
I2: Interactive Real-Time Visualization for Streaming Data

Jonas Traub
Technische Universität Berlin

jonas.traub@tu-berlin.de

Nikolaas Steenbergen
German Research Center for
Artificial Intelligence (DFKI)

nikolaas.steenbergen@dfki.de

Philipp M. Grulich
German Research Center for
Artificial Intelligence (DFKI)

philipp.grulich@dfki.de

Tilmann Rabl
Technische Universität Berlin

rabl@tu-berlin.de

Volker Markl
Technische Universität Berlin

volker.markl@tu-berlin.de

ABSTRACT
Developing scalable real-time data analysis programs is a
challenging task. Developers need insights from the data to
define meaningful analysis flows, which often makes the de-
velopment a trial and error process. Data visualization tech-
niques can provide insights to aid the development, but the
sheer amount of available data frequently makes it impossi-
ble to visualize all data points at the same time. We present
I2, an interactive development environment that coordinates
running cluster applications and corresponding visualiza-
tions such that only the currently depicted data points are
processed and transferred. To this end, we present an al-
gorithm for the real-time visualization of time series, which
is proven to be correct and minimal in terms of transferred
data. Moreover, we show how cluster programs can adapt
to changed visualization properties at runtime to allow in-
teractive data exploration on data streams.

1. INTRODUCTION
The amount of available real-time data increases rapidly

with the growth of the Internet of Things. Such data is pro-
vided in the form of continuous data streams and includes
various kinds of information such as stock prices, Twitter
messages, Wikipedia edits, weather data, and GPS posi-
tions. Systems such as Apache Spark and Storm can pro-
cess huge amounts of data with low latencies in a cluster to
provide real-time analysis. Nevertheless, the development
of analysis programs for these platforms remains a complex
task, which requires insights about the processed data.

A visualization of the incoming datastream can provide
such insights, but visualizing big data in real-time is a chal-
lenge itself. Since display capabilities are limited to a cer-
tain plot resolution (height and width of the screen) and
local processing capabilities (e.g., a browser), it is usually
impossible to show all individual data points from a high
bandwidth data stream. For example, even though a time
series may consist of 2000 measurements per second, the vi-
sualization of a second in a line chart is limited to a certain

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

amount of pixel columns. Thus, a user has to trade off be-
tween the length of the shown history (time span covered
on the time axis) and the resolution of the provided plot
(available pixel columns per time) as shown in Figure 1a.

Interestingly, it is proven that the amount of data which
is required to plot a correct line chart depends only on the
number of pixel columns and not on the data. Jugel et al. [8]
derive standard SQL queries from a given plot resolution and
provide a loss-free plot from only four values per pixel col-
umn which reduces the computational load of the system.
We show how the same values can be computed in a parallel
dataflow program to allow the live visualization of incom-
ing streaming data. Additionally, we take care of differences
between event time and processing time as well as tuples ar-
riving out-of-order, which makes processing streaming data
a more complex task.

We integrate the efficient live visualization of time series
as line chart together with other types of visualizations in
I2, our interactive development environment which connects
distributed data analysis programs with the visualization of
the results.1 The name I2 emphasizes two types of interactiv-
ity: (i) through code changes and (ii) through an interactive
visualization GUI. With I2, developers can change and de-
ploy the code of analysis pipelines and corresponding result
visualizations in a one-click fashion. Moreover, running ap-
plications adapt to changes in the visualization, e.g., if the
user zooms into a map, and ensure that only the data points
which are depicted in the current visualization are processed
and transferred towards the front end. As a result, I2 de-
creases the workload in the cluster backend as well as the
visualization front end. Summarizing, our contributions are:

1. We present an interactive environment for visualiza-
tion supported development of streaming cluster ap-
plications.

2. We show that our solution significantly reduces the
amount of processed and transferred data while still
providing loss-free visualizations.

3. We provide an algorithm for the live visualization of
time series in line charts, which is proven to be correct
and minimal in terms transferred data.

In our demonstration, we use I2 for real-time event-based
sport analytics. We therefore explore a data set from the
DEBS 2013 Grand Challenge [10] consisting of more than
2.6 GB sensor data recorded at a football match with up to
2000Hz sampling rates. The data provides detailed real-time
information about all players as well as the ball.
1https://github.com/TU-Berlin-DIMA/i2

Demonstration

 

 

Series ISSN: 2367-2005 526 10.5441/002/edbt.2017.61

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.61


(a) The tradeoff between depicted
history and plot precision.

(b) The M4 aggregation
technique for time-series data.

(c) Deriving a stream data flow program for the real-time
visualization of time-series data with M4.

Figure 1: Efficient real-time visualization of time series data.

Related Work. In contrast to existing data exploration
techniques [7], our demonstration combines three function-
alities within a single environment: (i) the rapid develop-
ment and deployment of cluster applications with streaming
data, (ii) the automatic adaptation of running cluster jobs
to changed visualization properties, and (iii) the efficient
reduction of data to prevent overload of the visualization
front-end. While other solution require an additional in-
termediate layer between database and visualization [4], I2

directly integrates into data analysis applications. Other
approaches like [1, 2, 9, 12] use sampling strategies for fast
visualizations of huge amounts of data, but as opposed to I2

disregard physical display properties and do not cover live
plots of streaming data. Wu et al. [14] take into account vi-
sualization properties and automatically derive SQL-queries,
but use a domain specific language. In contrast, I2 works
with any query language integrated in Apache Zeppelin.

In the remainder of this paper, we first present our so-
lution for the visualization of time-series in line charts in
Section 2. We then present the over-all architecture of I2 in
Section 3 and our demonstration in Section 4.

2. VISUALIZATION OF TIME SERIES
High volume time series data is omnipresent in many do-

mains such as banking, weather data, facility monitoring, or,
as in our demonstration, sport analytics. A naive approach
for the visualization of time series would send all available
data points towards the front end, which causes the visual-
ization to crash in case the amount of input data increases as
we will show in Section 4. The M4 aggregation technique [8]
overcomes this limitation and constantly transfers just four
values per pixel column. Furthermore, M4 is proven to pro-
vide loss-free plots compared to plots of the original data.

Figure 1b illustrates the functioning of the M4 aggrega-
tion. For each pixel column, M4 finds the minimum and
maximum value as well as the first and the last value (mini-
mum and maximum timestamp). All pixels which are crossed
by the line connecting the extracted data points are colored
and thus become foreground pixels. The intuitive approach
to take only the minimum and maximum values into consid-
eration would be insufficient. This would result in the red
dotted line in Figure 1b and cause the pixel errors E1, E3
(wrongly colored) as well as E2 (not colored).

In I2, we want to visualize streaming data in real-time.
While M4 only considers finite data stored in a relational
database, the real-time requirement adds several new chal-
lenges: instead of standard SQL queries, we now need par-

allelizable processing pipelines. Due to network delays and
failures, there might be a gap between event time (the point
in time a measure is taken) and processing time (the point
in time the data is processed). Since data points may ar-
rive out-of-order, we can never guarantee that the data for
a pixel column is complete and possibly need to update past
pixel columns in case of delayed input data. We address
these challenges, as we derive a complete stream processing
pipeline from a given plot resolution and the length of the
depicted history as shown in Figure 1c. The pipeline mainly
consists of four steps each of which can be executed as an
operator with possibly multiple parallel instances.

Watermarks. Watermarks flow through the pipeline
alongside the regular data and propagate the progress of
event time. A watermark of time tw means that no later
processed event will have a timestamp te < tw. We input
watermarks at the data source of our pipeline to mark the
smallest timestamp which is still covered by the live plot.
Hence, we update pixel columns in case data arrives out-of-
order. However, we avoid unnecessary processing of out-of-
order data which arrives so late that the corresponding pixel
column of the live chart is no longer displayed.

Windowing. We apply a time window function which
splits the stream into finite data chunks spanning the time
of one pixel column. We then compute the M4 aggregates
over these windows and respectively for each pixel column.
For the lack of space, we omit further details about the pro-
cessing of out-of-order events and refer the reader to [5].

Value compression. Finally, we map the results of the
aggregation to the value space of the y-axis which allows us
to represent each value with less bytes.

10 20 30 40 50 60
0

400

800

1,200

depicted history [sec.]d
at
a
tr
a
n
sf
er

[b
y
te
s/
se
c.
]

M4
M4 compressed
100Hz raw data
200Hz raw data
300Hz raw data

Figure 2: The required bandwidth for an 800x600px plot.

Figure 2 shows the savings in the input bandwidth of the
visualization assuming an 800x600px plot showing 4 byte
integer values. Note that the bandwidth required by M4 is
independent from the frequency of the underlying raw data
and solely depends on the length of the depicted history. The
longer the depicted history, the more data is aggregated into
one pixel column, which causes the required bandwidth to

527



Figure 3: I2 architecture overview.

decrease. In the next section, we show how our streaming
ready M4 aggregation pipeline is integrated into the overall
architecture of the I2 development environment.

3. I2 DEVELOPMENT ENVIRONMENT
The I2 development environment aims to seamlessly con-

nect live data visualization with the development of stream-
ing data analysis pipelines. We, therefore, directly link a
development environment and result visualizations within
in a single front end (Figure 3). Developers can deploy data
analysis pipelines as well as visualizations in a one-click fash-
ion. While the visualization is provided within the same
GUI as the code editor, the analytics pipeline is deployed
on an Apache Flink cluster to be capable of processing high
bandwidth streams in parallel.

Apache Flink [3, 5] is an open source platform for big
data batch and stream processing. The basis of Flink is a
fault tolerant execution engine. Programs are represented as
operator graphs and the full processing pipeline is executed
concurrently. Thus, the output tuples of an operator can be
processed immediately by succeeding operators. Flink al-
lows operators to have state. An asynchronous snapshot al-
gorithm [6] ensures exactly once processing guarantees even
in case of failures. Flink fits perfectly to I2 since we need
stateful operators to store current visualization parameters
and low latency processing to quickly adapt running jobs to
changes.

Apache Zeppelin. The I2 front end is based on Apache
Zeppelin, but was extended to support automatic data re-
duction depending on current visualization parameters. In
general, Zeppelin aims to support quick development of pro-
grams, enabling interactive analytics in web based note-
books. It is similar to IPython [11], but focuses on large
scale datasets and distributed computing. Zeppelin note-
books are data driven, interactive, and can be edited collab-
oratively by multiple users. Moreover, Zeppelin supports a
variety of execution back ends. Zeppelin is not limited to
classical dashboards; it also allows to develop source code,
submit jobs directly to the cluster, and retrieve results im-
mediately.

Runtime Adaptive Operators. I2 informs running
Flink jobs about changes of the visualization parameters.
For example, if the user zooms into a map or changes the
length of the depicted history of a time series plot. The run-
ning cluster program has to adapt to such changes with low
latency in order to immediately provide the required data
for the visualization. Since a redeployment of a job in the
cluster can take more than a minute, we need to adapt jobs
at runtime.

We push changes of the visualization parameters as con-
trol messages in a separate stream to the running Flink job.
Only the type of an operator (e.g., filter or aggregation) is

Figure 4: A runtime adaptive filter operator for variable
thresholds in Apache Flink.

defined a priori, while we allow to adjust the parameters of
the operator (e.g., filter predicate or aggregate function) on
the fly at runtime. We use Flink’s CoMap operators to pro-
cess the control messages and the actual data points together
in a shared runtime adaptive operator.

Flink’s CoMap operators consume two input streams while
input items from each stream are processed by separate
user defined functions (UDFs). Nevertheless, both UDFs
can access a shared operator state which is used to commu-
nicate between them. Figure 4 shows how we can utilize
a CoFlatMap operator to adapt to changed properties: in
this example, one input stream consists of control messages
containing changes to the threshold of a filter operation.
The responsible UDF saves the current threshold as oper-
ator state (Figure 4, 1). Each value from the actual data
stream is compared to the currently stored threshold and
all smaller values are filtered out (Figure 4, 2). In general,
arbitrary changes to a selection criteria, aggregation func-
tion, windowing semantics, and other operations are possible
using this architecture.

4. DEMONSTRATION
In our demonstration, we allow the visitor to experience

the fast visualization supported development with I2. This
covers the development of the Flink job running in the clus-
ter as well as changing the visualizations. At the same time,
we continuously show the savings in terms of the transferred
data volume which are archived by I2. When we increase the
data rates of the input streams, I2 will hide that workload
from the visualization while without using I2 the front end
would first become unresponsive and finally crash.

Data. We replay the data set which was provided with
the DEBS Grand Challenge 2013 [10]. This data set consists
of sensor data, which was recorded at a football match. The
speed, acceleration, and position of the ball are tracked with
a frequency of 2000Hz. In addition, each player has two
sensors close to his shoes which are tracked with a 200Hz
frequency. In total, roughly 15.000 data points are provided
for each second of the match.

Demonstration. We show an interactive dashboard to
analyze the performance of individual players in detail. Users
can either select a player manually or automatically follow
the ball possession, which involves detecting peaks in the
measures of the ball sensor as well as correlating these peaks
with the data from the player sensors. Our dashboard shows

528



(a) Interactive Dashboard (b) Development Environment

without I2 with I2

0

20

40

60

fr
am

e
ra
te

[f
ra
m
es
/s
ec
.]

0

20

40

60

fr
a
m
e
ra
te

[f
ra
m
es
/
se
c.
]

0

50

100

C
P
U

u
ti
li
za
ti
o
n
[%

]

0

50

100

C
P
U

u
ti
li
za
ti
o
n
[%

]

start data
transfer

ui
crash

constant load
when using I2

(c) Performance Monitoring

Figure 5: Selected screenshots from the I2 demonstration.

different metrics (e.g, acceleration and speed) for the se-
lected player as well as the player’s current position on the
football field (Figure 5a).

We first try to run our dashboard without using I2, mean-
ing that no data reduction is applied and all data - roughly
15.000 tuples/sec. - is transferred towards the frontend. As
shown in Figure 5c (left), the UI works only for a short mo-
ment before it becomes unresponsive due to a CPU overload.

We now run the same dashboard with I2, pushing the cur-
rent visualization properties to the running Flink job as de-
scribed in Section 3. This information is then used by Flink
to apply different data reduction techniques: knowing the
currently selected player enables adaptive filtering as shown
in Figure 4 and knowing the plot resolution of line charts
allows to apply the M4 aggregation technique we presented
in Section 2. The soccer field map combines different data
reduction techniques. We reduce the precision of the posi-
tion reports based on the plot resolution and at the same
time apply load shedding [13] to reduce the data rate to the
current frame rate of the visualization. As shown on Fig-
ure 5c (right), the presented dashboard runs fluently when
using I2 with close to 60 frames per second and a CPU uti-
lization below 50%.

Interactivity. We demonstrate the two types of interac-
tivity provided by I2. First, we show that visualization prop-
erties can be changed easily in the dashboard and that the
running Flink job adapts with low latency to e.g., changes
in the player selection or the length of the depicted history
of line charts.

Second, we demonstrate the interactivity through code
changes. Interactive code changes allow an even more flex-
ible data exploration and the rapid development of cluster
applications. We first show how the code for the visualiza-
tions can be adapted and directly deployed without a need
to restart the running Flink job. We then show how we can
connect an additional data source for twitter messages and
how these messages can be correlated to the data we used
before. The extended Flink job is directly deployed to the
cluster with just one click.

Evaluation. We exemplary compared the performance of
I2 for the dashboard described above (Figure 5c). Our exper-
iment showed that the amount of transferred data, the mem-
ory utilization, the CPU load, and the frame rate remain
constant throughout the game when I2 is active. Switching

of I2 causes the visualization to become unresponsive imme-
diately due to the massive amount of arriving data. With
activated I2, the bottleneck is no longer the visualization,
but the power of the used Flink cluster.

5. CONCLUSIONS
I2 enables two types of interactivity: first, the user can

specify real-time analysis programs and change them on
the fly. Second, the interactive visualization of the results
adapts currently running cluster applications without a need
to restart. Using I2, the amount of data points to be pro-
cessed and transferred to the front end can be reduced sig-
nificantly without quality loss, enabling the live visualiza-
tion of high bandwidth data streams. The capabilities of
I2 have been demonstrated in an interactive example using
real-world data.

Acknowledgements. This work was supported by the
EU Horizon 2020 project Streamline (688191) and the Ger-
man Ministry for Education and Research as Berlin Big Data
Center (01IS14013A) and Software Campus (01IS12056).

6. REFERENCES
[1] S. Agarwal et al. BlinkDB: queries with bounded errors and

bounded response times on very large data. EuroSys, 2013.

[2] S. Agarwal et al. Knowing when you’re wrong: building fast and
reliable approximate query processing systems. SIGMOD, 2014.

[3] A. Alexandrov et al. The stratosphere platform for big data
analytics. VLDBJ, 2014.

[4] L. Battle et al. Dynamic reduction of query result sets for
interactive visualizaton. IEEE BigData, 2013.

[5] P. Carbone et al. Apache FlinkTM: Stream and batch
processing in a single engine. IEEE Data Eng. Bulletin, 2015.

[6] P. Carbone et al. Lightweight asynchronous snapshots for
distributed dataflows. arXiv, 2015.

[7] S. Idreos et al. Overview of data exploration techniques.
SIGMOD, 2015.

[8] U. Jugel et al. M4: a visualization-oriented time series data
aggregation. VLDB, 2014.

[9] A. Kim et al. Rapid sampling for visualizations with ordering
guarantees. 2015.

[10] C. Mutschler et al. The DEBS 2013 grand challenge. 2013.

[11] F. Pérez and B. E. Granger. IPython: a system for interactive
scientific computing. CISE, 2007.

[12] L. Sidirourgos et al. Scientific discovery through weighted
sampling. IEEE BigData, 2013.

[13] N. Tatbul et al. Load shedding in a data stream manager.
VLDB, 2003.

[14] E. Wu et al. The case for data visualization management
systems: vision paper. VLDB, 2014.

529


	Demonstrations
	I²: Interactive Real-Time Visualization for Streaming DataJonas Traub, Nikolaas Steenbergen, Philipp Grulich, Tilmann Rabl, Volker Markl


