). This shows the impact of the prun-
ing step that the frameworks can take. If the query region
is small, only a single or very few partitions may contain re-
sult objects and other partitions do not have to be checked.
STARK makes use of this partition pruning approach where
ever possible and thus, is able to outperform the others that
do not seem to perform this action as they need the same
time for all six queries.

In the last experiment that we show here, we analyzed
the spatial join operation on two point data sets (1,000,000
points, uniform distribution) that finds equal points (same
exact location) in the two data sets. Figure 4 shows the
result for the Spark based frameworks with their best par-
titioner for the join with and without using an index. We
were not able to perform this test with SpatialHadoop as
the command line program crashed with an error and we
did not find any helpful documentation. For GeoSpark and
SpatialSpark the same partitioner performed best in both
cases. However, GeoSpark has a bug for Grid and R-tree
partitioning as in the final result 1 and ca. 10,000 tuples re-
spectively were missing (we also encountered different result
sizes for in each repetition of the experiment). It can also
be seen that for these frameworks, one cannot benefit from

492



1x1 5x5 10x10 50x50 100x100 360x180
Query range size

0

5

10

15

20

25

E
x
e
cu

ti
o
n
 t

im
e
 [

s]

SpatialSpark, No Partitioner, No Index

SpatialHadoop, No Partitioner, No Index

Figure 1: Exec. times for different range query sizes for Spatial-
Hadoop & SpatialSpark

1x1 5x5 10x10 50x50 100x100 360x180
Query range size

0

5

10

15

20

25

E
x
e
cu

ti
o
n
 t

im
e
 [

s]

No Partitioner, No Index

No Partitioner, Live Index

Grid, No Index

Voronoi, No Index

Hilbert, No Index

Rtree, No Index

Figure 2: Exec. times for different range query sizes for GeoSpark.
No Partitioner, Live Index is out of range (40 sec) for all queries.

1x1 5x5 10x10 50x50 100x100 360x180
Query range size

0

5

10

15

20

25

E
x
e
cu

ti
o
n
 t

im
e
 [

s]

No Partitioner, No Index

No Partitioner, Live Index

Grid, No Index

Grid, Live Index

Bsp, No Index

Bsp, Live Index

Figure 3: Exec. times for different range query sizes for STARK.

GeoSpark SpatialSpark STARK
0

20

40

60

80

100

E
x
e
cu

ti
o
n
 t

im
e
 [

s]

V
o
ro

n
o
i

T
ile

G
ri

d

V
o
ro

n
o
i

T
ile

B
sp

94.6

20.9

51.2

95.9

19.8

6.3

No Index

Live Index

Figure 4: Exec. times for spatial join queries.

live indexing. This maybe because the speedup of querying
the point index is not big enough to compensate the time
required to build the index. For STARK, without using an
index the Grid partitioner performed best, but was slower
than SpatialSpark. With live indexing, however, the BSP
was best and outperformed the others. The reason here may
be that the BSP created partitions with an equal number of
elements and thus equal workload on the executors.

5. CONCLUSION
In this paper, we introduced Hadoop and Spark based en-

gines that allow processing Big Spatial Data. As the results
of our feature comparison and micro benchmark show, they
all differ in supported operations as well as in implemen-
tation and thus, in performance. However, the performed
micro benchmark should just be a starting point for a more
exhaustive spatial benchmark. For this, a more flexible data
generator is needed to easily create clustered data of differ-
ent sizes. Furthermore, a good benchmark should contain
micro benchmark tests, as shown in the previous section, as
well as a macro benchmark performing real world queries.
The macro benchmark is needed to (1) evaluate the real per-
formance and (2) to compare the functionality and usability
of the system. Although the queries may be formulated
in natural text leaving the task of the implementation to
the authors and developers of an engine, we believe that
the Pigeon [9] extension for Pig Latin in combination with
our Piglet [11] for code generation will provide a good and
portable user interface for such a benchmark.

Acknowledgments.
This work was partially funded by the German Research

Foundation (DFG) under grant no. SA782/22

6. REFERENCES
[1] A. Aji, F. Wang et al., “Hadoop-GIS: A High

Performance Spatial Data Warehousing System over
Mapreduce,” VLDB, pp. 1009–1020, 2013.

[2] A. Eldawy and M. F. Mokbel, “A Demonstration of
SpatialHadoop: An Efficient MapReduce Framework
for Spatial Data,” in VLDB, 2013.

[3] S. You, J. Zhang, and L. Gruenwald, “Large-Scale
Spatial Join Query Processing in Cloud,” in ICDE,
2015.

[4] J. Yu, J. Wu, and M. Sarwat, “GeoSpark: A Cluster
Computing Framework for Processing Large-Scale
Spatial Data.” SIGSPATIAL, 2015, p. 70.

[5] Eldawy and Mokbel, “SpatialHadoop: A MapReduce
Framework for Spatial Data,” in ICDE, 2015.

[6] J. Yu, J. Wu, and M. Sarwat, “A Demonstration of
GeoSpark: A Cluster Computing Framework for
Processing Big Spatial Data,” ICDE, 2016.

[7] S. You, K. Gorlo et al., “Big Spatial Data Processing
using Spark,” https://git.io/vXiMd, accessed Nov. 14,
2016.

[8] M. J. Egenhofer and R. D. Franzosa, “Point-set
topological spatial relations,” IJGIS, 1991.

[9] A. Eldawy and M. F. Mokbel, “Pigeon: A spatial
MapReduce language,” in ICDE, 2014.

[10] R. T. Whitman, M. B. Park et al., “Spatial Indexing
and Analytics on Hadoop.” SIGSPATIAL, 2014.

[11] S. Hagedorn and K.-U. Sattler, “Piglet: Interactive
and Platform Transparent Analytics for RDF &
Dynamic Data,” in WWW, April 2016, pp. 187–190.

493


	Big Spatial Data Processing Frameworks: Feature and Performance EvaluationStefan Hagedorn, Philipp Götze, Kai-Uwe Sattler

