
Stability notions in synthetic graph generation: a
preliminary study

Wilco van Leeuwen
George H.L. Fletcher

Nikolay Yakovets
Eindhoven University of Technology

Eindhoven, The Netherlands
{w.j.v.leeuwen@student., g.h.l.fletcher@,

hush@}tue.nl

Angela Bonifati
University of Lyon 1

Lyon, France
angela.bonifati@univ-lyon1.fr

ABSTRACT
With the rise in adoption of massive graph data, it be-
comes increasingly important to design graph processing
algorithms which have predictable behavior as the graph
scales. This work presents an initial study of stability in
the context of a schema-driven synthetic graph generation.
Specifically, we study the design of algorithms which gener-
ate high-quality sequences of graph instances. Some desir-
able features of these sequences include monotonic contain-
ment of graph instances as they grow in size and consistency
of structural properties across the sequence. Such stabil-
ity features are important in understanding and explaining
the scalability of many graph algorithms which have cross-
instance dependencies (e.g., solutions for role detection in
dynamic networks and graph query processing). We imple-
ment a preliminary approach in the recently proposed open-
source synthetic graph generator gMark and demonstrate its
viability in generating stable sequences of graphs.

1. INTRODUCTION
Rising adoption of massive graph data (e.g., social net-

works, WWW, biological data) necessitates the development
of algorithms which are able to handle the vast amounts of
information stored in these datasets. Synthetic graph gen-
erators are a valuable tool for investigating the performance
of graph processing algorithms since it allows to generate a
sequence (or, a family) of graph instances of increasing sizes.
For performance studies to be useful and reproducible, it is
important to ensure the quality of the generated instances
themselves and the instance family, as a whole. The sim-
plest quality measure of the instance is its size. In some
cases (e.g., in benchmarking of naive graph serialization),
generation of different-sized independent random graph in-
stances is sufficient to demonstrate the performance charac-
teristics of the algorithm. However, in other cases (e.g., in

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Figure 1: Node-level changes between instances. In graph
instances G1 and G2, node Angela is a “leader” with rel-
atively high in-degree. In G′

2, however, Angela does not
appear at all, while in G′′

2 , she is merely a “follower.”

benchmarking of query processing engines), stronger quality
guarantees are desired. For example, in addition to graph
size, a user-defined graph schema might include the enumer-
ation of node and edge labels along with their proportions
in the generated graph instances. Furthermore, in- and out-
degree distributions can be defined on top of the constraints
on source-target node pairs in a graph. Graph generation
approaches that produce graph instances which conform to
such extended schema are called schema-driven.

In benchmarking of graph algorithms it is often impor-
tant to control how relationships involving specific nodes
evolve between graph instances in the family. Ideally, given
a particular node, its structural properties should be stable
across the entire sequence of generated graph instances. For
example, queries which mention constants are common in
the design of benchmarks, as they allow fine-tuned control
of query selectivity and run-time behavior [4, 5, 8, 9, 12]. As
another example, in the study of solutions for role detec-
tion in social networks, it is often desirable that structural
features of individual nodes (i.e., individual actors in the
network) are stable as the network grows in size.

To concretely illustrate stability, consider the graph in-
stances shown in Figure 1. Here, G2, G

′
2, and G′′

2 have the
same size and are all larger than G1. Suppose that a given
schema (S) models a typical behavior of follows edges in a
social network. This schema defines the in-distribution of all
edges in the graph to be Zipfian and all nodes to be of type
Person. Observe that each of the instances G1, G

′
2, G

′′
2 , and

G2 satisfy S. Suppose, we fix a specific node in G labeled
Angela and trace its behavior across instances in Figure 1.
Specifically, Angela is a “leader” (followed by many) in G1

and G2, but is not present in G′
2 or is not a leader in G′′

2 .
Hence, using instance families {G1, G

′
2} and {G1, G

′′
2} would

lead to inconsistent results when studying the behavior of an

Poster Paper

Series ISSN: 2367-2005 486 10.5441/002/edbt.2017.51

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.51

algorithm which depends on Angela, e.g., in a performance
study of a query evaluation engine using a benchmark query
which specifically mentions Angela.

State of the art. The study of solutions for controlled gen-
eration of synthetic database instances has a long history in
the data management community [2, 10]. In the domain of
graph databases, synthetic generation of realistic graphs is
currently a topic of intense investigation [1,4,5,7,8,13,14]. In
this context, quality metrics on individual synthetic graphs
(with respect to a given real graph or a given schema) have
been proposed, e.g., [3,7,11,13,14]. To our knowledge, how-
ever, there has been no prior study of stability across se-
quences of graphs in synthetic instance generation.

Contributions. Motivated by these observations, in this
paper we initiate the study of stability in synthetic graph
generation. We consider basic properties of instance fami-
lies which are, to the best of our knowledge, not satisfied
by current schema-driven graph generators. We present the
preliminary design of a scalable solution for producing in-
stance families which are stable with respect to edge-type
degree distributions defined by a given schema (e.g., for the
Zipfian distribution in the family {G1, G2} of Figure 1).

The detailed structure and contributions of this paper
are as follows. We define two basic desirable properties of
generated graph instance families (§2.1) and design a novel
measure of distribution stability for a given family (§2.1).
We then present an algorithm for generation of stable in-
stance families and analyze its complexity (§2.2). We imple-
ment our approach in the state-of-the-art open-source gMark
graph generator [4, 5], and demonstrate that our solution
is scalable (§3.1) and produces instance families which are
significantly more stable than the original gMark instance
generator (§3.2).

2. STABLE GENERATION

2.1 Preliminaries
We study the following problem, on finite directed edge-

labeled graphs. Given a finite sequence of positive inte-
gers n1, . . . , nk such that ni < ni+1, for 1 ≤ i ≤ k, gen-
erate a sequence of graphs F = (G1, . . . , Gk) such that
|nodes(Gi)| = ni, for 1 ≤ i ≤ k, where nodes(G) denotes
the node set of graph G and |A| denotes the size of set A.
If we are additionally given a graph schema S as input, we
further require that each Gi is a valid instance of S.

In this initial study, we consider the following desirable
properties of generated graph sequences:
• Monotonicity. It holds that edges(Gi) ⊆ edges(Gi+1),

for 1 ≤ i ≤ k, where edges(G) denotes the edge set of
graph G.
• Distribution stability. If the degree structure of an edge

type follows a fixed distribution (e.g., edges labeled fol-
lows in a social network have a Zipfian in-distribution),
then the position of nodes in the distribution is stable
throughout the graph sequence F .

The degree (deg) of a node needs to be stable in its dis-
tribution in all graphs of a given sequence. To capture this,
we define the rank of a node n in graph G as:

rank(n,G) =
deg(n)

maxn∈nodes(G)(deg(n))

Figure 2: Generating the edges of one edge-type with five
subject nodes and three object nodes.

where the value of rank(n,G) ranges from 0 to 1. Let-
ting σn denote the standard deviation of the rank of n over
all instances in F , i.e., the standard deviation of the set
{rank(n,G) | G ∈ F}, we define the stability of n in F as:

stability(n,F) = 1− 2σn.

A stability(n,F) = 1 indicates that the rank of n never
changes, whereas stability(n,F) = 0 means that n is com-
pletely unstable, with respect to degree structure.

2.2 Generation Approach
The original gMark graph generator (gMarkGraphGen)

does not satisfy monotonicity of graph generation nor does
it guarantee distribution stability; the time complexity of
generation is linear in the number of nodes of the graph in-
stance [5]. We next propose an algorithm, MonStaGen, that
generates instance families which are both monotonic and
stable with respect to edge-type degree distributions defined
by a given schema. An analysis of this algorithm, however,
shows that the satisfaction of these properties comes at the
expense of increased time complexity (O(n logn), where n
is the number of nodes).

MonStaGen separately calls a procedure (Algorithm 1) for
each edge type in a given schema. As a consequence, the
generation of subgraphs that correspond to each edge type
can be executed in parallel. Consider the graph of a single
edge type as a bipartite graph with the two disjoint sets S
and T . Set S represents all the subject nodes of the edge
type, whereas set T represents all the object nodes of the
edge type. Graph generation proceeds by iteratively adding
edges from nodes in S to nodes in T .

Figure 2 shows an example of the generation of one edge-
type with five subject nodes (elements of set S) and three
object nodes (elements of set T). This figure also introduces
our concept of interface connections. We call the connec-
tions (i.e., edges) that a node can potentially receive the
interface connections (ICs) of this node. Whenever a new
node is added to the graph, the degree distributions in a
given schema determine the number of ICs of this node de-
pending on whether it is a subject (out-degree) or an object
(in-degree). Whenever a new edge is added, the participat-
ing ICs for its subject and object nodes are closed.

Generated subject nodes, object nodes, and edges are
cached for subsequent processing by functions addSubjectN-
odes and addObjectNodes. Function addEdge decrements
the amount of open ICs of the subject node and the ob-
ject node by one. Observe that, by construction, the gener-
ated sequence of graphs satisfies the monotonicity property.
Next, we discuss the immediate challenges that need to be

487

Algorithm 1 processEdgeType(edgeType, graph, prob-
ability p, #subjectNodes, #objectNodes)

graph.addSubjectNodes(#subjectNodes)
graph.addObjectNodes(#objectNodes)

if edgeType.subjectNodes is scalable xor ed-
geType.objectNodes is scalable then

updateICsForNonScalableNodes()
end if
if in- or out-degree distribution is Zipfian then

updateICsForNodesWithZipfianDistribution()
end if

vector vsrc, vtrg
for subject in graph.subjects do

for 1:subject.openICs do
vsrc.add(subject)

end for
end for
for object in graph.objects do

for 1:object.openICs do
vtrg.add(object)

end for
end for
shuffle(vsrc); shuffle(vtrg)

for i ∈ 1:min(vsrc.length, vtrg.length) do
with probability p, graph.addEdge(vsrc[i], vtrg[i], ed-

geType.predicate)
end for

return graph

met during schema-driven stable graph generation.

Subject-to-object scalability mismatch. Consider the
edge-type Persons live in a City, where the number of per-
sons scale with the graph size, i.e. the subject nodes are
scalable, and the number of cities is fixed. When the num-
ber of ICs are fixed for the non-scalable object nodes, we will
reach a point where new edges cannot be generated anymore.
This is because the total number of ICs in the City nodes
will remain the same when growing the graph, whereas the
total number of ICs in the Person nodes will grow. It is
still possible to grow the graph after this point, resulting in
more Person nodes with new ICs. However, these ICs can
never be used anymore, since all object nodes are not able
to receive any connection and new objects cannot can be
added. This problem is solved by updating the number of
ICs of the non-scalable nodes.

Skewed distributions. During the construction of the new
graph instance, the ICs of the nodes which participate in a
Zipfian distribution need to be updated to ensure that nodes
with a very high degree will be able to continue to receive
more connections.

We proceed by creating separate vectors for subject and
object nodes with as many entries for each node as it has
assigned ICs. We then randomly shuffle these two vectors.
Finally, with probability p, we add each edge from the source
vector to the target vector. Here, p ensures the balance

between the connectedness of the new instance with later
instances in the sequence, on one hand, and the quality of
the degree distributions, on the other.

3. EMPIRICAL STUDY
In this section, we report the results of three experimen-

tal studies of our approach. In all of the experiments, we
investigated the generation of graphs with skewed (Zipfian)
degree distributions. We selected Zipfian distribution pa-
rameter of 2.5, as it corresponds to structure found in many
real-world graphs [6]. The input parameter p to MonStaGen
(Algorithm 1) was set to 0.97.

3.1 Run-time
We design two experiments to demonstrate the running

time of MonStaGen compared to gMarkGraphGen. As noted
in §2.2, the complexity of MonStaGen is slightly higher
(O(n logn) vs. O(n)). Figures 3a and 3b show the differ-
ence in the running time for both approaches. In our first
experiment (Figure 3a), we benchmark the generation of an
instance family which consists of a single graph instance of
increasing size. Here, gMarkGraphGen slightly outperforms
MonStaGen due to increased complexity required by Mon-
StaGen to satisfy the monotonicity and stability properties
of instance families.

In our second experiment (Figure 3b), we generate fam-
ilies of increasing size with ten graph instances each F =
G1, . . . , G10. In MonStaGen, for producing graph Gi+1, the
previously generated graph Gi is used, instead of generat-
ing the whole graph from scratch. We recall that sequences
generated by gMarkGraphGen do not satisfy the monotonic-
ity property.

In Figure 3b, the x-axis corresponds to the total number
of nodes in the largest graph (G10) in the generated instance.
We set the number of nodes in graph Gi to a fraction i

10
x,

where x is the total number of nodes in graph G10.
As expected, MonStaGen is slower when generating a sin-

gle graph, whereas it supersedes gMarkGraphGen when gen-
erating multiple graphs. This means that MonStaGen scales
with the number of graphs in the sequence, while gMark-
GraphGen scales with the number of nodes in the graphs.
This behavior is quite interesting and leaves open the user’s
choice of which generator to employ in a given application.

3.2 Stability of nodes in degree distribution
We next consider generation of a graph sequence F =

(G1, . . . , G10), where the total number of nodes of Gi is i ·
1000, for 1 ≤ i ≤ 10. Figure 3c shows the stability of nodes
of a single edge type with Zipfian degree distribution, as
noted above, and 0.5n subject nodes, where n is the total
number of nodes in the graph.

The nodes added in the last graph are not taken into
account, because they will always have a stability of 1.
The total number of subject nodes taken into account is
0.5 · (10 − 1) · 1000 = 4500. The stability value for all of
these nodes, calculated and sorted on such a value, is illus-
trated in Figure 3c. We can see that the stability of nodes
in MonStaGen is significantly higher than gMarkGraphGen.
The long tail, which indicates a high number of nodes with
a high stability, is the effect of a Zipfian distribution, where
a node has a very high probability of having a very low de-
gree. This means that many nodes will have a low degree in
all the graphs of the sequence, resulting in a high stability.

488

(a) Average run-time of the generation of
single graph instances. Each data point is
the average of four runs, after dropping the
highest and lowest values.

(b) Average run-time of the generation of a
graph sequence with 10 graphs with equal
increments. Averages taken as in (a).

(c) Stability comparison of all the nodes in a
Zipfian(2.5) degree distribution. A zoom of
the 210 nodes with worst stability is shown
inside the plot.

Figure 3: Experimental comparisons of gMarkGraphGen and MonStaGen.

If we consider the stability of nodes, we see that the min-
imal stability in MonStaGen is 0.9020 and the median value
is 0.9988. In the graphs generated by gMarkGraphGen, 210
nodes that have a lower stability value than our worst-case
0.9020 and 4393 nodes that have lower stability than our
median 0.9988. In other words, with gMarkGraphGen, over
97% of the nodes are more unstable than the median value
of those nodes generated with MonStaGen. The inner plot of
Figure 3c shows a zoom-in on the 210 most unstable nodes.

4. LOOKING AHEAD
In this preliminary study, we have highlighted the util-

ity of properties, such as stability, characterizing graph se-
quences rather than individual graphs. We have proposed
a first algorithm for generating graph sequences conform-
ing to a schema which satisfy the monotonicity property
and are significantly more stable than those generated using
gMark, a state-of-the-art synthetic graph generator. To our
knowledge, ours is the first schema-driven synthetic graph
generator having these properties.

Our study opens up several directions for future work. A
major direction is to establish further stability properties oc-
curring in real-world graphs, and extending our graph gener-
ation algorithm to capture these (e.g., stability with respect
to node-centrality measures). Further, in addition to edge
insertion, we plan to consider other natural aspects of graph
evolution such as edge deletion, batch updates, and tem-
poral dynamics. Finally, we would like to incorporate our
solutions in the open-source gMark framework.1

5. REFERENCES
[1] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee.

Diversified stress testing of RDF data management
systems. In ISWC, pages 197–212, Riva del Garda,
Italy, 2014.

[2] A. Arasu, R. Kaushik, and J. Li. Data generation
using declarative constraints. In SIGMOD, pages
685–696, Athens, Greece, 2011.

1https://github.com/graphMark/gmark

[3] M. Arenas, G. I. Diaz, A. Fokoue, A. Kementsietsidis,
and K. Srinivas. A principled approach to bridging the
gap between graph data and their schemas. PVLDB,
7(8):601–612, 2014.

[4] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher,
A. Lemay, and N. Advokaat. Generating flexible
workloads for graph databases. PVLDB,
9(13):1447–1460, 2016.

[5] G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher,
A. Lemay, and N. Advokaat. gMark: Schema-driven
generation of graphs and queries. IEEE Trans. Knowl.
Data Eng., in press, 2017.

[6] A. Clauset, C. R. Shalizi, and M. E. J. Newman.
Power-law distributions in empirical data. SIAM
Review, 51(4):661–703, 2009.

[7] S. Duan, A. Kementsietsidis, K. Srinivas, and
O. Udrea. Apples and oranges: a comparison of RDF
benchmarks and real RDF datasets. In SIGMOD,
pages 145–156, Athens, Greece, 2011.

[8] O. Erling et al. The LDBC social network benchmark:
Interactive workload. In SIGMOD, pages 619–630,
Melbourne, 2015.

[9] A. Gubichev and P. A. Boncz. Parameter curation for
benchmark queries. In TPCTC, pages 113–129,
Hangzhou, China, 2014.

[10] E. Lo, N. Cheng, W. W. K. Lin, W. Hon, and
B. Choi. MyBenchmark: generating databases for
query workloads. VLDB J., 23(6):895–913, 2014.

[11] Y. Luo, G. H. L. Fletcher, J. Hidders, P. D. Bra, and
Y. Wu. Regularities and dynamics in bisimulation
reductions of big graphs. In GRADES, page 13, New
York, NY, 2013.

[12] C. Mishra, N. Koudas, and C. Zuzarte. Generating
targeted queries for database testing. In SIGMOD,
pages 499–510, Vancouver, BC, 2008.

[13] S. Qiao and Z. M. Özsoyoglu. Rbench:
Application-specific RDF benchmarking. In SIGMOD,
pages 1825–1838, Melbourne, 2015.

[14] J. W. Zhang and Y. C. Tay. GSCALER: synthetically
scaling a given graph. In EDBT, pages 53–64,
Bordeaux, 2016.

489

	Stability notions in synthetic graph generation: a preliminary studyWilco van Leeuwen, Angela Bonifati, George Fletcher, Nikolay Yakovets

