
TASWEET: OPTIMIZING DISJUNCTIVE REGULAR PATH QUERIES

IN GRAPH DATABASES

Zahid Abul-Basher
University of Toronto

Toronto, Canada
zahid@mie.utoronto.ca

Nikolay Yakovets
Eindhoven University of Technology

Eindhoven, The Netherlands
hush@tue.nl

Parke Godfrey
York University

Toronto, Canada
godfrey@cse.yorku.ca

Shadi Ghajar-Khosravi
Defence Research and Development Canada

Toronto, Canada
shadi.ghajar@drdc-rddc.gc.ca

Mark H. Chignell
University of Toronto

Toronto, Canada
chignell@mie.utoronto.ca

ABSTRACT
Regular path queries (RPQs) have quickly become a staple
to explore graph databases. SPARQL 1.1 includes prop-
erty paths, and so now encompasses RPQs as a fragment.
Despite the extreme utility of RPQs, it can be exceedingly
difficult for even experts to formulate such queries. It is
next to impossible for non-experts to formulate such path
queries. As such, several visual query systems (VQSs) have
been proposed which simplify the task of constructing path
queries by directly manipulating visual objects representing
the domain elements. The queries generated by VQSs may,
however, have many commonalities that can be exploited
to optimize globally. We introduce Tasweet, a framework
for optimizing “disjunctive” path queries, which detects the
commonalities among the queries to find a globally opti-
mized execution plan over the plan spaces of the constituent
RPQs. Our results show savings in edge-walks / time-to-
completion of 59%.

1. INTRODUCTION
Military intelligence consists of collecting, analyzing, and

extracting intelligence on situations, events, and entities (e.g.,
people, places, and organizations) from different types of
data (e.g., text, video, picture, and signals) produced by
a variety of sources (e.g., human, electronic, open source,
and sensors) [2]. The goal of the intelligence is to label sus-
pected entities, relationships, and patterns of events. With
the emergence of social networks and cyber warfare, graph
database systems, especially with visual query facilities, have
become a popular choice for military intelligence, as ev-
idenced by the success of products such as Gotham by
Palentir1 and Linkurious by Neo4j.2

1https://www.palantir.com/palantir-gotham/platform/
2https://neo4j.com/developer/guide-data-visualization/

c©2017, Copyright is with the Crown and authors. Published in Proc.
20th International Conference on Extending Database Technology (EDBT),
March 21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

It has become common methodology to search for pairs
of nodes such that each pair is connected by a path—a se-
quence of labeled edges—matching a path expression ex-
pressed via a path query. For example, an analyst working
on a money laundering case might be searching financial
transactions data to find individuals who own companies
that have transferred money to businesses with investments
in off-shore companies, or individuals who work at said com-
panies. Thus, the analyst is looking for potential links from
individuals to off-shore companies matching those path spec-
ifications, as illustrated in Figure 1.

In path queries, one can specify the path of interest via
a regular expression, instead of needing to specify the path
explicitly. This is known as a regular path query (RPQ).
Given the usefulness of path queries, SPARQL 1.1 now sup-
ports them via property paths. While highly expressive, for-
mulating such queries can be exceedingly difficult, even for
experts. As such, visual query systems have been proposed
(OptiqueVQS is one such system [7]) to formulate queries
which are more user-friendly, intuitive, and less expertise-
demanding. Queries generated by VQSs may contain similar
sub-queries, and so can be further optimized. We address
one such optimization problem: optimizing disjunctive reg-
ular path queries (dRPQs); that is, a disjunction of a set of
regular path queries (RPQs). As the answer set of a dRPQ
is the union of the answer sets of the individual RPQs, one
way to evaluate it is to evaluate the RPQs independently.
One can often do better, however, by sharing evaluation of
commonalities across the RPQs. Thus, the problem is to
optimize multiple regular path queries in graph databases.

In a recent work, Yakovets et al. [11] demonstrate that
there is a rich plan space for RPQs, and that evaluation cost
can differ by orders of magnitude from one plan to another.
Their Waveguide framework is able to find the optimal ex-
ecution plan with respect to cost-based estimation over this
plan space for a given RPQ. Of course for us, when evalu-
ating a dRPQ, choosing the “locally” optimal plans for each
of the RPQs may not be globally optimal, given commonal-
ities. One might benefit then by choosing alternative plans
that take advantage of the commonalities. We introduce
Tasweet, a methodology and prototype for this. Tasweet
detects the commonalities over the RPQs (of a dRPQ), then
uses Waveguide with knowledge of the commonalities to
find an improved global execution plan (by estimated cost)
over the plan spaces of the constituent RPQs.

Poster Paper

 

 

Series ISSN: 2367-2005 470 10.5441/002/edbt.2017.47

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.47


Figure 1: A graph example in military intelligence with two queries Q1 and Q2 and their two automaton plans.

2. METHODOLOGY
A regular path query (RPQ) [4] over a graph G is a triple
〈x, reg, y〉 where x and y are free variables over the nodes
N of G, and reg is a regular expression. An answer of an
RPQ is a node-pair 〈s, t〉 (with s, t ∈ N) such that there is
a sequence of edge labels a0a1 · · · ak in G, called a path p,
between s and t, and the path p matches the given reg. Thus,
the answer set of an RPQ contains all its answers. The
RDF data model and SPARQL query language represent
these concepts. With the introduction of property paths in
SPARQL 1.1, the query language contains RPQs. Herein,
we use SPARQL syntax in explanations.

2.1 Evaluation of RPQs
An initial approach to evaluating RPQs was introduced

in G+ [4]. There, a product finite automaton (FA) is con-
structed that can be used to navigate and match paths to the
regular expression simultaneously. (This approach is nick-
named the FA approach in [11].) More recently, there has
been renewed interest in how to evaluate RPQs efficiently
in SPARQL over RDF stores [1]. Much focus has been on
expanding the relational algebra to leverage relational query
optimization and evaluation. It suffices to add an additional
operator for transitive closure (called “α”). (This approach
is nicknamed as α-RA in [11].) Virtuoso is a relational sys-
tem that has been extended in this way to support SPARQL
and RDF.

The Waveguide approach generalizes over both the FA
and α-RA approaches to provide a very rich plan space for
RPQs [11]. While the plan space is exponential (with re-
spect to the length of the regular expression), Waveguide
offers a cost-based optimization via polynomial-time enu-
meration. In Waveguide, path search is conducted simul-
taneously while recognizing the path expressions. Its input is
a graph database G and a waveplan (WP) PQ which guides
a number of search wavefronts that explore the graph. A
wavefront is a part of the plan that evaluates breadth-first
during the evaluation. Here, the graph exploration is driven

by an iterative search strategy which is inspired by the semi-
näıve bottom-up procedure used in the evaluation of linear
recursive expressions that is based on a fixpoint. The key
concept is to expand the search wavefronts continuously un-
til there are no new answers; i.e., we reach a fixpoint. Any
search wavefront is guided by an automaton in the plan,
based on a finite state machine FA.

Consider query plans for Q1, 〈x, own/transfer/invest, y〉,
as in Figure 1. Plan A captures the notion of “pipelin-
ing”. It employs a WP corresponding to a single FA that
directly encodes a recognizer for the query’s regular expres-
sion. Whereas Plan B captures the notion of “materializa-
tion”. It employs a WP that consists of two subplan au-
tomata: the first subplan (SP) is used as a view for transi-
tion over states in the second plan. Note that in the second
subplan automaton, we used a prepend transition ((·)own)
over the previous state. The cost for Plan A is 9 edge-walks
whereas for Plan B it is 11 edge-walks. In addition to these
two plans, there is also a reverse“pipelining”plan (not shown
in Figure 1) which is evaluated “backwards”, retrieving all
pairs connected by edge label invest (across such labeled
edges in reverse), then prepending with those connected by
transfer, and finally by own, with the plan cost of 12.

The Waveguide prototype implements this guided graph
search as procedural SQL on top of PostgreSQL. However,
any type of backend physical graph database model (e.g.,
triple store or adjacency lists) could be used instead.

2.2 Evaluation of Disjunctive RPQs
Instead of evaluating each RPQ individually, one may ben-

efit by sharing the results of common sub-expressions. Con-
sider the two queries as in Figure 1: Q1, 〈x, own/transfer/-
invest, y〉; and Q2, 〈x, work at/transfer/invest, y〉. The (lo-
cally) optimal automaton plans (“Plan A”) do not share any
common subplan for Q1 and Q2. If we chose sub-optimal
automaton plans (“Plan B”), however, then we can share a
common sub-plan automaton (transfer/invest) between the
evaluations of Q1 and Q2.

471



Figure 2: Tasweet Framework

3. THE FRAMEWORK
Our Tasweet framework, shown in Figure 2, takes a

dRPQD = Q1∨...∨Qn that consists of n RPQs as input over
a graph G. Its evaluation is a two-step process: identifying
common sub-expressions among queries; and then searching
for a global optimal plan such that its cost is less than the
total cost of the locally optimal plans of the corresponding
RPQs. Figure 2 shows the overall Tasweet architecture.

3.1 Detecting Commonalities
The problem of finding common sub-automata resembles

finding the maximum common subgraphs in graphs. The
problem is more difficult here, however, as we need to find
the largest common subgraphs (sub-automata) for multiple
graphs (FAs). We begin our discussion by converting the FA
equivalence problem into a graph isomorphism problem. We
then extend the concept to find the equivalent sub-automata
in FAs using sub-graph isomorphism techniques.

3.1.1 Finite Automata Isomorphism
Deterministic Finite Automata (DFA). A determin-

istic finite automaton M is a 5-tuple language acceptor ma-
chine, (S,

∑
, δ, q0, F ) where it consists of a set of states (S),

a set of input symbols called the alphabet (
∑

) and a tran-
sition function (δ : S ×

∑
→ S). There is one state that is

marked as an initial state (q0 ∈ S) and also there is a set of
states marked as accept states (F ⊆ S). Two DFAs are said
to be equivalent if they accept the same language.
Minimum Automata. A DFA M is minimal if there is

no other DFA N that is equivalent to M with fewer states
than M . A DFA M is minimal if (i) all its states can be
reached from the initial state q0 and (ii) no two equiva-
lent states exist. (Two states q1 and q2 are equivalent if
for all x ∈

∑∗, δ(q1, x) ∈ F iff δ(q2, x) ∈ F .) All mini-
mal DFAs for a language L are isomorphic; i.e., they have
identical transitions with the same number of states (by the
Myhill-Nerode Theorem [5]). By corollary, when joining two
minimum DFAs, the structure of the new DFA remains the
same. Therefore, we can use the techniques of detecting the
maximum common edge subgraph (MCES) to identify the
common sub-automata among minimum DFAs; hence, the
commonalities among RPQs.

3.1.2 Maximum Common Subautomaton
Most solutions of MCES problem only consider non-labeled

edges and nodes in undirected graphs. We adopt the solution
from [6] to detect common sub-automata. This has three
steps: transforming labeled-graphs into the equivalent line-
graphs; producing a product graph from the line-graphs; and
detecting the maximal cliques in the product graph, which
correspond to MCESs (therefore, common sub-automata).

Constructing Linegraphs. The linegraph L(G) of a
graph G is a directed graph where each edge (with label)
in original G becomes a node (with the same edge label) in
L(G). Two nodes in L(G) are connected with an edge if their
corresponding edges in original G share a common node. In
the original G, this common node can be an incoming or
an outgoing node for two connected edges. That is, it can
have four different possibilities depending on the directions
of connected edges: source-destination, destination-source,
source-source, and destination-destination. Therefore, dur-
ing our linegraph construction, we store the directions of
edges of the common node as edge labels in L(G). Before
the construction of linegraphs, we removed all the self-loops
in the automaton by creating additional transitions with an
additional state. This process is necessary for the next step,
clique detection. (Most algorithms for detecting cliques only
work with non self-loop graphs.)

Constructing Product Graph. The product graph
L(Gp) of two linegraphs, L(G1) and L(G2), is constructed as
follows [8]. The nodes Np in L(Gp) are node-pairs defined in
the Cartesian product of N1 of L(G1) and N2 of L(G2). In
constructing Np, we only consider node-pairs that have the
same node label of the corresponding linegraphs L(G1) and
L(G2). The two node-pairs in Np have an edge in L(Gp)
if either (i) the same edges exist between the correspond-
ing nodes in the original linegraphs (called a strong connec-
tion), or (ii) no edges exist between the corresponding nodes
(called a weak connection). To reduce the size of the product
graph, we remove all nodes with non-common labels among
the linegraphs and then build the product graph recursively.

Maximal Cliques in Product Graph. We used the
Bron-Kerbosch Algorithm [3] to find all the maximal cliques
in the product graph. A maximal clique with a tree that
covers strong connections in the product graph corresponds
to a maximal common sub-automaton within a group of FAs.

Query Rewriting. A regular expression reg can be rec-
ognized by several FAs. For example, although the two
FAs for the two regular expressions reg1 = (xy)∗xz and
reg2 = x(yx)∗z are same but the plan space may differ,
depending on the chosen FA. In this step, we rewrite FAs
based on their shared common sub-automata.

3.2 Global Optimization
In Waveguide, finding the optimal plan for an RPQ is

done by dynamic programming, analogous to join enumera-
tion in System R. It works bottom-up to construct a tree
which represents the plan. At each level, an optimal plan
is selected according to a cost objective; for here, the es-
timated number of edge-walks. This is calculated based
on statistics of the graph (e.g., n-gram distributions of the
edge labels). In Tasweet, after detecting the common sub-
automata, the locally optimal plans for each of them are
found by Waveguide. These plans for the common sub-
automata then serve as “black-box” views during a second
pass with Waveguide to plan each RPQ. The cost of each

472



black-box shared plan is treated as its actual estimated cost
divided by the number of queries which share that common
sub-automaton. While this is a simplistic, greedy approach,
it suffices well for the proof of concept for our methodology.
(Immediate future work is to improve this integration of the
Tasweet frontend and the Waveguide backend to provide
guarantees on the global optimality.)

4. RESULTS & DISCUSSIONS
We provide a preliminary benchmark of our Tasweet

framework by considering the optimization of a dRPQ D
which models a typical military intelligence workload: D
disjoins seven realistic, related RPQs—shown in Table 1—
over the encyclopedic dataset YAGO2s [9].

Q

1 ?p isMarriedTo/livesIn/isLocatedIn+/dealsWith+ Argentina
2 ?p hasChild/livesIn/isLocatedIn+/dealsWith+ Japan
3 ?p influences/livesIn/isLocatedIn+/dealsWith+ Sweden
4 ?p livesIn/isLocatedIn+/dealsWith+ United States
5 ?p hasSuccessor/livesIn/isLocatedIn+/dealsWith+ India
6 ?p hasPredecessor/livesIn/isLocatedIn+/dealsWith+ Germany
7 ?p hasAcademicAdvisor/livesIn/isLocatedIn+/dealsWith+ Netherlands

Table 1: Queries used in a military-intelligence dRPQ D.

Query D finds people-country pairs such that the people
related to locations or organizations which have connections
with given countries. Tasweet correctly identified a shared
sub-plan across all the RPQs in D, “livesIn/isLocatedIn+/-
dealsWith+”. Table 2 shows the difference in the number of
edge walks between executing plans in isolation by Wave-
guide, and as a dRPQ by Tasweet. (Note that fewer edge
walks performed result in proportionally faster execution.)

Q Tasweet WaveGuide ∆

1 260 39827 +39373
2 2288 24525 +22178
3 226 33397 +33046
4 4563 269495 +264932
5 2258 40924 +38379
6 4572 42261 +37610
7 4608 7185 +3827
Shared 269895 - -269895
Total 288670 457614 +169450 (+59%)

Table 2: Deltas in number of edge walks.

None of the (locally) optimal plans for the RPQs of D
evaluate the shared expression (as a sub-plan). Thus, its
evaluation is extra work. (This is Shared in Table 2.) But
as its materialization can be used by each of the RPQs, it
significantly speeds up evaluation of D overall. Execution of
the locally optimal plans cost 59% more edge walks over the
execution over the globally optimal plans that materialize
and share their common sub-expression. This is excellent
proof of concept for our methodology.

For future work, we have clear objectives. First is to
develop more robust, efficient means for global optimiza-
tion. Our second objective is to extend Tasweet to cluster
RPQs that arrive together in an application to maximize the
commonalities per group. This project is a small step in a
grander project to optimize well graph queries. Disjunctive
RPQ are a logical step between single RPQs and conjunctive
RPQs (cRPQs). Thus, our third objective is to extend the
Tasweet / Waveguide framework for optimizing cRPQs.

5. CONCLUSIONS
We have presented a proof of concept to show that by ex-

ploiting commonalities across RPQs which are meant to be
evaluated “in batch” with their answer sets to be unioned—
thus, a disjunction of RPQs (a dRPQ)—that their eval-
uation can be globally optimized significantly beyond lo-
cally optimized evaluation of each independently. To do
this is challenging. First, the commonalities must be effi-
ciently found. We have developed how to do this, which
we overviewed above. Second is how to push down reason-
ing about them into the cost-based optimizer (e.g., Wave-
guide). Our initial experimentation demonstrated a signif-
icant improvement of 59%.

6. REFERENCES
[1] W3c: Resource description framework (rdf).

http://www.w3.org/TR/rdf-concepts/,2004.

[2] S. G. Hutchins, P. Pirolli, and S. Card. Use of critical
analysis method to conduct a cognitive task analysis
of intelligence analysts. In Proceedings of the Human
Factors and Ergonomics Society Annual Meeting,
volume 47, pages 478–482. SAGE Publications, 2003.

[3] I. Koch. Enumerating all connected maximal common
subgraphs in two graphs. Theoretical Computer
Science, 250(1):1–30, 2001.

[4] A. O. Mendelzon and P. T. Wood. Finding regular
simple paths in graph databases. SIAM Journal on
Computing, 24(6):1235–1258, 1995.

[5] A. Nerode. Linear automaton transformations.
Proceedings of the American Mathematical Society,
9(4):541–544, 1958.

[6] J. W. Raymond and P. Willett. Maximum common
subgraph isomorphism algorithms for the matching of
chemical structures. Journal of computer-aided
molecular design, 16(7):521–533, 2002.

[7] A. Soylu, M. Giese, E. Jiménez-Ruiz, E. Kharlamov,
D. Zheleznyakov, and I. Horrocks. Optiquevqs:
towards an ontology-based visual query system for big
data. In Proceedings of the Fifth International
Conference on Management of Emergent Digital
EcoSystems, pages 119–126. ACM, 2013.

[8] P. Vismara and B. Valery. Finding maximum common
connected subgraphs using clique detection or
constraint satisfaction algorithms. In Modelling,
Computation and Optimization in Information
Systems and Management Sciences, pages 358–368.
Springer, 2008.

[9] YAGO2s: A high-quality knowledge base.
http://yago-knowledge.org/resource/. Max Planck
Institut Informatik.

[10] N. Yakovets, P. Godfrey, and J. Gryz. WAVEGUIDE:
evaluating SPARQL property path queries. In
Proceedings of the 18th International Conference on
Extending Database Technology, EDBT 2015,
Brussels, Belgium, March 23-27, 2015., pages
525–528, 2015.

[11] N. Yakovets, P. Godfrey, and J. Gryz. Query planning
for evaluating SPARQL property paths. In Proceedings
of the ACM SIGMOD International Conference on
Management of Data, pages 1–15, San Francisco, CA,
USA, June 2016.

473


	TASWEET: Optimizing Disjunctive Path Queries in Graph DatabasesZahid Abul-Basher, Nikolay Yakovets, Parke Godfrey, Shadi Ghajar-Khosrav, Mark Chignell

