
Herding the elephants: Workload-level optimization
strategies for Hadoop

Sandeep Akinapelli
Cloudera, Palo Alto, CA

sakinapelli@cloudera.com

Ravi Shetye
Cloudera, Palo Alto, CA
ravi@cloudera.com

Sangeeta T.
Cloudera, Palo Alto, CA

sangeeta@cloudera.com

ABSTRACT
With the growing maturity of SQL-on-Hadoop engines such
as Hive, Impala, and Spark SQL, many enterprise customers
are deploying new and legacy SQL applications on them to
reduce costs and exploit the storage and computing power
of large Hadoop clusters. On the enterprise data ware-
house (EDW) front, customers want to reduce operational
overhead of their legacy applications by processing portions
of SQL workloads better suited to Hadoop on these SQL-
on-Hadoop platforms - while retaining operational queries
on their existing EDW systems. Once they identify the
SQL queries to offload, deploying them to Hadoop as-is may
not be prudent or even possible, given the disparities in
the underlying architectures and the different levels of SQL
support on EDW and the SQL-on-Hadoop platforms. The
scale at which these SQL applications operate on Hadoop
is sometimes factors larger than what traditional relational
databases handle, calling for new workload level analytics
mechanisms, optimized data models and in some instances
query rewrites in order to best exploit Hadoop.

An example is aggregate tables (also known as material-
ized tables) that reporting and analytical workloads heavily
depend on. These tables need to be crafted carefully to
benefit significant portions of the SQL workload. Another
is the handling of UPDATEs - in ETL workloads where a ta-
ble may require updating; or in slowly changing dimension
tables. Both these SQL features are not fully supported
and hence have been underutilized in the Hadoop context,
largely because UPDATEs are difficult to support given the
immutable properties of the underlying HDFS.

In this paper we elaborate on techniques to take advan-
tage of these important SQL features at scale. First, we
propose extensions and optimizations to scale existing tech-
niques that discover the most appropriate aggregate tables
to create. Our approach uses advanced analytics over SQL
queries in an entire workload to identify clusters of simi-
lar queries; each cluster then serves as a targeted query set
for discovering the best-suited aggregate tables. We com-

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

pare the performance and quality of the aggregate tables
created with and without this clustering approach. Next,
we describe an algorithm to consolidate similar UPDATEs
together to reduce the number of UPDATEs to be applied
to a given table.

While our implementation is discussed in the context of
Hadoop, the underlying concepts are generic and can be
adopted by EDW and BI systems to optimize aggregate ta-
ble creation and consolidate UPDATEs.

CCS Concepts
•Information systems→Database utilities and tools;
Relational database model;

Keywords
Query optimization; Hadoop; Hive; Impala; BI reporting

1. INTRODUCTION
Large customer deployments on Hadoop often include sev-

eral thousand tables many of which are very wide. For ex-
ample, in the retail sector, we have observed customer work-
loads that issue over 500K queries a day over a million tables
some of which have 50,000 columns. Many of these queries
share some common clustering characteristics; i.e. in a BI or
reporting workload we may find clusters of queries that per-
form highly similar operations on a common set of columns
over a common set of tables. Or in an ETL workload, UP-
DATEs on a certain set of columns over a common set of
tables may be highly prevalent. But at such large scales, de-
tecting common characteristics, identifying the set of queries
that exhibit these characteristics and using this knowledge
to choose the right data models to optimize these queries
is a challenging task. Automated workload level optimiza-
tion strategies that analyze these large volumes of queries
and offer the most relevant optimization recommendations
can go a long way in easing this task. Thus for the BI or
reporting workload, creating a set of aggregate tables that
benefit performance of a set of queries is a useful recommen-
dation; while for the ETL case detecting UPDATEs that can
be consolidated together can help overall performance of the
UPDATEs.

Aggregate tables are an important feature for Business
Intelligence (BI) workloads and various forms of it are sup-
ported by many EDW vendors including Oracle [8], Mi-
crosoft SQL Server [7] and IBM DB2 [15] as well as BI tools
such as Microstrategy [13] and IBM Cognos [9]. Here, data
required by several different user or application queries are

Industrial and Applications Paper

Series ISSN: 2367-2005 699 10.5441/002/edbt.2017.90

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.90

joined and aggregated apriori and materialized into an ag-
gregate table. Reporting and analytic queries then query
these aggregate tables, which reduces processing time dur-
ing query execution resulting in improved performance of
the queries. This is an example aggregate table over the
TPC-H workload schema:

CREATE TABLE aggtable_888026409 AS

SELECT lineitem.l_quantity

, lineitem.l_discount

, lineitem.l_shipinstruct

, lineitem.l_commitdate

, lineitem.l_shipmode

, orders.o_orderpriority

, orders.o_orderdate

, orders.o_orderstatus

, supplier.s_name

, supplier.s_comment

, Sum (orders.o_totalprice)

, Sum (lineitem.l_extendedprice)

FROM lineitem

, orders

, supplier

WHERE lineitem.l_orderkey = orders.o_orderkey

AND lineitem.l_suppkey = supplier.s_suppkey

GROUP BY lineitem.l_quantity

, lineitem.l_discount

, lineitem.l_shipinstruct

, lineitem.l_commitdate

, lineitem.l_shipmode

, orders.o_orderdate

, orders.o_orderpriority

, orders.o_orderstatus

, supplier.s_name

, supplier.s_comment

The aggregate table above can be used to answer queries
which refer the same set of tables(or more), joined on same
condition and refer columns which are projected in aggre-
gated table. Few sample queries which can benefit from the
above aggregate table are:

SELECT Concat(supplier.s_name,

orders.o_orderdate) supp_namedate

, lineitem.l_quantity

, lineitem.l_discount

, Sum(lineitem.l_extendedprice) sum_price

, Sum(orders.o_totalprice) total_price

FROM lineitem

JOIN part

ON (lineitem.l_partkey = part.p_partkey)

JOIN orders

ON (lineitem.l_orderkey = orders.o_orderkey)

JOIN supplier

ON (lineitem.l_suppkey = supplier.s_suppkey)

WHERE lineitem.l_quantity BETWEEN 10 AND 150

AND lineitem.l_shipinstruct <> ‘deliver IN person’

AND lineitem.commitdate BETWEEN ‘11/01/2014’

AND ‘11/30/2014’

AND lineitem.l_shipmode NOT IN (‘AIR’, ‘air reg’)

AND orders.o_orderpriority IN (‘1-URGENT’, ‘2-high’)

GROUP BY Concat(supplier.s_name, orders.o_orderdate)

, lineitem.l_quantity

, lineitem.l_discount

or

SELECT lineitem.l_shipmode

, Sum(orders.o_totalprice)

, Sum (lineitem.l_extendedprice)

FROM lineitem

JOIN orders

ON (lineitem.l_orderkey = orders.o_orderkey)

JOIN supplier

ON (lineitem.l_suppkey = supplier.s_suppkey)

WHERE (lineitem.l_quantity BETWEEN 10 AND 150

AND lineitem.l_shipinstruct <> ‘DELIVER IN PERSON’

AND lineitem.commitdate BETWEEN

‘11/01/2014’ AND ‘11/30/2014’

AND supplier.s_comment Like ‘\%customer\%complaints\%’

AND orders.o_orderstatus =‘f’

GROUP BY

lineitem.l_shipmode

Similarly, UPDATE statements in various flavors that mod-
ify rows in a table via a direct UPDATE or with the query
results from another query, have been supported in relational
DBMS offerings for several decades. In some scenarios, con-
solidating UPDATEs can produce performance benefits. For
example combining the following two simple statements:

UPDATE customer

SET customer.email_id=‘bob.johnson@edbt.org’

WHERE customer.firstname=‘Bob’

AND customer.last_name=‘Johnson’

UPDATE customer

SET customer.organization=‘Engineering’

WHERE customer.firstname=‘Bob’

AND customer.last_name=‘Johnson’

into a single UPDATE statement as follows:

UPDATE customer

SET customer.email_id=‘bob.johnson@edbt.org’,

customer.organization=‘Engineering’

WHERE customer.firstname=‘Bob’

AND customer.last_name=‘Johnson’

Such consolidation reduces the number of UPDATE queries
on the source table ‘customer’ and minimizes the I/O on the
table.

Existing commercial offerings also support the ‘REFRESH’
option to propagate changes to aggregate tables whenever
the underlying source tables are updated. Generally, this
requires a mechanism to UPDATE rows in the aggregate ta-
bles. However, the immutable properties of HDFS in Hadoop,
which is highly optimized for write-once-read-many data op-
erations, poses problems for implementing the ‘REFRESH’
option in Hive and Impala. This hampers developing func-
tionality for UPDATE statements - which has largely lead
Hadoop-based SQL vendors to shy away from or offer limited
support for UPDATE-related features.

Based on our learnings from several customer engage-
ments, some important observations surface:

1. In Hadoop, highly parallelized processing and opti-
mized execution engines on systems such as Hive and
Impala enable rebuilding aggregate tables from scratch
very quickly, making UPDATEs unnecessary and mit-
igating the HDFS related immutability issues in many
EDW workloads.

700

2. Many aggregate tables are temporal in nature. For
example, quarterly financial reports that require data
from only three months, in which case the aggregate ta-
bles that feed these reports can be data partitioned on
a monthly basis on Hive and Impala. Smaller portions
of giant source tables need to be queried to populate
these aggregate tables. Only the impacted partitions of
the aggregate tables need to be written, making mod-
ifications to aggregate tables less expensive. Hence,
instead of using UPDATES to modify them, new time-
based partitions (by month or day) can be added and
older ones discarded. SQL constructs such as INSERT
with OVERWRITE supported on Hive and Impala,
can be used to mimic this REFRESH functionality.
And SQL views can be used to allow easy switching
between an older and newer version of the same data.

3. With the introduction of new Hadoop features such as
the Apache Kudu integration [12], a viable alternative
to using HDFS is now available. Hence UPDATEs can
now be supported for certain workloads.

UPDATE statements used to perform tasks such as ad-
dress cleanup in ETL workloads or modify slowly-changing
dimension tables in BI and Analytic workloads are differ-
ent in nature from highly concurrent OLTP style UPDATEs
present in traditional operational systems. In this case, UP-
DATEs are concentrated on certain tables and are less fre-
quent. If the temporal nature of data mentioned above can
be exploited, partitioning techniques to mimic UPDATEs
are possible as are some other SQL join-based techniques
discussed later in this paper.

Given the importance of these two SQL features, BI Users
and Hadoop developers are adopting one of the above men-
tioned strategies; and require recommendations on which ag-
gregate tables to create, and how to consolidate UPDATE
statements, to optimize the performance of their queries on
Hadoop. In the following sections, we describe our algorithm
for aggregate table creation. And compare the efficiency and
quality of the aggregate tables generated when the input to
the algorithm is all queries in a workload versus targeted sets
of highly similar queries derived from the workload. A clus-
tering algorithm performs advanced analytics over all the
queries in a workload, to extract these highly similar query
sets. We also discuss techniques and algorithms for consol-
idation of UPDATE statements, prior to applying them on
Hadoop.

2. BACKGROUND AND RELATED WORK
Aggregate table advisors are available in several commer-

cial EDW and BI offerings. In some of these offerings, the
onus is on the user to provide a representative workload -
i.e. a sample set of queries to use for deriving aggregate
tables. Others require query execution plans to provide rec-
ommendations. The DB2 Design Advisor in [15] discusses
the issue of reducing the size of the sample workload to re-
duce the search space for aggregate table recommendations,
while the Microsoft paper [3] details specific mechanisms
to compress SQL workloads. Our approach takes a SQL
query log as an input workload (all queries executed over
a period of time in a EDW system) and identifies semanti-
cally unique queries discarding duplicates. We use the struc-
ture of the SQL query when identifying the duplicates which
means the changes in the literal values result in identifying

these queries as duplicates. Advanced analytics are then de-
ployed on the SQL structures of these semantically unique
queries to discover clusters of similar query sets. This en-
ables quicker and more relevant aggregate table definitions
because the set of queries that serve as input to aggregate
table recommendations are highly similar.

After aggregate tables are set up, some DBMS and BI
tools offerings are further capable of rewriting queries inter-
nally to use aggregate tables versus the base tables to opti-
mize performance of queries. This feature also known as ma-
terialized views is not addressed in our paper. An example
Hadoop implementation of materialized views is described
in [14]. In our experience, BI tools are frequently used in re-
porting and analytic workloads deployed atop Hadoop and
necessarily support materialized views. Hence we provide
recommendations and the DDL definitions for the aggre-
gate tables that users can create, using the BI tools of their
choice.

On the Hadoop side, the [5] features revolve around us-
ing materialized views to better exploit Hadoop clusters.
And in the Hive community, explicit support for material-
ized views is under development [10]. Again, these efforts
are orthogonal to the aggregate table recommendations we
provide. [11] seeks to solve the HDFS immutability issue
and lift UPDATE restrictions. The techniques we propose
in this paper are orthogonal and applicable at the SQL level
- and seek to boost performance of SQL queries on Hadoop.
Thus they can benefit both HDFS and Kudu-based Hadoop
deployments.

3. THE SYSTEM
Our system is a workload-level optimization tool that an-

alyzes SQL queries (from many popular RDBMS vendors)
from sources such as query logs. It breaks down the individ-
ual SQL constructs in these queries and employs advanced
analytics to

• identify semantically unique queries, thus eliminating
duplicates

• discover top tables and queries in a workload as shown
in Figure 1

• surface popular patterns like joins, filters and other
SQL constructs used in the workload.

This analysis is further used to alert users to SQL syntax
compatibility issues and other potential risks such as many-
table joins that these queries could encounter on Hive or Im-
pala providing recommendations on data model changes and
query rewrites that can benefit performance of the queries
on Hadoop.

The tool operates directly on SQL queries so does not
require access to the underlying data in tables or to the
Hadoop clusters that the workload may be deployed on.
However, information such as the elapsed time for a query
and statistics such as table volumes and number of distinct
values (NDV) in columns, help improve the quality of our
recommendations.

The recommendations include candidates for partitioning
keys, denormalization, inline view materialization, aggregate
tables and update consolidation. The last two recommen-
dations are the focus of this paper.

701

Figure 1: Workload Insights: Popular Queries and
Patterns.

3.1 Aggregate Table Recommendation
Our algorithm to determine aggregate tables, is similar to

[2] with a few important modifications, which are elaborated
in the subsequent sections. The first step in determining the
aggregate tables is to find a set of interesting table subsets.
A table-subset T is interesting if materializing one or more
views on T has the potential to reduce the cost of the work-
load significantly, i.e., above a given threshold.

In BI workloads, joins over 30 tables in a single query is
not an infrequent scenario. Such workload characteristics
could incur exponential costs while enumerating all inter-
esting subsets. The enumeration of all interesting subsets of
30 tables is not practical hence we need a mechanism to re-
duce the overall number of interesting subsets. [1] presents
efficient algorithms to enumerate all frequent sets and [4]
presents a compact way of representing all the frequent sets.
However generating aggregate tables on a subset of tables
may be more beneficial than generating it over supersets.
Since enumerating all subsets can be exponential, we need
to select the subsets which are still a good representation of
all the interesting subsets.

3.1.1 Merge and Prune
We address the problem of exponential subsets by con-

straining the size of the items at every step. During each
step in subset formation, we merge some of the subsets early
and then prune some of these subsets, without compromis-
ing on the quality of the output. We use the notations men-
tioned in Table 1 to describe the various concepts used in
our mergeAndPrune algorithm. The detailed steps are out-
lined in the algorithm 1. The algorithm takes a set of sets
of tables of a given size and returns the new set with some
elements merged and removed from the input.

The metric TS-Cost(T) we use is the same as that men-
tioned in [2] which is the total cost of all queries in the
workload where table-subset T occurs. After we enumerate
all 2-subsets (subsets of size 2) we execute the algorithm in
each step for merging and pruning the sets early. We start
with a given element and collect the list of all candidates
that it can be merged with. The merges are performed as
long as the merged set is within a certain threshold. Ex-
perimental results indicated that a value of .85 to 0.95 is a
good candidate for this threshold. We maintain a merge list
and add the elements from the merge list to the prune list,

Table 1: Notations used in mergeAndPrune
input Set of sets of a given size formed by

tables in the queries.
pruneSet A subset of input that holds the list

of elements that will be pruned from
the input at the end of the iteration.

M Holds the current table set that is con-
sidered for meging.

MList Holds all the sets that can be merged
with M .

mergedSets Set of sets of tables that are formed by
merging some elements from input.

only if there is no potential for the elements to form further
combinations of tables.

Algorithm 1 Algorithm for merging and pruning interest-
ing table subsets

function mergeAndPrune
for each i ∈ input and i /∈ pruneSet do

M ← i
MList← {i}
for each c ∈ input do

if c ⊂M then
MList←MList ∪ c
continue

end if
. determine if the merge item is effective and not

too far off from the original
if TS-cost(M ∪ c)/TS-cost(M) >

MERGE THRESHOLD then
M ←M ∪ c
MList←MList ∪ c

end if
end for
for each m ∈ MList do

. retain candidates that we should not be
pruning.

if @ s| s ∈ input and s /∈ MList and s ∩ m 6= φ
then

. find the candidates for pruning from input
in the later step.

pruneSet← pruneSet ∪m
end if

end for
mergedSets← mergedSets ∪M

end for
input← input− pruneSet
return mergedSet

end function

3.1.2 Aggregate table creation using query cluster-
ing

BI reporting workloads and analytical workloads typically
generate queries against the same star/snowflake schema,
but these queries select different sets of columns and in-
voke different sets of aggregate functions i.e SUM, COUNT
etc. The clustering algorithm compares the similarity of
each clause in the SQL query (i.e. SELECT list, FROM,
WHERE, GROUPBY, etc.) to pull together highly similar

702

Figure 2: Aggregate Table Candidate Queries

Figure 3: Aggregate Table DDL Generation

queries. Clustering queries in the workload based on the sim-
ilarity of the SQL query structure collects together queries
that access the same or almost similar table sets. Figure 2
and figure 3, depicts our implementation. Figure 2 shows
the aggregate query that is beneficial to the given cluster of
queries.The number of queries in the cluster are shown on
the right side. As shown in figure 3, users can also generate
the DDL that creates the specified aggregate table.

3.2 Update Consolidation
Several customers have legacy applications that encapsu-

late ETL logic in SQL stored procedures and SQL script-
ing languages (such as Oracle PL/SQL or Teradata BTEQ).
Neither Hive nor Impala support stored procedures, so the
individual queries in these stored procedures need to be exe-
cuted on Hive/Impala. This ETL logic many times includes
UPDATE queries.

In this section, we focus on such UPDATE queries, specif-
ically the issue of converting a sequence of UPDATE queries
in a workflow into a smaller set of UPDATE queries. We call
this UPDATE consolidation.

Most UPDATE queries in ETL workflows are not complex
and largely following the patterns like:

UPDATE employee emp

SET salary = salary * 1.1

WHERE emp.title = ‘Engineer’;

UPDATE emp

FROM employee emp ,

department dept

SET emp.deptid = dept.deptid

WHERE emp.deptid = dept.deptid

AND dept.deptno = 1

AND emp.title = ‘Engineer’

Table 2: Notations used in update consolidation
Qi ith query in the sequence.
sourceTables(Qi) All the tables that the query

reads from.
targetTable(Qi) The table that is updated as

part of the given INSERT/
UPDATE/ DELETE query.

Ci consolidation set i contain-
ing one or more queries.

readCols(e) Set of all the columns that
are read by the given query
e. For a consolidated set e,
this is the union of all the
columns belonging to every
query in the set.

writeCols(e) Set of all the columns that
will be written by the given
query e. For a consolidated
set e, this is the union of all
the columns belonging to ev-
ery query in the set.

type(Qi) type of the UPDATE query,
1 if it is a single table UP-
DATE; and 2 if more than
one table is referenced in the
query.

type(C) UPDATE type of all the
queries contained in the set.
A set only contains queries
of same type. Hence its a
single value indicating the
update type of all queries.

setExprEqual(Qi, C) returns true if the set expres-
sion in the UPDATE query
Qi is same as one of the set
expression in consolidate set
C all other columns except
those in set expression are
not write conflicted

AND emp.status = ‘active’;

We classify these UPDATE queries into two categories:
Type 1 and Type 2 UPDATEs:

• Type 1 UPDATEs are single table UPDATE queries
with an optional WHERE clause.

• Type 2 UPDATEs involve updates to a single table
based on querying multiple tables.

This distinction between UPDATE queries is important, be-
cause Type 1 and Type 2 UPDATE queries can never be con-
solidated together. To execute UPDATE queries on Hadoop,
the typical process is to use the CREATE-JOIN-RENAME
conversion mechanism. The three steps of the CREATE-
JOIN-RENAME conversion mechanism are:

1. Create a temporary table by converting the UPDATE
query into CREATE+SELECT query, containing the
primary key and updated columns of the target table.

2. Create a new table by performing a LEFT OUTER
JOIN of the original table with the temporary table.Non

703

null values in the temporary table get priority over the
original table.

3. Drop the original table and RENAME the newly cre-
ated table to that of the original table.

If these 3 steps are needed to process each UPDATE, exe-
cuting a sequence of UPDATEs can become very expensive
if the steps are repeated for each UPDATE query individu-
ally. An efficient way of executing sequential UPDATEs on
Hadoop is to first consolidate the UPDATEs into a smaller
set of queries. However, it is very important to attempt con-
solidation only when we can guarantee that the end state of
the data in the tables remains exactly the same with both
approaches - i.e. when applying one UPDATE at a time
versus a consolidated UPDATE. Therefore, the algorithm
has to check for interleaved INSERT/UPDATE/DELETE
queries, be mindful of transactional boundaries, etc. - and
only perform consolidation when it is safe to do so.

Partitioned tables can be updated using the PARTITION
OVERWRITE functionality. If the UPDATE statement con-
tains a WHERE clause on the partitioning column, then we
can convert the corresponding UPDATE query into an IN-
SERT OVERWRITE query along with the required parti-
tion specification. If the query is modifying a selected subset
of rows in the partition, we still have to follow the above ap-
proach to compute the new rows for the partition, including
the modified rows. In this case too, since a join is involved,
it is beneficial to look at consolidation options.

Another commonly used workaround to mitigate UPDATE
issues is to use database views, i.e. users access data pointed
to by a normal table or in the Hadoop context a partitioned
table through a view. After UPDATEs to the table are
propagated to Hadoop by adding a new partition that con-
tains updated data to the existing table or re-building the
entire table that now reflects UPDATEs, the view definition
is changed to now point at the newly available data. This
way users have access to the ‘old’ data till the point of the
switch. A similar approach, (but for the compaction use
case) is discussed here [6]. Even with this mechanism, con-
solidating updates to a particular partition or table prior to
applying the updates, can minimize IO costs.

3.2.1 Update Consolidation Algorithm
We use the notations mentioned in Table 2 to describe the

various concepts used in our UPDATE consolidation algo-
rithm.

The findConsolidatedSets algorithm to consolidate UP-
DATE queries is shown in Algorithm 4. The algorithm starts
with an empty set and adds the first UPDATE query it finds
into the current consolidation set. Then it checks subse-
quent queries to see if there are any potential conflicts with
the group in hand. Query Qi conflicts with Qj if Qj is ei-
ther reading or writing a table that Qi writes to. We use
the procedure isReadWriteConfict in Algorithm 2 to de-
termine the same.The UPDATE queries Qi and Qj that are
reading from the same set of tables and writing to the same
table can conflict if one of the queries is writing to a col-
umn, which the other query is reading from. We use the
procedure isColumnConflict in Algorithm 3 to determine
the conflict.

When we encounter a conflicting query, we stop the con-
solidation process. When two UPDATE queries Qi and Qj

are in sequence with no conflicting queries in between, they

Algorithm 2 Procedure to detect conflicting queries

function isReadWriteConfict(e1,e2)
if targetTable(e1) ∩ sourceTables(e2) = φ &&

targetTable(e2) ∩ sourceTables(e1) = φ && target-
Table(e2) ∩ targetTable(e1) = φ then

return True
else

return False
end if

end function

Algorithm 3 Procedure to detect conflicting read/write
columns
function isColumnConflict(e1,e2)

if writeCols(e1) ∩ readCols(e2) = φ &&
writeCols(e2) ∩ readCols(e1) = φ && writeCols(e2)
∩ writeCols(e1) = φ then

return True
else

return False
end if

end function

can be considered for consolidation. So we check Qi and Qj

for compatibility. Qi and Qj can be consolidated into one
group if all the following conditions are met:

1. Qi and Qj are of the same UPDATE types - i.e. either
both are Type 1 or both are Type 2.

2. For Type 1 UPDATEs, the target table is the same for
Qi and Qj and there are no columns of Qi and Qj that
are write conflicted.

3. For Type 2 UPDATEs, the source and target tables are
the same for Qi and Qj (along with same join predi-
cate) and there are no columns of Qi and Qj that are
write conflicted.

Finally, we maintain a visited flag with each UPDATE query
so that if there are interleaved UPDATEs between totally
different UPDATE queries in the same stored procedure,
they can be considered for consolidation.

Once we have identified a group of all consolidated sets,
the conversion to the equivalent CREATE-JOIN-RENAME
queries follows these steps. Here, without loss of generality,
we assume that all WHERE predicates are in Conjunctive
Normal Form.

1. We convert each of the
‘SET<col>=<colexpression>WHERE<predicates>’
into
‘CASE WHEN <predicates> THEN <colexpression>
ELSE <col> END as <col>’

2. For queries with same SET expression and different
WHERE predicates, we create an OR clause for each
of the WHERE predicates in the CASE block.

3. We take the WHERE predicates of all the queries and
combine them using disjunction with the OR operator.
If there is a common subexpression among WHERE
predicates, we promote the common subexpression out-
wards.

704

Algorithm 4 Procedure to find and consolidate queries

function findConsolidatedSets
C ← {} . current consolidated set
Q← setOfInputQueries
while ∃ update query with visited(q) = False do

for i←1 to |Q| do
if Qi 6= Update Query then . insert or delete query

if ¬ isReadWriteConflict(C,Qi) then . conclude the current consolidated set and start a new set
output ← output ∪ C

end if
visited(Qi)← True ; continue

end if
if |C| = 0 and Qi is Update Query and visited(Qi) = False then

visited(Qi)← True ; continue
end if
if type(Qi) 6= type(C) then

output ← output ∪ C
if visited(Qi) = False then

C ← {Qi}
else

C ← φ
end if
visited(Qi)← True ; continue

end if
if type(Qi) = 1 and type(C) = 1 then . Type 1 : Single table update query

if targetTable(Qi) = targetTable(C) then
if isColumnConflict(C,Qi) or setExprEqual(Qi,C) then

if visited(Qi) = False then
C ← C ∪ Qi

end if
else

output ← output ∪ C
if visited(Qi) = False then

C ← {Qi}
else

C ← φ
end if

end if
visited(Qi)← True ; continue

end if
end if
if type(Qi) = 2 and type(C) = 2 then . Type 2 : Multi table update query

if targetTable(Qi) = targetTable(C) and sourceTable(Qi) = sourceTable(C) then
if isColumnConflict(C,Qi) or setExprEqual(Qi,C) then

if visited(Qi) = False then
C ← C ∪ Qi

end if
visited(Qi)← True ; continue

end if
end if
if ¬ isReadWriteConflict(C,Qi) then

output ← output ∪ C
if visited(Qi) = False then

C ← {Qi}
else

C ← φ
end if
visited(Qi)← True ; continue

end if
end if

end for
end while
return output

end function

705

Here are some examples of consolidations. The following
Type 1 UPDATE queries that modify the table ‘lineitem’ -
with or without filtering conditions:

UPDATE lineitem

SET l_receiptdate = Date_add(l_commitdate, 1)

UPDATE lineitem

SET l_shipmode = concat(l_shipmode,‘-usps’),

WHERE l_shipmode = ‘MAIL’

UPDATE lineitem

SET l_discount = 0.2

WHERE l_quantity > 20

can be consolidated and converted into a CREATE-JOIN-
RENAME flow as follows:

CREATE table lineitem_tmp AS

SELECT Date_add(l_commitdate, 1) AS l_receiptdate

, CASE

WHEN l_shipmode = ‘MAIL’

THEN concat(l_shipmode,‘-usps’)

ELSE l_shipmode

END AS l_shipmode

, CASE

WHEN l_quantity > 20

THEN 0.2

ELSE l_discount 0

END AS l_discount

, l_orderkey

, l_linenumber

FROM lineitem;

CREATE TABLE lineitem_updated AS

SELECT orig.l_orderkey

, orig.l_linenumber

, Nvl(tmp.l_receiptdate, orig.l_receiptdate)

AS l_receiptdate

, Nvl(tmp.l_shipmode, orig.l_shipmode)

AS l_shipmode

, Nvl(tmp.l_discount, orig.l_discount)

AS l_discount

, l_partkey, l_suppkey, l_quantity, l_extendedprice

, l_tax, l_returnflag, l_linestatus, l_shipdate

, l_commitdate, l_shipinstruct, l_comment

FROM lineitem orig

LEFT OUTER JOIN lineitem_tmp tmp

-- lineitem table primary key

ON (orig.l_orderkey = tmp.l_orderkey

AND orig.l_linenumber = tmp.l_linenumber)

DROP TABLE lineitem;

ALTER TABLE lineitem_updated RENAME TO lineitem;

As another example consider the following Type 2 UP-
DATE queries, that modify the ‘lineitem’ table based on
the results of a join with the ‘orders’ table:

UPDATE lineitem

FROM lineitem l

, orders o

SET l.l_tax = 0.1

WHERE l.l_orderkey = o.o_orderkey

AND o.o_totalprice BETWEEN 0 AND 50000

AND o.o_orderpriority = ‘2-HIGH’

AND o.o_orderstatus = ‘F’;

UPDATE lineitem

FROM lineitem l

, orders o

SET l_shipmode = ‘AIR’

WHERE l.l_orderkey = o.o_orderkey

AND o.o_totalprice BETWEEN 50001 AND 100000

AND o.o_orderpriority = ‘2-HIGH’

AND o.o_orderstatus = ‘F’;

can be consolidated and converted into a CREATE-JOIN-
RENAME flow as follows:

CREATE TABLE lineitem_tmp AS

SELECT CASE

WHEN o.o_totalprice BETWEEN 0 AND 50000

THEN 0.1 ELSE l_tax END AS l_tax

, CASE

WHEN o.o_totalprice BETWEEN 50001 AND 100000

THEN ‘AIR’ ELSE l_shipmode

END AS l_shipmode

, l_orderkey

, l_linenumber

FROM lineitem l

, orders o

WHERE l.l_orderkey = o.o_orderkey

AND o.o_totalprice BETWEEN 0 and 100000

AND o.o_orderpriority = ‘2-HIGH’

AND o.o_orderstatus = ‘F’;

CREATE TABLE lineitem_updated AS

SELECT orig.l_shipdate

, orig.l_commitdate

, orig.l_receiptdate

, orig.l_orderkey

, orig.l_partkey

, orig.l_suppkey

, orig.l_linenumber

, orig.l_extendedprice

, Nvl(tmp.l_tax, orig.l_tax) AS l_tax

, orig.l_returnflag

, orig.l_linestatus

, Nvl(tmp.l_shipmode, orig.l_shipmode) AS l_shipmode

, orig.l_shipinstruct

, orig.l_discount

, orig.l_comment

FROM lineitem orig

LEFT OUTER JOIN lineitem_tmp tmp

ON (orig.l_orderkey = tmp.l_orderkey

AND orig.l_linenumber = tmp.l_linenumber)

DROP TABLE lineitem;

ALTER TABLE lineitem_updated RENAME TO lineitem;

We also looked at the problem of constructing a control
flow graph of the stored procedure and performed a static
analysis on this graph. If the number of different flows are
manageably finite, we can generate a consolidation sequence

706

for each of the different flows independently thus enabling
the user to script these flows independently. However we
omit all the implementation details here, as it is beyond the
scope of this paper.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of the various

recommendations discussed in the previous sections using
two different workloads. The first workload is TPC-H at
the 100 GB scale, which we call TPCH-100. Our second
workload belongs to a customer in the financial sector. This
customer has 578 tables with 3038 number of columns. The
table sizes vary from 500 GB to 5TB. We call this workload
CUST-1.

We have setup representative clusters to measure the per-
formance of the system. This cluster has 21 nodes with 1
master and 20 data nodes. The data nodes are the AWS
m3.xlarge kind, with 4 core vCpu, 2.6 GHZ, 15GB of main
memory and 2 X 40GB SSD storage. In all the experiments
’time’ refers to the wall clock time as reported by the execut-
ing Hive query. There are no other queries running on the
system. For simplicity, we ignore the HDFS and other OS
caches. The experiments presented should be interpreted as
directional rather than exhaustive empirical validation.

4.1 Aggregate Table Recommendation
For aggregate table generation we ran our experiments on

the CUST-1 setup.

4.1.1 Clustering similar queries
In our first set of experiments we evaluate the quality

of aggregate tables generated with and without clustering
similar queries together. We divided a workload with 6597
queries into set of clusters using the clustering algorithm,
thus reducing the number of queries to a group of smaller
workloads. We empirically show how this approach provides
aggregate table recommendations with better run time bene-
fits. The first four smaller workloads are comprised of similar
queries detected by a clustering algorithm that is run over
the 6597 queries. In the fifth workload we bundle all the
6597 queries together. Figure 4 displays how the workloads
vary in size from 18 to 6597 queries.

Figure 5 and figure 6 show the results of executing the
aggregate table recommendation algorithm on these 5 work-
loads. As demonstrated in these results, the time taken for
the algorithm does not have a direct correlation to the input
workload size. The algorithm converges to a solution when
it reaches a locally optimum solution. When similar queries
are clustered together the chances of the locally optimum so-
lution being globally optimum are high. In our experiments
when the algorithm is run on all the queries it converges
to a globally sub-optimum solution, recommending an ag-
gregate table that benefits fewer queries - and hence has a
lower estimated cost saving. The estimated cost savings for
each cluster is computed as the sum of the estimated cost
savings for each query in that cluster. The estimated cost
of each query is derived by computing the IO scans required
for each table and then propagating these up the join ladder
to get the final estimated cost of the query. The cost savings
is the difference in estimated cost when a query runs on base
tables versus the aggregated table.

Figure 4: Number of queries per workload.

Figure 5: Execution time of aggregate table algo-
rithm.

Figure 6: Estimated Cost savings per workload.

707

Table 3: Merge and Prune
Execution Time in milli seconds

Workload Name With merge
and prune

Without merge
and prune

Cluster 1 2.092 2.107
Cluster 2 18.919 > 4hrs.
Cluster 3 26.567 > 4hrs.
Cluster 4 31.972 > 4hrs.
Entire Workload 5.279 5.160

4.1.2 Merge and prune
In this set of experiments we evaluate the run time of

the algorithm with and without the merge and prune en-
hancement. We run the algorithm on the same workloads
we created for the earlier experiment. We terminated the
execution of the algorithm after 4 hours. In the case where
the algorithm converges to a solution early on, removal of
merge and prune has no effect. But in the other cases the al-
gorithm without merge and prune enhancements takes more
than 4 hours to complete and so was terminated. When the
algorithm ran to completion without merge and prune, we
found no change in the definition of the output aggregate
table. The results are tabulated in Table 3.

4.2 Update Consolidation
For update consolidation, we ran our experiments on the

TPCH-100 setup. We hand-crafted 2 stored procedures atop
TPC-H data inspired from a real world customer workload.
The number of consolidations we found in the stored pro-
cedure are shown in Table 4. Column 2 shows the number
of queries in each stored procedure. Column 3 shows the
groups of consolidated queries represented by the index of
the query in the stored procedure. We see that sometime
there are as many as 14 queries that are consolidated into a
single group. We also observed that with templatized code
generation, there is a lot of scope for consolidating queries.

For comparison purposes, we take the entire stored pro-
cedure and convert the queries inside it to equivalent IN-
SERT/UPDATE queries. Any loops in the stored proce-
dures are expanded to evaluate all updated columns - and
consider each one for consolidation. Two-way IF/ELSE con-
ditions are simplified to take all the IF logic in one run, and
ELSE logic in the other run. N-way IF/ELSE conditions
were ignored.

From our results, we observe that on consolidating 5 queries
into a single query, the performance impact is not 5x, for the
following reasons:

1. The consolidated CREATE query might have more
columns than the individual queries, therefore the amount
of data it writes will be larger.

2. If there are few or no common subexpressions, then
we re-write the whole table or a significantly higher
portion of the table.

But our performance results indicate that even with these
caveats, UPDATE consolidation is very efficient compared
to individually mapped queries. In all our cases, we found
that consolidating even two queries is better than individu-
ally executing these queries.

Figure 7: Execution time of consolidated vs non-
consolidated queries.

Figure 8: Storage requirements of update queries.

708

Table 4: Update Consolidation groups
Stored procedure Number of queries Consolidation groups
1 38 {6,7,9} ,{10,11} ,{12,14,16,18,20,22,24,26,28} ,{30,32,34,36}
2 219 {113,119,125,131} ,{173,175,177,179,181,183,185,187,189,191,193,195,197,199}

The time taken for detecting UPDATE consolidations is
less than a second; hence it was ignored in these measure-
ments. We assume that the database has no triggers, all
the tables are independent and updating a table does not
incur UPDATEs to tables that are not part of the query.
We plot the execution time of non-consolidated queries to
consolidated queries in figure 7. The largest group with 14
queries shows a performance improvement of 10x. Even for
a group of 2 queries, we see a minimum performance im-
provement of 80%. The baseline update performance which
is spanning few minutes is not an uncommon scenario in
SQL-on-Hadoop engines.

The graph in figure 8 shows the storage ratio for consol-
idated and non-consolidated queries for the size of the con-
solidation group. If there are multiple groups with the same
size, we take the harmonic average of all the groups of the
given size. The intermediate storage required for consolida-
tion varies from approximately 2x to as large as 10x when
compared to the average storage requirement for individual
non-consolidated queries. However in many cases the size of
the intermediate table is also significantly less than the orig-
inal table. In the Hadoop ecosystem, storage is considered a
cheap resource and if performance of the UPDATE queries
is important, it is certainly worth the trade-off.

These stored procedures are part of a daily workflow that
the customer executes, hence the time savings obtained by
update consolidation are not only significant but also ex-
tremely useful in the big data environment.

5. CONCLUSION & FUTURE WORK
As large scale new and legacy applications are deployed on

Hadoop, automated workload-level optimization strategies
can greatly help improve the performance of SQL queries.
In this paper, we propose creating aggregate tables after
first deriving clusters of similar queries from SQL workloads,
and demonstrate that in some cases execution time and ef-
ficiency improvements of about 1500% can be achieved by
using clustered set of queries versus a disparate set of queries
as input to the aggregate table creation algorithm. We have
also shown empirically that a merge and prune optimiza-
tion strategy helps the aggregate table creation algorithm
converge to a solution, even in cases where it could not con-
verge to a solution. We also showed that 2 to 10X execution
time savings can be realized in some cases, when UPDATE
queries can be consolidated. Both these optimizations are
critical in the Hadoop environment when tables, columns
and queries are at very large scales and query response times
are of significance.

Advisors [8] [7] [15] [13] [9] rightly emphasize the need
for an integrated strategy that evaluates and recommends
aggregate table and indexing candidates, together. In the
Hadoop ecosystem, partitioning features are the closest log-
ical equivalent to indexes. Currently, if statistical informa-
tion on a table (such as table volume and column NDVs) is
provided, our tool recommends partitioning key candidates
for a given table based on the analysis of filter and join pat-

terns most heavily used by queries on the table. We plan to
extend this logic to discover partitioning keys for the aggre-
gate tables, thus providing an integrated recommendation
strategy.

A further area of focus for the UPDATE consolidation op-
timization is to explore opportunities to coalesce operations.
For example, operations on the temporary table generated
in our algorithm can be consolidated to reduce the size of
these tables and improve the efficiency of UPDATEs. We are
also investigating UPDATE consolidation techniques when
UPDATEs are interleaved with control-flow-logic.

Apart from the applicability of our work to adopters of
Hive, Impala and Spark SQL who want to optimize their
workloads, EDW and BI tools can also use these techniques
to improve the efficiency of their workloads.

6. ACKNOWLEDGEMENTS
We would like to thank Prithviraj Pandian for developing

the clustering algorithm used in our experiments for Ag-
gregate tables. We would also like to thank our colleagues
Justin K, Parna Agarwal, Anupam Singh and Laurel Hale
for their insightful review comments.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In Proceedings of
the 20th International Conference on Very Large Data
Bases, VLDB ’94, pages 487–499, San Francisco, CA,
USA, 1994. Morgan Kaufmann Publishers Inc.

[2] S. Agrawal, S. Chaudhuri, and V. R. Narasayya.
Automated selection of materialized views and indexes
in sql databases. In Proceedings of the 26th
International Conference on Very Large Data Bases,
VLDB ’00, pages 496–505, San Francisco, CA, USA,
2000. Morgan Kaufmann Publishers Inc.

[3] S. Chaudhuri, A. K. Gupta, and V. Narasayya.
Compressing sql workloads. In Proceedings of the 2002
ACM SIGMOD International Conference on
Management of Data, SIGMOD ’02, pages 488–499,
New York, NY, USA, 2002. ACM.

[4] G. Grahne and J. Zhu. Fast algorithms for frequent
itemset mining using fp-trees. IEEE Trans. on Knowl.
and Data Eng., 17(10):1347–1362, Oct. 2005.

[5] J. Hyde. Discardable memory and materialized
queries, May 2014. Available at
http://hortonworks.com/blog/dmmq/.

[6] How-to: Ingest and query “fast data” with impala.
Available at http://blog.cloudera.com/blog/2015/11/
how-to-ingest-and-query-fast-data-with-impala-without-kudu/.

[7] Database engine tuning advisor overview. Available at
https://technet.microsoft.com/en-us/library/
ms173494(v=sql.105).aspx.

[8] SQL tuning advisor in oracle SQL developer 3.0.
Available at http://www.oracle.com/webfolder/

709

technetwork/tutorials/obe/db/sqldev/r30/
TuningAdvisor/TuningAdvisor.htm.

[9] IBM cognos. Available at http:
//www.ibm.com/support/knowledgecenter/SSEP7J
10.2.2/com.ibm.swg.ba.cognos.cbi.doc/welcome.html.

[10] JIRA:Add materialized views to HIVE. Available at
https://issues.apache.org/jira/browse/HIVE-10459.

[11] Apache kudu. Available at http://kudu.apache.org/.

[12] Kudu impala integration. Available at http://kudu.
apache.org/docs/kudu impala integration.html.

[13] Microstrategy product documentation. Available at
https://microstrategyhelp.atlassian.net/wiki/display/
MSTRDOCS/MicroStrategy+Product+
Documentation.

[14] Qubole quark. Available at
http://qubole-quark.readthedocs.io/en/latest/.

[15] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman,
A. Storm, C. Garcia-Arellano, and S. Fadden. Db2
design advisor: Integrated automatic physical
database design. In Proceedings of the Thirtieth
International Conference on Very Large Data Bases -
Volume 30, VLDB ’04, pages 1087–1097. VLDB
Endowment, 2004.

710

	Herding the elephants: Workload-level optimization strategies for HadoopSandeep Akinapelli, Ravi Shetye, Sangeeta T

