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ABSTRACT
The research community has adopted a sequence of snap-
shots as the logical representation of evolving graphs —
graphs that change over time and whose history of evolu-
tion we want to preserve for analysis. This paper argues
that the snapshot sequence model of evolving graphs is in-
sufficient for representation and analysis of a wide range of
networks. Instead, we propose to use the interval model
with sequenced semantics. In this model nodes and edges
are associated with their validity intervals, and operations
adhere to the properties of snapshot reducibility, extended
snapshot reducibility, and change preservation. We show
the advantages of adopting this model for evolving graphs
and lay the groundwork for an evolving graph query lan-
guage with sequenced semantics. We also discuss several
challenges of efficiently supporting sequenced semantics in a
distributed setting.

1. INTRODUCTION
Evolving graphs are used to represent a wide range of

phenomena, including the Web, social networks, communi-
cation and transportation networks, interaction networks,
metabolism pathways, and many others. Researchers study
graph evolution rate and mechanisms, impact of specific
events on further evolution, spatial and spatio-temporal pat-
terns, and how graph properties change over time.
The dominant logical model for evolving graphs over the

past 20 years has been a sequence of static graphs, termed
snapshots. This model is a graph-specific adaptation of the
point-based temporal model [19], and it introduces a semantic
ambiguity that has been well studied in the temporal rela-
tional databases literature [2]: if an entity (graph, vertex
or edge) with the same attributes exists in two consecutive
snapshots, does it represent the same fact or two different
facts? What does it mean for an entity to change?
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Figure 1: A social network as a snapshot sequence.

Figure 1 shows an example of an evolving social network,
in which vertices represent people, while edges represent in-
teractions between them such as likes and conversations. In
this example, did Alice and Bob have two conversations over
the time period [t1, t4) or one long one? Did Alice undergo
any changes during this time? Which user was the most
active in this network, as defined by the number of distinct
interactions? What is the rate of change of this network?
We cannot answer these questions without additional infor-
mation in a point-based model. Suppose that Alice held a
temporary position at Drexel at time t1 and transferred to a
permanent one at time t2. This information cannot be rep-
resented in the point-based model. Suppose that Alice and
Bob had two short interactions, while Cathy and Bob had
one longer one. The point-based model cannot distinguish
between these two cases.
This kind of semantic ambiguity affects several graph op-

erations, most notably aggregation and retrieval of change
history, and, as a result, local (confined to specific entity or
subset of entities) and global (whole-graph) temporal queries
that are useful for evolving graph analysis.
In a point-based model [19] each entity is time-stamped

with its validity time. For practical reasons, intervals are of-
ten used as syntactic abbreviations for sets of points. To use
intervals in a time-stamped model, we coalesce, i.e., merge
value-equivalent tuples over overlapping and adjacent time
points [1]. Importantly, the use of intervals to represent
a sequence of value-equivalent time-adjacent snapshots is
not semantically equivalent to a model with sequenced se-
mantics, where entities are time-stamped with intervals that
have meaning. A work-around to avoid coalescing tuples
that represent different facts is to add attributes to entities,
in order to distinguish between changes and non-changes.
For example, we can add position title to the vertex Al-
ice to state that Alice changed jobs at time t2, and add a
conversation id to each edge to designate distinct conver-
sations. Unfortunately, this solution is ad-hoc rather than
general and does not hold up over time, as discussed in [2].
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We contend that a snapshot sequence model of evolv-
ing graphs is insufficient for representation of a wide range
of networks and propose instead to use the interval model
with sequenced semantics. Facts in our model correspond to
graph vertices and edges, rather than to graph snapshots in
their entirety (as in Figure 1). This representational choice
is orthogonal to the issue of point-based vs. sequenced se-
mantics, but has an important advantage. Many evolving
graph queries include temporal predicates over vertices or
edges, e.g., compute a subgraph containing only vertices
that persist for at least a year. Such queries cannot be
evaluated directly over a sequence of snapshots.
In Section 2 we briefly survey existing models and summa-

rize relevant work in temporal databases. We then propose
a new model in Section 3. In Section 4 we discuss the chal-
lenges of efficient computation under sequenced semantics
in a distributed environment. We conclude with future re-
search directions in Section 5.

2. RELATED WORK
Evolving graph models. While temporal models in

the relational literature are very mature, the same cannot
be said about the evolving graphs literature. Evolving graph
models differ in what time stamp they use (point or interval
stamping), what top-level entities they model (graphs or sets
of nodes and edges), whether they represent topology only
or attributes or weights as well, and what types of evolution
are allowed. All evolving graph models require node identity,
and thus edge identity as well, to persist across time. See [20]
for a survey of evolving graph models.
The first mention of evolving graphs that we are aware

of is by Harary and Gupta [6] who informally proposed to
model the evolution as a sequence of static graphs. This
model has been predominant in the research literature ([4, 7,
14] and many others), with various restrictions on the kinds
of changes that can take place during graph evolution. For
example, Khurana and Deshpande [7] use this model with
the restriction that a node, once removed, cannot reappear.
In [4] and [14] there is no notion of time, only a sequence of
graphs. It is important to note that we are talking about the
logical model of the evolving graphs, rather than a physical
representation. For example, Semertzidis et al. [16] present
a concrete representation of an evolving graph called Ver-
sionGraph that is similar to the logical model we propose
here, yet their logical model is still a sequence of snapshots.
The advantages of the snapshot sequence model are that

(a) it is simple and (b) if snapshots are obtained by periodic
sampling, which is a very common approach, it accurately
represents the states of the graph at the sampled points
without making assertions about unknown times. For ex-
ample, the WWW is so large that it is impossible to create
a fully accurate snapshot that represents any moment in
time. An important limitation of this model, in addition
to the semantic ambiguity on what constitutes a change, is
that it forces a specific time granularity, whereas open-closed
time intervals can be broken down into any desired level of
granularity.

Temporal relational models. The question of seman-
tics of temporal data has been thoroughly explored in the
relational temporal database community. Böhlen et al. [2]
defined point and sequenced models, and showed that the
difference between the models lies in the properties of the
operators, and not in the use of intervals as representational

devices. With this foundation, Dignös et al. [3] defined se-
quenced semantics, with properties of snapshot reducibil-
ity, extended snapshot reducibility, and change preservation.
Snapshot reducibility means that a temporal operator pro-
duces the same result as an equivalent non-temporal oper-
ator over corresponding snapshots. Extended snapshot re-
ducibility allows references to timestamps in the operators
by propagating them as data. Point semantics has both of
these properties as well.
The third property, change preservation, is unique to se-

quenced semantics. It states that operators only merge con-
tiguous time points of a result if they have the same lin-
eage. As shown in [3], all three properties can be guaran-
teed through the use of the normalize and align operators
on non-temporal relations, extended with an explicit time
attribute.
As we as a community move to more and more sophis-

ticated analyses of evolving graphs, we need to adopt the
state of the art in temporal databases.

3. DATA MODEL
We now describe the logical representation of an evolving

graph, called a TGraph. A TGraph represents a single graph,
and models evolution of its topology and of vertex and edge
attributes.
Following the SQL:2011 standard [8], a period (or inter-

val) p = [s, e) represents a discrete set of time instances,
starting from and including the start time s, continuing to
but excluding the end time e. Time instances contained
within the period have limited precision, and the time do-
main has total order. In the rest of this paper we use the
terms interval and timestamp interchangeably.
A TGraph is represented with four temporal SQL rela-

tions [1], and uses sequenced semantics [3], associating a
fact (existence of a vertex or edge, and an assignment of a
value to a vertex or edge attribute) with an interval.
A snapshot of a temporal relation R, denoted τc(R) is the

state of R at time point c.
We use the property graph model [15] to represent vertex

and edge attributes: each vertex and edge during period p
is associated with a (possibly empty) set of properties, and
each property is represented by a key-value pair. Property
values are not restricted to be of atomic types, and may,
e.g., be sets, maps or tuples.
We now give a formal definition of a TGraph, which builds

on the model of [12] and is adjusted to support sequenced
semantics.

Definition 3.1 (TGraph). A TGraph is a pair T =
(V,E). V is a valid-time temporal SQL relation with schema
V(v,p) that associates a vertex with the time period during
which it is present. E is a valid-time temporal SQL relation
with schema E(v1, v2,p), connecting pairs of vertices from
V. T optionally includes vertex and edge attribute relations
AV(v,p, a) and AE(v1, v2,p, a), where a is a nested attribute
consisting of key-value property pairs. Relations of T must
meet the following requirements:

R1: Unique vertices/edges In every snapshot τc(V) and
τc(E) a vertex/edge exists at most once.

R2: Unique attribute values In every snapshot τc(AV)
and τc(AE), a vertex/edge is associated with at most
one attribute (which is itself a set of key-value pairs
representing properties).

447



v1
v2
v3

[t1,t2)

[t1,t2)

[t2,t3)
[t2,t3)
[t2,t3)

[t3,t4)
[t3,t4)
[t3,t4)

[t4,t5)
[t4,t5)
[t4,t5)

t

(a) with fragments

v1
v2
v3

[t1,t5)

[t1,t5)

[t1,t5)
[t2,t3)
[t1,t5)

[t1,t5)
[t3,t5)
[t1,t5)

[t1,t5)
[t3,t5)
[t1,t5)

t

(b) with full timestamps

Figure 2: Vertices from Figure 1 split in 4 partitions.

R3: Referential integrity In every snapshot τc(T), for-
eign key constraints hold from τc(E) (on both v1 and
v2) and τc(AV) to τc(V), and from τc(AE) to τc(E).

Requirements R1, R2, R3 guarantee soundness of the
TGraph data structure, ensuring that every snapshot of a
TGraph is a valid graph. Graphs may be directed or undi-
rected. For undirected graphs we choose a canonical repre-
sentation of an edge, with v1 ≤ v2 (self-loops are allowed).
At most two edges can exist between any two vertices at any
time point, one in each direction.
Definition 3.1 presents a logical data structure that admits

different physical representations, including, e.g., a colum-
nar representation (each property in a separate relation, sup-
porting different change rates), by a hash-based representa-
tion of [18], or in some other way. The logical model also
allows for distributed storage in HDFS.

4. SEQUENCED SEMANTICS IN A
DISTRIBUTED ENVIRONMENT

Many interesting static graphs are so large that they ne-
cessitate a distributed approach, as evidenced by the plethora
of works on Pregel-style computation and graph partition-
ing [10]. In this section we discuss the challenges inherent in
supporting three properties of sequenced semantics — snap-
shot reducibility, extended snapshot reducibility, and change
preservation — in a distributed environment.

Snapshot reducibility. Evolving graphs can be par-
titioned among the available machines using time locality.
Following convention, we refer to the operator that can pro-
duce such partitioning as a splitter. The splitter places each
tuple (vertex or edge) into one or more partitions based on
its timestamp. The goal of the splitter is to form partitions
that are balanced, i.e., have approximately the same number
of items, under the assumption that most operations can be
executed locally at each partition. Recall that snapshot re-
ducibility requires a temporal operator to produce the same
result as if it were evaluated over each snapshot. Validity
period of a tuple that spans more than one temporal par-
tition is split, and the tuple is replicated across partitions.
This increases the overall size of the relation, but all oper-
ations can now be carried out within each partition. See
Figure 2a for a simple example of the V relation being split
into four temporal partitions.
For the purposes of illustration, consider the temporal

subgraph operation, a generalization of subgraph match-
ing for non-temporal graphs [12]. Temporal vertex-subgraph
subT

v (qt
v,T) = T′(V′,E′,AV′,AE′) computes an induced sub-

graph of T, with vertices defined by the temporal conjunc-
tive query qt

v. Note that this is a subgraph query, and so
V′ ⊆T V. Observe that we can carry out the subgraph
operation with non-temporal predicates, e.g., name=’Alice’,
at each partition individually, without any cross-partition
communication.

The question of optimal splitting has been addressed by
Le et al. [9], who demonstrated that a temporal relation can
be efficiently split into k buckets in cases of both internal
memory and external memory, and guarantee optimality of
the solution. This method requires a sequential scan of the
relation to compute an index called the stabbing count array.
How to make this method more efficient in a distributed
environment is an open question.
The subgraph operation requires co-partitioning of graph

relations to enforce referential integrity on edges. A num-
ber of alternatives for co-partitioning present themselves,
as the vertex, edge and attribute relations are not guaran-
teed to have the same splitters due to different evolution
rates. Typically, vertices are co-partitioned with edges in
the non-temporal case [5], and this likely is most efficient
with evolving graphs as well.

Extended snapshot reducibility. Snapshot reducibil-
ity can be guaranteed in the distributed setting, as shown
above for a subgraph query without temporal predicates.
In general, a subgraph query qt

v may use any of the con-
stituent relations of T, and may explicitly reference tempo-
ral information in compliance with the extended snapshot
reducibility property of sequenced semantics. Refer back
to Figure 2a and assume time granularity of years. If we
perform the subgraph operation, selecting vertices that per-
sist for longer than 2 years, over the split then we will get
no matches. However, the original relation contains two
matches – only Bob does not meet the predicate. To sup-
port extended snapshot reducibility over a split relation,
during partitioning tuples should be placed into their parti-
tions with their full original timestamps. Incidentally, this
is what Le at al. describe in their work on optimal split-
ters [9]. Figure 2b shows relation V split in the same four
partitions with this approach.

Change preservation. Change preservation property
requires that derived tuples should only be coalesced if they
share lineage. To support this property, normalize and align
operators are used [3]. The normalize operator splits each
tuple in the input relation w.r.t. a group of tuples such that
each timestamp fragment is either fully contained or disjoint
with every timestamp in the group. The align operator splits
each tuple w.r.t. a group of tuples such that each timestamp
fragment is either an intersection with one of the tuples in
the group or is not covered by any tuple in a group.
The normalize operator splits each tuple w.r.t. to a group

defined by the operation. For example, consider the attribute-
based node creation operation on graphs [12], an operation
similar to aggregation on temporal relations. This oper-
ation allows the user to generate a TGraph in which ver-
tices correspond to disjoint groups of vertices in the input
that agree on the values of all grouping attributes. For in-
stance, nodeT

a (school,T) will compute a vertex for each value
of AV.a.school. While the group defined for each tuple (dis-
tinct value of school) spans temporal partitions, only tuples
within the same partition overlap. Thus, the normalize and
align operations can be carried out locally at each partition.
An important challenge to address is how to efficiently

support aggregation over temporal windows in a distributed
setting. This operation requires cross-partition communica-
tion, which impacts the cost model, requiring a generaliza-
tion of the approach of Le et al. [9].

Partitioning of evolving graphs. Large evolving graphs
present additional challenges compared to static graphs and
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Table 1: Connected components and PageRank with differ-
ent temporal partitioning, seconds.

(a) wiki-talk
width k CC PR
8 23 382 1,086
16 12 328 1,037
bal. 16 351 720
bal. 24 408 375

(b) nGrams
width k CC PR
8 26 1,324 2,867
16 13 856 1,873
bal. 3 321 740
bal. 16 422 519

temporal relations alone. Each graph snapshot may be too
large to fit into a single partition. This necessitates parti-
tioning graphs by both time and structure. Miao et al. [11]
have demonstrated within their ImmortalGraph system that
different locality, structural or temporal, is more appropri-
ate for different graph queries. However, their results do not
directly translate to the distributed environment. Miao et
al. showed that spatial locality provides better performance
than temporal locality in global point queries, i.e., queries
that compute over a snapshot corresponding to a particu-
lar time point. In a distributed setting we do not expect
these results to hold, since communication costs generally
dominate the overall performance, and partitioning by time
alone will guarantee that a snapshot is distributed among
the lowest number of partitions.
Global range queries such as change in graph centrality

over time, on the other hand, are computed over multiple
snapshots and their performance depends on the method of
computation. We can utilize temporal locality and compute
on each snapshot independently. Assuming that each par-
tition fits one or more snapshots, the maximum number of
snapshots across all partitions will determine the overall per-
formance. With structural locality we can distribute edges
across the partitions using any of the already proposed par-
titioning approaches such as range- and hash-based [17] or
EdgePartition2D (E2D).
We explored the effectiveness of partitioning strategies in

graphs that undergo changes in topology over time, and
found that structural partitioning such as in ImmortalGraph
is effective only when graph topology changes very little [13].
We found that a hybrid approach that combines temporal
and structural locality is promising. We are currently inves-
tigating methods for selecting a partitioning strategy that
provides the best overall performance.

Preliminary experiments. We conducted some prelim-
inary experiments to see the effect of temporal partitioning
on distributed execution of analytics, which present one of
the heaviest computational workloads. PageRank and Con-
nected components analytics were executed on the wiki-talk1

and nGrams2 datasets.
Wiki-talk contains 179 time periods. nGrams contains

over 400, but we used the first 208. Both datasets exhibit
strong skew, with few edges at the start of the datasets and
increasing by several orders of magnitude towards the end.
We compared equi-width and equi-depth temporal partition-
ing, using 8 and 16 consecutive intervals for equi-width, and
using offline optimal split of edges with varying number of
splitters k. Each dataset was partitioned first temporally,
and then spatially using Edge2D partitioning. Table 1 shows
that equi-depth partitioning is superior to equi-width in all
cases but one. However, the number of splitters is key in

1http://dx.doi.org/10.5281/zenodo.49561
2http://storage.googleapis.com/books/ngrams/books/
datasetsv2.html

obtaining good results. We are currently investigating this
phenomenon further.

5. CONCLUSION
We have argued that modeling evolving graphs using snap-

shot sequences presents semantic difficulties. As an alterna-
tive, we proposed a vertex-edge model with sequence se-
mantics and discussed several challenges of supporting this
model in a distributed setting. We are currently working
on implementing this model in Apache Spark, and explor-
ing the performance of different physical representations and
partition strategies.
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