
SPST-Index: A Self-Pruning Splay Tree Index for Caching
Database Cracking

Pedro Holanda
UFPR, Brazil

pttholanda@inf.ufpr.br

Eduardo Cunha de Almeida
UFPR, Brazil

eduardo@inf.ufpr.br

ABSTRACT
In database cracking, a database is physically self-organized
into cracked partitions with cracker indices boosting the ac-
cess to these partitions. The AVL Tree is the data struc-
ture of choice to implement cracker indices. However, it is
particularly cache-inefficient for range queries, because the
nodes accessed only for a few times (i.e, “Cold Data”) and
the most accessed ones (i.e, “Hot Data”) are spread all over
the index. In this paper, we present the Self-Pruning Splay
Tree (SPST) data structure to index database cracking and
reorganize “Hot Data” and “Cold Data” to boost the ac-
cess to the cracked partitions. To every range query, the
SPST rotates to the root the nodes pointing to the edges
and to the middle value of the predicate interval. Eventu-
ally, the most accessed tree nodes remain close to the root
improving CPU and cache activity. On the other hand, the
least accessed tree nodes remain close to the leaves and are
pruned to improve updates. Our experimental evaluation
shows 37% more Instructions per Cycle and 75.9% less cache
misses in L1 for lookup operations in the SPST compared
to the AVL tree. Our data structure outperforms the AVL
tree for lookups and maintenance costs in three major data
access patterns: random, sequential and skewed. The SPST
outperforms the AVL in 4% even in the worst case scenario
with mixed workloads with lookups and batch updates.

Keywords
Database Cracking, Cracker Index, Splay Tree

1. INTRODUCTION
Database Cracking [6] presents a self-organizing database

partitioning for column-oriented relational databases. It
works by physically self-organizing database columns into
partitions, called cracked pieces. The goal is to create cracked
pieces for all accessed intervals of range queries. Cracker in-
dices are created to keep track of these partitions.

An index is a data access method that typically stores a
list of pointers to all disk blocks that contain records to the

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

indexed column. The values in the index are ordered to make
binary search possible. It is smaller than the data file itself,
so searching the index using binary search is reasonably ef-
ficient [2]. In contrast to usual indices in the literature, the
nodes of a cracker index do not point to all the disk blocks
of a column. Instead, they point to the beginning of each
cracked piece to boost access to an interval of values.

The current data structure implemented as cracker index
is the self-balancing AVL Tree [1], where the height of the
adjacent children subtrees of any node differ by at most one.
If in a given moment their height differs by more than one,
the tree is rebalanced by tree rotations. As the index is
created by incoming queries, the index starts to be filled
with pointers to data keeping the self-balancing property
of the tree height. However, this property makes the AVL
tree particularly cache-inefficient. The tree nodes accessed
only for a few times (i.e, “Cold Data”) and the most accessed
ones (i.e, “Hot Data”) are spread all over the index. Another
concern lies in the index size as “Cold Data” are kept in the
index. Eventually, the cracker index converges to a full index
(i.e, all values indexed) with high administration costs for
high-throughput updates.

In this paper, we present a data structure called Self-
Pruning Splay Tree (SPST) to index database cracking and
keep “Hot Data” close to the root of the tree. The SPST
is based on binary search Splay trees with a self-adjusting
property carried out by the splaying operation. Splaying
consists of a sequence of rotations to move a node way up
to the root of the tree. To every range query, our algorithm
rotates the nodes pointing to the edges and to the middle
value of the predicate interval. With “Hot Data” constantly
rotated, they eventually remain close to the root. On the
other hand, “Cold Data” are stored close to the leaves pre-
senting the opportunity to prune them out of the index and
improve maintenance and update costs.

This paper is organized, as follows: Section 2 discusses
related work. Section 3 presents our Cracker Index followed
by the experiments in Section 4 and we conclude in Section 5.

2. STANDARD DATABASE CRACKING AND
RELATED WORK

There are two Database Cracking algorithms: crack-in-
two and crack-in-three to split the columns into two and
three partitions respectively. The first one is suited for one-
sided range queries (e.g, V1 < A) or two-sided range queries
(e.g, V1 < A < V2) where each side accesses different cracked
pieces. The second one is only for two-sided queries that
access the same cracked piece. It starts with similar per-

Poster Paper

 

 

Series ISSN: 2367-2005 458 10.5441/002/edbt.2017.44

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.44


Figure 1: Database Cracking when executing two
queries with different ranges [8]

formance of full column scan and overtime gets close to the
performance of a full index.

Figure 1 depicts query Q1 triggering the creation of the
cracker column Ackr, (i.e., initially a copy of column A)
where the tuples are clustered in three pieces reflecting a
crack-in-three iteration from the range predicate of Q1. The
result of Q1 is then retrieved as a view on Piece 2 (i.e.,
indexing 10 < A < 14). Later, query Q2 requires a refine-
ment of Pieces 1 and 3 (i.e., respectively indexing A > 7
and A ≤ 16), splitting each in two new pieces resulted by a
crack-in-two iteration.

There are many data structures in the literature to keep
track of data partitions. In database cracking the AVL is
the data structure of choice, but other self-balancing trees,
like RedBlack or 2-3 trees, draw the same result. These
trees have the property of keeping the height of the tree for
self-balancing purposes. However, this property makes them
cache-inefficient for range queries. The tree nodes accessed
only for a few times and the most accessed ones are spread
all over the tree.

3. THE SPST-INDEX
Our contribution regards recognizing “hot data” to im-

prove data access and recognizing “cold data” to prune un-
used data and boost updates.

3.1 Splaying
A Splay Tree [9] is a self-adjusting binary search tree that

uses a splaying technique every time a node is Searched, Up-
dated, Inserted or Deleted. Splaying consists of a sequence of
rotations that moves a node to the root of the tree. Lookup,
Insertion and Deletion take O(logn) time in the average and
worst case scenarios, where n is the number of nodes in the
Splay Tree. It clusters the most accessed nodes near the root
of the tree. Therefore, the most frequent accessed nodes will
be accessed faster. Since we are dealing with range queries,
our goal is to splay the query range, instead of splaying only
one node like the original splay tree. The self-adjustment
algorithm in our data structure is straightforward: we first
splay the leftmost node of the range, then the rightmost
node and later the closest node to the middle.

Let us consider for cracker index the SPST depicted by
Figure 2. If a range query of 1 < A < 5 is executed, the

8

5

3

2

1

4

6

7

11

9

10

12

(a) The SPST before the
incoming query 1 < A < 5

3

1

2

5

4 8

6

7

11

9

10

12

(b) The SPST after Splay-
ing nodes 1, 5, and 3

Figure 2: The SPST splaying the range 1 < A < 5

20

10

5 15

30

25 35

(a) The SPST before
pruning the leaves

20

10 30

(b) The SPST af-
ter pruning the
leaves

Figure 3: The SPST with size n = 7 being pruned.

algorithm performs three operations: Splay (1), Splay (5)

and Splay (
⌈ (1+5)

2

⌉
). Figure 2(b) depicts the resulting tree

with nodes 1, 3 and 5 close to the root. In the SPST, the
nodes remain close to the root as long as they are frequently
accessed. In our index, the nodes pointing to the most ac-
cessed cracked pieces remain close to the root.

3.2 Pruning
Besides speeding up the access to hot data, another goal

is to speed up updates and maintenance costs when rotating
hot data. We assume that eventually the nodes stored at the
leaves point to cold data. The maintenance strategy of our
data structure is to prune the leaves. As we prune them, the
update time is expected to shrink. The downside of pruning
the tree is that the following queries can become slightly
more expensive compared to the situation where we do not
have any pruning at all. Our hypothesis is that we mitigate
this cost with the gains in the update time. When we prune
the leaves, the size of the index shrinks, in the best case, to⌊
n
2

⌋
, where n is the number of nodes in the SPST.

Let us suppose the SPST index depicted by Figure 3(a).
In this scenario the most frequent range is between 10 and
30. Let us suppose inserting the value 21 in the Cracker
Column. To do this, we need to update the nodes 35, 30
and 25 respective pointers to the cracker column and merge
at their respective cracker column pieces. Instead, we start
pruning the leaves having as result the tree depicted by Fig-
ure 3(b). Then we only need to update the pointer to the
cracked piece of node 30.

4. EXPERIMENTAL ANALYSIS
In this section, we discuss the results of our experimen-

tal evaluation of the SPST implemented as a cracker index.
We divide this section in two subsections, the first one is
related to the select operator where we performed the same

459



(a) Random (b) Sequential (c) Skewed

Figure 4: Workload Patterns

experimental protocol and ran the same lookup scenarios
described in [8]. The second one is related to the update sce-
nario where we performed the same experimental protocol
and ran the same scenarios described in [4]. We implemented
our data structure and performed all the experiments using
the database cracking simulator1 presented by [8]. We ran
the experiments on a MacOS Sierra (10.12) machine with
2.2GHz quad-core Intel Core i7 processor (Turbo Boost up
to 3.4GHz), 6MB shared L3 cache and 8 GB of RAM.

For the select operator, we focused our analysis on the
accumulated index lookup time for querying and indexing,
and the accumulated index update time. In particular, we
analyzed the Instructions per Cycle (IPC) and the cache
misses (L1/2/3). We consider as the best cache-efficient data
structure the one with the highest IPC and lowest number
of cache misses.

For the update operator, we considered two update sce-
narios: low frequency high volume updates (i.e, LFHV), and
high frequency low volume updates (i.e, HFLV). In the first
scenario after 1,000 queries a batch of 1,000 updates are ex-
ecuted. In the second scenario after 10 queries a batch of 10
updates are executed. The query pattern and the updates
are both random. The SPST prunes itself always before a
batch update if the previous queries present a standard devi-
ation, for cracking time, lower than a defined threshold. We
focused our analysis only on measurements that are affected
by update and pruning (i.e, cracking time, index update
time, cracker column shuffle time and pruning time).

We use an integer array with 108 uniformly distributed
values. The workload size and the query selectivity is 1,000
and 1 for all experiments. All query predicates are of the
form: R.A ≥ V1 AND R.A < V2. We repeat the entire work-
load 5 times and take the average runtime of each query. We
consider three different workloads depicted by Figure 4. For
each workload, we graphically illustrate how a sequence of
1, 000 queries accesses the domain value of a single attribute.
For each query, we plot the two edges of the interval (i.e.,
called “Query Predicate Sequence”). The random, sequen-
tial and skewed workloads are respectively depicted by Fig-
ures 4(a), 4(b), and 4(c). The skewed workload is generated
by the zipf’s law with α equals to 2.0.

4.1 Select Operator
Figure 5 depicts the accumulated index lookup and main-

1The cracker index simulator, written in C/C++ and
compiled with G++ v.4.7, is available at: www.infosys.
uni-saarland.de/research/publications.php

Tree L1 L2 L3 IPC
Random

AVL 1108508606 4972838130 252404784 1.094
SPST 267097844 3957313535 135615510 1.385

Sequential
AVL 855925856 10890330930 412469096 1.234
SPST 711228747 10479242239 399344564 1.263

Skewed
AVL 573854301 3800678199 176536452 1.160
SPST 256760334 3780063118 128213328 1.600

Table 1: Cache Misses and IPC by workload

tenance time for the query stream in the random, sequential
and skewed workload. For random, the AVL Tree was faster
than the SPST for the first 180 queries, because the ran-
dom workload demanded a higher number of rotations in
the SPST to settle down the range pattern close to the root.
With more incoming queries the SPST started to leverage
the cached nodes from the root running the 1, 000th query
21.5% faster than the AVL Tree (see Figure 5(a)).

The sequential pattern was the worst case scenario for the
SPST, but still the SPST was 7% faster than the AVL Tree
at the 1, 000th query (see Figure 5(b)). The worst case sce-
nario was the result of many changes in the range predicate
of the sequential pattern that required splaying many nodes
from the leaves. Over time the SPST mitigated these ro-
tations with 16.9% less cache misses compared to the AVL
(see Table 1). The skewed pattern was the best case sce-
nario for the SPST, being 37% faster than the AVL Tree at
the 1, 000th query (see Figure 5(c)). The best case scenario
was the result of a skewed workload, achieving an IPC 37%
higher. (see Table 1).

4.2 Update Operator
Figures 6(a) and 6(b) depicts the accumulated cracking

and update time for the query stream of 10, 000 queries in
the HFLV and LFHV scenarios respectively. In both, the
SPST achieves the lowest run time. Every time the tree
is pruned, updates are boosted but cracking becomes more
expensive since we have less nodes to update, but bigger
pieces of the cracker column to scan. The SPST was able to
prune at convenient moments minimizing the extra crack-
ing cost and greatly boosting update time. For HFLV, we
defined empirically a standard deviation of 0.2 milliseconds
and for LFHV 200 milliseconds. These values differ because
for HFLV it is only analyzed the standard deviation for 10
queries previous to a batch update, while for LFHV 1,000
queries are analyzed. For HFLV, the SPST was pruned only

460



(a) Random Workload (b) Sequential Workload (c) Skewed Workload

Figure 5: Sum of Lookup for Querying and Indexing, and Insertions Time in Various Workloads

(a) HFLV

(b) LFHV

Figure 6: Total time for cracking and updates

once, and was 4% faster than the AVL Tree. For LFHV, the
SPST was 5% faster, pruning the tree 8 times and having
around 25% of the total size of a full AVL Tree. We observed
more rotations in the SPST than in the AVL tree. However,
the rotations in the SPST presented less impact in response
time compared to the ones in the AVL Tree. While in the
SPST the rotations happened most frequently near the root
with less cache misses in L1/2/3 and higher IPC, the AVL
Tree spanned many rotations usually close to the leaves of
the index to rebalance the tree with many unnecessary tree
nodes polluting the cache (see Table 1 cache misses).

5. CONCLUSION
This work presented the SPST as a cracker index for

database cracking. We explored the Standard Cracking al-
gorithm for select and mixed workloads with three different
synthetic patterns where the SPST outperforms the AVL
Tree in all scenarios. The SPST was able to cache the most
frequently accessed data near to the root reducing cache

misses and achieving a higher IPC than the AVL.
In future work, we will compare the SPST with other

main-memory index structure for efficiently executing queries
on modern processors, like, the recent proposed ART-Tree
and Cache-Sensitive Skip List. Our SPST implementation
follows the classic splay tree structure, but there are many
rotation and pruning strategies that can be explored to im-
prove response time, like, freezing the top of the SPST to
diminish the rotations. Furthermore, we focus the SPST
on standard cracking. However, there are other cracking
approaches in the literature to be explored in future work,
like: Hybrid Cracking[7], Sideways Cracking[5] and Stochas-
tic Cracking[3].

Acknowledgments
This work was partly funded by the CNPq Universal, grant
441944/2014-0.

6. REFERENCES
[1] J. Bell and G. Gupta. An evaluation of self-adjusting

binary search tree techniques. Software: Practice and
Experience, 23(4):369–382, 1993.

[2] Elmasri and Navathe. Fundamentals of Database
Systems. Pearson, 2007.

[3] F. Halim, S. Idreos, P. Karras, and R. H. Yap.
Stochastic database cracking: Towards robust adaptive
indexing in main-memory column-stores. VLDB,
5(6):502–513, 2012.

[4] S. Idreos, M. L. Kersten, and S. Manegold. Updating a
cracked database. In SIGMOD, pages 413–424, 2007.

[5] S. Idreos, M. L. Kersten, and S. Manegold.
Self-organizing tuple reconstruction in column-stores.
SIGMOD, pages 297–308, 2009.

[6] S. Idreos, M. L. Kersten, S. Manegold, et al. Database
cracking. In CIDR, volume 3, pages 1–8, 2007.

[7] S. Idreos, S. Manegold, H. Kuno, and G. Graefe.
Merging what’s cracked, cracking what’s merged:
adaptive indexing in main-memory column-stores.
VLDB, 4(9):586–597, 2011.

[8] F. M. Schuhknecht, A. Jindal, and J. Dittrich. The
uncracked pieces in database cracking. VLDB,
7(2):97–108, 2013.

[9] D. D. Sleator and R. E. Tarjan. Self-adjusting binary
search trees. Journal of the ACM (JACM),
32(3):652–686, 1985.

461


	SPST-Index: A Self-Pruning Splay Tree Index for Caching Database CrackingPedro Holanda, Eduardo Cunha de Almeida

