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ABSTRACT
Scientific workflows provide a means to model, execute, and
exchange the increasingly complex analysis pipelines nec-
essary for today’s data-driven science. However, existing
scientific workflow management systems (SWfMSs) are of-
ten limited to a single workflow language and lack adequate
support for large-scale data analysis. On the other hand,
current distributed dataflow systems are based on a semi-
structured data model, which makes integration of arbitrary
tools cumbersome or forces re-implementation. We present
the scientific workflow execution engine Hi-WAY, which im-
plements a strict black-box view on tools to be integrated
and data to be processed. Its generic yet powerful execu-
tion model allows Hi-WAY to execute workflows specified in
a multitude of different languages. Hi-WAY compiles work-
flows into schedules for Hadoop YARN, harnessing its proven
scalability. It allows for iterative and recursive workflow
structures and optimizes performance through adaptive and
data-aware scheduling. Reproducibility of workflow execu-
tions is achieved through automated setup of infrastructures
and re-executable provenance traces. In this application
paper we discuss limitations of current SWfMSs regarding
scalable data analysis, describe the architecture of Hi-WAY,
highlight its most important features, and report on several
large-scale experiments from different scientific domains.

1. INTRODUCTION
Recent years have brought an unprecedented influx of data

across many fields of science. In genomics, for instance, the
latest generation of genomic sequencing machines can handle
up to 18,000 human genomes per year [41], generating about
50 terabytes of sequence data per week. Similarly, astro-
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nomical research facilities and social networks are also gen-
erating terabytes of data per week [34]. To synthesize suc-
cinct results from these readouts, scientists assemble com-
plex graph-structured analysis pipelines, which chain a mul-
titude of different tools for transforming, filtering, and aggre-
gating the data [18]. The tools used within these pipelines
are implemented by thousands of researchers around the
world, rely on domain-specific data exchange formats, and
are updated frequently (e.g., [27, 31]). Consequently, easy
ways of assembling and altering analysis pipelines are of ut-
most importance [11]. Moreover, to ensure reproducibility
of scientific experiments, analysis pipelines should be easily
sharable and execution traces must be accessible [12].

Systems fulfilling these requirements are generally called
scientific workflow management systems (SWfMSs). From
an abstract perspective, scientific workflows are composi-
tions of sequential and concurrent data processing tasks,
whose order is determined by data interdependencies [36].
Tasks are treated as black boxes and can therefore range
from a simple shell script over a local command-line tool to
an external service call. Also, the data exchanged by tasks
is typically not parsed by the SWfMS but only forwarded
according to the workflow structure. While these black-box
data and operator models prohibit the automated detection
of potentials for data-parallel execution, their strengths lie
in their flexibility and the simplicity of integrating external
tools.

To deal with the ever-increasing amounts of data preva-
lent in today’s science, SWfMSs have to provide support for
parallel and distributed storage and computation [26]. How-
ever, while extensible distributed computing frameworks like
Hadoop YARN [42] or MESOS [19] keep developing rapidly,
established SWfMSs, such as Taverna [47] or Pegasus [13]
are not able to keep pace. A particular problem is that
most SWfMSs tightly couple their own custom workflow
language to a specific execution engine, which can be dif-
ficult to configure and maintain alongside other execution
engines that are already present on the cluster. In addition,
many of these execution engines fail to keep up with the
latest developments in distributed computing, e.g., by stor-
ing data in a central location, or by neglecting data locality
and heterogeneity of distributed resources during workflow
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scheduling [10]. Furthermore, despite reproducibility being
advocated as a major strength of scientific workflows, most
systems focus only on sharing workflows, disregarding the
provisioning of input data and setup of the execution envi-
ronment [15, 33]. Finally, many systems severely limit the
expressiveness of their workflow language, e.g., by disallow-
ing conditional or recursive structures. While the scientific
workflow community is becoming increasingly aware of these
issues (e.g., [8, 33, 50]), to date only isolated, often domain-
specific solutions addressing only subsets of these problems
have been proposed (e.g., [6, 14, 38]).

At the same time, support for many of these features has
been implemented in several recently developed distributed
dataflow systems, such as Spark [49] or Flink [5]. However,
such systems employ a semi-structured white-box (e.g., key-
value-based) data model to automatically partition and par-
allelize dataflows. Unfortunately, a structured data model
impedes the flexibility in workflow design when integrating
external tools that read and write file-based data. To cir-
cumvent this problem, additional glue code for transforming
to and from the structured data model has to be provided.
This introduces unnecessary overhead in terms of time re-
quired for implementing the glue code as well as for the
necessary data transformations at runtime [48].

In this application paper, we present the Hi-WAY Work-
flow Application master for YARN. Technically, Hi-WAY
is yet another application master for YARN. Conceptually,
it is a (surprisingly thin) layer between scientific workflow
specifications expressed in different languages and Hadoop
YARN. It emphasizes data center compatibility by being
able to run on YARN installations of any size and type of
underlying infrastructure. Compared to other SWfMSs, Hi-
WAY brings the following specific features.

1. Multi-language support. Hi-WAY employs a generic
yet powerful execution model. It has no own specifica-
tion language, but instead comes with an extensible
language interface and built-in support for multiple
workflow languages, such as Cuneiform [8], Pegasus
DAX [13], and Galaxy [17] (see Section 3.2).

2. Iterative workflows. Hi-WAY’s execution model is ex-
pressive enough to support data-dependent control-
flow decisions. This allows for the design of condi-
tional, iterative, and recursive structures, which are in-
creasingly common in distributed dataflows (e.g., [28]),
yet are just beginning to emerge in scientific workflows
(see Section 3.3).

3. Performance gains through adaptive scheduling. Hi-
WAY supports various workflow scheduling algorithms.
It utilizes statistics of earlier workflow executions to es-
timate the resource requirements of tasks awaiting ex-
ecution and exploit heterogeneity in the computational
infrastructures during scheduling. Also, Hi-WAY sup-
ports adaption of schedules to both data locality and
resource availability (see Section 3.4).

4. Reproducible experiments. Hi-WAY generates compre-
hensive provenance traces, which can be directly re-
executed as workflows (see Section 3.5). Also, Hi-WAY
uses Chef [2] and Karamel [1] for specifying automated
setups of a workflow’s software requirements and in-
put data, including (if necessary) the installation of
Hi-WAY and Hadoop (see Section 3.6).

5. Scalable execution. By employing Hadoop YARN as
its underlying execution engine, Hi-WAY harnesses its
scalable resource management, fault tolerance, and dis-
tributed file management (see Section 3.1).

While some of these features have been briefly outlined
in the context of a demonstration paper [9], this is the first
comprehensive description of Hi-WAY.

The remainder of this paper is structured as follows: Sec-
tion 2 gives an overview of related work. Section 3 presents
the architecture of Hi-WAY and gives detailed descriptions
of the aforementioned core features, which are highlighted
in italic font throughout the rest of the document. Section 4
describes several experiments showcasing these feature in
real-life workflows on both local clusters and cloud comput-
ing infrastructure. Section 5 concludes the paper.

2. RELATED WORK
Projects with goals similar to Hi-WAY can be separated

into two groups. The first group of systems comprises tradi-
tional SWfMSs, which, like Hi-WAY, employ black-box data
and operator models. The second group encompasses dis-
tributed dataflow systems developed to process mostly struc-
tured or semi-structured (white-box) data. For a compre-
hensive overview of data-intensive scientific workflow man-
agement, readers are referred to [10] and [26].

2.1 Scientific Workflow Management
The SWfMS Pegasus [13] emphasizes scalability, utilizing

HTCondor as its underlying execution engine. It enforces
the usage of its own XML-based workflow language called
DAX. Pegasus supports a number of scheduling policies, all
of which are static, yet some of which can be considered
adaptive (such as HEFT [39]). Finally, Pegasus does not
allow for iterative workflow structures, since every task in-
vocation has to be explicitly described in the DAX file. In
contrast to Hi-WAY, Pegasus does not provide any means
of reproducing scientific experiments across datacenters. Hi-
WAY complements Pegasus by enabling Pegasus workflows
to be run on top of Hadoop YARN, as outlined in Section 3.2.

Taverna [47] is an established SWfMS that focuses on us-
ability, providing a graphical user interface for workflow de-
sign and monitoring as well as a comprehensive collection of
pre-defined tools and remote services. Taverna emphasizes
reproducibility of experiments and workflow sharing by inte-
grating the public myExperiment workflow repository [16],
in which over a thousand Taverna workflows have been made
available. However, Taverna is mostly used to integrate web
services and short-running tasks and thus does not support
scalable distribution of workload across several worker nodes
or any adaptive scheduling policies.

Galaxy [17] is a SWfMS that provides a web-based graph-
ical user interface, an array of built-in libraries with a fo-
cus on computational biology, and a repository for sharing
workflows and data. CloudMan [3] extends Galaxy with
limited scalability by enabling Galaxy clusters of up to 20
nodes to be set up on Amazon’s EC2 through an easy-to-use
web interface. Unfortunately, Galaxy neither supports adap-
tive scheduling nor iterative workflow structures. Similar to
Pegasus and as described in Section 3.2, Hi-WAY comple-
ments Galaxy by allowing exported Galaxy workflows to be
run on Hadoop YARN. For a comparative evaluation of Hi-
WAY and Galaxy CloudMan, refer to Section 4.2.
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Text-based parallel scripting languages like Makeflow [4],
Snakemake [23], or Swift [45] are more light-weight alter-
natives to full-fledged SWfMSs. Swift [45] provides a func-
tional scripting language that facilitates the design of inher-
ently data-parallel workflows. Conversely, Snakemake [23]
and Makeflow [4] are inspired by the build automation tool
GNU make, enabling a goal-driven assembly of workflow
scripts. All of these system have in common that they
support the scalable execution of implemented workflows
on distributed infrastructures, yet disregard other features
typically present in SWfMSs, such as adaptive scheduling
mechanisms or support for reproducibility.

Nextflow [38] is a recently proposed SWfMS [14], which
brings its own domain-specific language. In Nextflow, soft-
ware dependencies can be provided in the form of Docker
or Shifter containers, which facilitates the design of repro-
ducible workflows. Nextflow enables scalable execution by
supporting several general-purpose batch schedulers. Com-
pared to Hi-WAY, execution traces are less detailed and not
re-executable. Furthermore, Nextflow does not exploit data-
aware and adaptive scheduling potentials.

Toil [43] is a multi-language SWfMS that supports scalable
workflow execution by interfacing with several distributed
resource management systems. Its supported languages in-
clude the Common Workflow Language (CWL) [6], a YAML-
based workflow language that unifies concepts of various
other languages, and a custom Python-based DSL that sup-
ports the design of iterative workflows. Similar to Nextflow,
Toil enables sharable and reproducible workflow runs by al-
lowing tasks to be wrapped in re-usable Docker containers.
In contrast to Hi-WAY, Toil does not gather comprehensive
provenance and statistics data and, consequently, does not
support any means of adaptive workflow scheduling.

2.2 Distributed Dataflows Systems
Distributed dataflow systems like Spark [49] or Flink [5]

have recently achieved strong momentum both in academia
and in industry. These systems operate on semi-structured
data and support different programming models, such as
SQL-like expression languages or real-time stream process-
ing. Departing from the black-box data model along with
natively supporting concepts like data streaming and in-
memory computing allows these systems to in many cases
execute even sequential processing steps in parallel and cir-
cumvent the materialization of intermediate data on the
hard disk. It also enables the automatic detection and ex-
ploitation of potentials for data parallelism. However, the
resulting gains in performance come at the cost of reduced
flexibility for workflow designers. This is especially prob-
lematic for scientists from domains other than the compu-
tational sciences. Since integrating external tools process-
ing unstructured, file-based data is often tedious and under-
mines the benefits provided by dataflow systems, a substan-
tial amount of researchers continue to rely on traditional
scripting and programming languages to tackle their data-
intensive analysis tasks (e.g., [27, 31]).

Tez [32] is an application master for YARN that enables
the execution of DAGs comprising map, reduce, and custom
tasks. Being a low-level library intended to be interfaced
by higher-level applications, external tools consuming and
producing file-based data need to be wrapped in order to be
used in Tez. For a comparative evaluation between Hi-WAY
and Tez, see Section 4.1.

While Tez runs DAGs comprising mostly map and re-
duce tasks, Hadoop workflow schedulers like Oozie [20] or
Azkaban [35] have been developed to schedule DAGs con-
sisting mostly of Hadoop jobs (e.g., MapReduce, Pig, Hive)
on a Hadoop installation. In Oozie, tasks composing a work-
flow are transformed into a number of MapReduce jobs at
runtime. When used to run arbitrary scientific workflows,
systems like Oozie or Azkaban either introduce unneces-
sary overhead by wrapping the command-line tasks into de-
generate MapReduce jobs or do not dispatch such tasks to
Hadoop, but run them locally instead.

Chiron [30] is a scalable workflow management system in
which data is represented as relations and workflow tasks
implement one out of six higher-order functions (e.g., map,
reduce, and filter). This departure from the black-box view
on data inherent to most SWfMSs enables Chiron to apply
concepts of database query optimization to optimize per-
formance through structural workflow reordering [29]. In
contrast to Hi-WAY, Chiron is limited to a single, custom,
XML-based workflow language, which does not support iter-
ative workflow structures. Furthermore, while Chiron, like
Hi-WAY, is one of few systems in which a workflow’s (in-
complete) provenance data can be queried during execution
of that same workflow, Chiron does not employ this data to
perform any adaptive scheduling.

3. ARCHITECTURE
Hi-WAY utilizes Hadoop as its underlying system for the

management of both distributed computational resources
and storage (see Section 3.1). It comprises three main com-
ponents, as shown in Figure 1. First, the Workflow Driver
parses a scientific workflow specified in any of the supported
workflow languages and reports any discovered tasks to the
Workflow Scheduler (see Sections 3.2 and 3.3). Secondly, the
Workflow Scheduler assigns tasks to compute resources pro-
vided by Hadoop YARN according to a selected scheduling
policy (see Section 3.4). Finally, the Provenance Manager
gathers comprehensive provenance and statistics informa-
tion obtained during task and workflow execution, handling
their long-term storage and providing the Workflow Sched-
uler with up-to-date statistics on previous task executions
(see Section 3.5). Automated installation routines for the
setup of Hadoop, Hi-WAY, and selected workflows are de-
scribed in Section 3.6.

3.1 Interface with Hadoop YARN
Hadoop version 2.0 introduced the resource management

component YARN along with the concept of job-specific ap-
plication masters (AMs), increasing scalability beyond 4,000
computational nodes and enabling native support for non-
MapReduce AMs. Hi-WAY seizes this concept by providing
its own AM that interfaces with YARN.

To submit workflows for execution, Hi-WAY provides a
light-weight client program. Each workflow that is launched
from a client results in a separate instance of a Hi-WAY AM
being spawned in its own container. Containers are YARN’s
basic unit of computation, encapsulating a fixed amount of
virtual processor cores and memory which can be specified
in Hi-WAY’s configuration. Having one dedicated AM per
workflow results in a distribution of the workload associated
with workflow execution management and is therefore re-
quired to fully unlock the scalability potential provided by
Hadoop.
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Figure 1: The architecture of the Hi-WAY applica-
tion master: The Workflow Driver, described in Sec-
tions 3.2 and 3.3, parses a textual workflow file, mon-
itors workflow execution, and notifies the Workflow
Scheduler whenever it discovers new tasks. For tasks
that are ready to be executed, the Workflow Sched-
uler, presented in Section 3.4, assembles a sched-
ule. Provenance and statistics data obtained during
workflow execution are handled by the Provenance
Manager (see Section 3.5) and can be stored in a lo-
cal file as well as a MySQL or Couchbase database.

For any of a workflow’s tasks that await execution, the Hi-
WAY AM responsible for running this particular workflow
then requests an additional worker container from YARN.
Once allocated, the lifecycle of these worker containers in-
volves (i) obtaining the task’s input data from HDFS, (ii) in-
voking the commands associated with the task, and (iii) stor-
ing any generated output data in HDFS for consumption by
other containers executing tasks in the future and possibly
running on other compute nodes. Figure 2 illustrates this
interaction between Hi-WAY’s client application, AM and
worker containers, as well as Hadoop’s HDFS and YARN
components.

Besides having dedicated AM instances per workflow, an-
other prerequisite for scalable workflow execution is the abil-
ity to recover from failures. To this end, Hi-WAY is able to
re-try failed tasks, requesting YARN to allocate the addi-
tional containers on different compute nodes. Also, data
processed and produced by Hi-WAY persists through the
crash of a storage node, since Hi-WAY exploits the redun-
dant file storage of HDFS for any input, output, and inter-
mediate data associated with a workflow.

3.2 Workflow Language Interface
Hi-WAY sunders the tight coupling of scientific workflow

languages and execution engines prevalent in established
SWfMSs. For this purpose, its Workflow Driver (see Sec-
tion 3.3) provides an extensible, multilingual language inter-
face, which is able to interpret scientific workflows written
in a number of established workflow languages. Currently,
four scientific workflow languages are supported: (i) the tex-
tual workflow language Cuneiform [8], (ii) DAX, which is the
XML-based workflow language of the SWfMS Pegasus [13],
(iii) workflows exported from the SWfMS Galaxy [17], and
(iv) Hi-WAY provenance traces, which can also be inter-
preted as scientific workflows (see Section 3.5).

Cuneiform [8] is a minimal workflow language that sup-
ports direct integration of code written in a large range of ex-
ternal programming languages (e.g., Bash, Python, R, Perl,
Java). It supports iterative workflows and treats tasks as
black boxes, allowing the integration of various tools and

Figure 2: Functional interaction between the com-
ponents of Hi-WAY and Hadoop (white boxes; see
Section 3.1) as well as further requirements for run-
ning workflows (gray boxes; see Section 3.6). A
workflow is launched from a client application, re-
sulting in a new instance of a Hi-WAY AM within
a container provided by one of YARN’s NodeMan-
agers (NMs). This AM parses the workflow file re-
siding in HDFS and prompts YARN to spawn addi-
tional worker containers for tasks that are ready to
run. During task execution, these worker containers
obtain input data from HDFS, invoke locally avail-
able executables, and generate output data, which is
placed in HDFS for use by other worker containers.

libraries independent of their programming API. Cuneiform
facilitates the assembly of highly parallel data processing
pipelines by providing a range of second-order functions ex-
tending beyond map and reduce operations.

DAX [13] is Pegasus’ built-in workflow description lan-
guage, in which workflows are specified in an XML file.
Contrary to Cuneiform, DAX workflows are static, explic-
itly specifying every task to be invoked and every file to be
processed or produced by these tasks during workflow execu-
tion. Consequently, DAX workflows can become quite large
and are not intended to be read or written by workflow de-
velopers directly. Instead, APIs enabling the generation of
DAX workflows are provided for Java, Python, and Perl.

Workflows in the web-based SWfMS Galaxy [17] can be
created using a graphical user interface, in which the tasks
comprising the workflow can be selected from a large range
of software libraries that are part of any Galaxy installa-
tion. This process of workflow assembly results in a static
workflow graph that can be exported to a JSON file, which
can then be interpreted by Hi-WAY. In workflows exported
from Galaxy, the workflow’s input files are not explicitly
designated. Instead, input ports serve as placeholders for
the input files, which are resolved interactively when the
workflow is committed to Hi-WAY for execution.

In addition to these workflow languages, Hi-WAY can eas-
ily be extended to parse and execute other non-interactive
workflow languages. For non-iterative languages, one only
needs to extend the Workflow Driver class and implement
the method that parses a textual workflow file to determine
the tasks and data dependencies composing the workflow.

3.3 Iterative Workflow Driver
On execution onset, the Workflow Driver parses the work-

flow file to determine inferable tasks along with the files they
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process and produce. Any discovered tasks are passed to the
Workflow Scheduler, which then assembles a schedule and
creates container requests whenever a task’s data dependen-
cies are met. Subsequently, the Workflow Driver supervises
workflow execution, waiting for container requests to be ful-
filled or for tasks to terminate. In the former case, the Work-
flow Driver requests the Workflow Scheduler to choose a task
to be launched in that container. In the latter case, the
Workflow Driver registers any newly produced data, which
may induce new tasks becoming ready for execution and
thus new container requests to be issued.

One of Hi-WAY’s core strengths is its ability to interpret
iterative workflows, which may contain unbounded loops,
conditionals, and recursive tasks. In such iterative work-
flows, the termination of a task may entail the discovery of
entirely new tasks. For this reason, the Workflow Driver
dynamically evaluates the results of completed tasks, for-
warding newly discovered tasks to the Workflow Scheduler,
similar to during workflow parsing. See Figure 3 for a visu-
alization of the Workflow Driver’s execution model.

Figure 3: The iterative Workflow Driver’s execution
model. A workflow is parsed, entailing the discov-
ery of tasks as well as the request for and eventual
allocation of containers for ready tasks. Upon termi-
nation of a task executed in an allocated container,
previously discovered tasks might become ready (re-
sulting in new container requests), new tasks might
be discovered, or the workflow might terminate.

As an example for an iterative workflow, consider an im-
plementation of the k -means clustering algorithm commonly
encountered in machine learning applications. k -means pro-
vides a heuristic for partitioning a number of data points
into k clusters. To this end, over a sequence of paralleliz-
able steps, an initial random clustering is iteratively refined
until convergence is reached. Only by means of conditional
task execution and unbounded iteration can this algorithm
be implemented as a workflow, which underlines the impor-
tance of such iterative control structures in scientific work-
flows. The implementation of the k -means algorithm as a
Cuneiform workflow has been published in [9].

3.4 Workflow Scheduler
Determining a suitable assignment of tasks to compute

nodes is called workflow scheduling. To this end, the Work-
flow Scheduler receives tasks discovered by the Workflow
Driver, from which it builds a schedule and creates container
requests. Based on this schedule, the Workflow Scheduler
selects a task for execution whenever a container has been
allocated. This higher-level scheduler is different to YARN’s
internal schedulers, which, at a lower level, determine how to
distribute resources between multiple users and applications.
Hi-WAY provides a selection of workflow scheduling policies

that optimize performance for different workflow structures
and computational architectures.

Most established SWfMSs employ a first-come-first-served
(FCFS) scheduling policy in which tasks are placed at the
tail of a queue, from whose head they are removed and dis-
patched for execution whenever new resources become avail-
able. While Hi-WAY supports FCFS scheduling as well, its
default scheduling policy is a data-aware scheduler intended
for I/O-intensive workflows. The data-aware scheduler min-
imizes data transfer by assigning tasks to compute nodes
based on the amount of input data that is already present
locally. To this end, whenever a new container is allocated,
the data-aware scheduler skims through all tasks pending
execution, from which it selects the task with the highest
fraction of input data available locally (in HDFS) on the
compute node hosting the newly allocated container.

In contrast to data-aware and FCFS scheduling, static
scheduling policies employ a pre-built schedule, which dic-
tates how the tasks composing a workflow are to be assigned
to available compute nodes. When configured to employ a
static scheduling policy, Hi-WAY’s Workflow Scheduler as-
sembles this schedule at the beginning of workflow execution
and enforces containers to be placed on specific compute
nodes according to this schedule. A basic static schedul-
ing policy supported by Hi-WAY is a round-robin scheduler
that assigns tasks in turn, and thus in equal numbers, to the
available compute nodes.

In addition to these scheduling policies, Hi-WAY is also
able to employ adaptive scheduling in which the assignment
of tasks to compute nodes is based on continually updated
runtime estimates and is therefore adapted to the computa-
tional infrastructure. To determine such runtime estimates,
the Provenance Manager, which is responsible for gather-
ing, storing, and providing provenance and statistics data
(see Section 3.5), supplies the Workflow Scheduler with ex-
haustive statistics. For instance, when deciding whether to
assign a task to a newly allocated container on a certain
compute node, the Workflow Scheduler can query the Prove-
nance Manager for (i) the observed runtimes of earlier tasks
of the same signature (i.e., invoking the same tools) running
on either the same or other compute nodes, (ii) the names
and sizes of the files being processed in these tasks, and
(iii) the data transfer times for obtaining this input data.

If available, based on this information the Workflow Sched-
uler is able to determine runtime estimates for running any
task on any machine. In order to quickly adapt to per-
formance changes in the computational infrastructure, the
current strategy for computing these runtime estimates is to
always use the latest observed runtime. If no runtimes have
been observed yet for a particular task-machine-assignment,
a default runtime of zero is assumed to encourage trying out
new assignments and thus obtain a more complete picture
of which task performs well on which machine.

To make use of these runtime estimates, Hi-WAY supports
heterogeneous earliest finish time (HEFT) [39] scheduling.
HEFT exploits heterogeneity in both the tasks to be exe-
cuted as well as the underlying computational infrastruc-
ture. To this end, it uses runtime estimates to rank tasks
by the expected time required from task onset to workflow
terminus. By decreasing rank, tasks are assigned to com-
pute nodes with a favorable runtime estimate, i.e., critical
tasks with a longer time to finish are placed on the best-
performing nodes first.
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Since static schedulers like round-robin and HEFT require
the complete invocation graph of a workflow to be deductible
at the onset of computation, static scheduling can not be
used in conjunction with workflow languages that allow it-
erative workflows. Hence, the latter two (static) scheduling
policies are not compatible with Cuneiform workflows (see
Section 3.3).

Additional (non-static) adaptive scheduling policies are
in the process of being integrated and will be described and
evaluated in a separate manuscript. However, note that due
to the black-box operator model, scheduling policies may
not conduct structural alterations to the workflow automat-
ically, as commonly found in database query optimization.

3.5 Provenance Manager
The Provenance Manager surveys workflow execution and

registers events at different levels of granularity. First, it
traces events at the workflow level, including the name of
the workflow and its total execution time. Secondly, it logs
events for each task, e.g., the commands invoked to spawn
the task, its makespan, its standard output and error chan-
nels and the compute node on which it ran. Thirdly, it stores
events for each file consumed and produced by a task. This
includes its size and the time it took to move the file between
HDFS and the local file system. All of this provenance data
is supplemented with timestamps as well as unique iden-
tifiers and stored as JSON objects in a trace file in HDFS,
from where it can be accessed by other instances of Hi-WAY.

Since this trace file holds information about all of a work-
flow’s tasks and data dependencies, it can be interpreted as
a workflow itself. Hi-WAY promotes reproducibility of ex-
periments by being able to parse and execute such workflow
traces directly through its Workflow Driver, albeit not nec-
essarily on the same compute nodes. Hence, workflow trace
files generated by Hi-WAY constitute a fourth supported
workflow language.

Evidently, the amount of workflow traces can become diffi-
cult to handle for heavily-used installations of Hi-WAY with
thousands of trace files or more. To cope with such high
volumes of data, Hi-WAY provides prototypical implemen-
tations for storing and accessing this provenance data in a
MySQL or Couchbase database as an alternative to stor-
ing trace files in HDFS. The usage of a database for storing
this provenance data brings the added benefit of facilitating
manual queries and aggregation.

3.6 Reproducible Installation
The properties of the scientific workflow programming

model with its black-box data and operator models, as well
as the usage of Hadoop for resource management and data
distribution, both dictate requirements for workflow design-
ers (for an illustration of some of these requirements, refer to
Figure 2). First, all of a workflow’s software dependencies
(executables, software libraries, etc.) have to be available
on each of the compute nodes managed by YARN, since any
of the tasks composing a workflow could be assigned to any
compute node. Secondly, any input data required to run the
workflow has to be placed in HDFS or made locally available
on all nodes.

To set up an installation of Hi-WAY and Hadoop, con-
figuration routines are available online in the form of Chef
recipes. Chef is a configuration management software for the
automated setup of computational infrastructures [2]. These

Chef installation routines, called recipes, allow for the setup
of standalone or distributed Hi-WAY installations, either on
local machines or in public compute clouds such as Amazon’s
EC2. In addition, recipes are available for setting up a large
variety of execution-ready workflows. This includes obtain-
ing their input data, placing it in HDFS, and installing any
software dependencies required to run the workflow. Besides
providing a broad array of use cases, these recipes enable
reproducibility of all the experiments outlined in Section 4.
The procedure of running these Chef recipes via the orches-
tration engine Karamel [1] to set up a distributed Hi-WAY
execution environment along with a selection of workflows
is described in [9] and on http://saasfee.io.

Note that this means of providing reproducibility exists in
addition to the executable provenance traces described in
Section 3.5. However, while the Chef recipes are well-suited
for reproducing experiments across different research groups
and compute clusters, the executable trace files are intended
for use on the same cluster, since running a trace file requires
input data to be located and software requirements to be
available just like during the workflow run from which the
trace file was derived.

4. EVALUATION
We conducted a number of experiments in which we eval-

uated Hi-WAY’s core features of scalability, performant ex-
ecution, and adaptive workflow scheduling. The remaining
properties (support for multilingualism, reproducible experi-
ments, and iterative workflows) are achieved by design. The
workflows outlined in this section are written in three dif-
ferent languages and can be automatically set up (including
input data) and run on Hi-WAY with only a few clicks fol-
lowing the procedure described in Section 3.6.

Across the experiments described here, we executed rele-
vant workflows from different areas of research on both vir-
tual clusters of Amazon’s EC2 and local computational in-
frastructure. Section 4.1 outlines two experiments in which
we analyze the scalability and performance behavior of Hi-
WAY when increasing the number of available computa-
tional nodes to very large numbers. In Section 4.2, we
then describe an experiment that contrasts the performance
of running a computationally intensive Galaxy workflow on
both Hi-WAY and Galaxy CloudMan. Finally, in Section 4.3
we report on an experiment in which the effect of provenance
data on adaptive scheduling is evaluated. Table 1 gives an
overview of all experiments described in this section.

4.1 Scalability / Genomics
For evaluating the scalability of Hi-WAY, we employed

a single nucleotide variant calling workflow [31], which de-
termines and characterizes genomic variants in a number
of genomes. The input of this workflow are genomic reads
emitted from a next-generation sequencing machine, which
are aligned against a reference genome in the first step of
the workflow using Bowtie 2 [24]. In the second step of the
workflow, alignments are sorted using SAMtools [25] and ge-
nomic variants are determined using VarScan [22]. Finally,
detected variants are annotated using the ANNOVAR [44]
toolkit. Input data, in the form of genomic reads, was ob-
tained from the 1000 Genomes Project [37].

In a first experiment we implemented this workflow in
both Cuneiform and Tez. We ran both Hi-WAY and Tez on
a Hadoop installation set up on a local cluster comprising
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Table 1: Overview of conducted experiments, their evaluation goals and the section in which they are outlined.

workflow domain language scheduler infrastructure runs evaluation section

SNV Calling genomics Cuneiform data-aware 24 Xeon E5-2620 3 performance, scalability 4.1
SNV Calling genomics Cuneiform FCFS 128 EC2 m3.large 3 scalability 4.1
RNA-seq bioinformatics Galaxy data-aware 6 EC2 c3.2xlarge 5 performance 4.2
Montage astronomy DAX HEFT 8 EC2 m3.large 80 adaptive scheduling 4.3

24 compute nodes connected via a one gigabit switch. Each
compute node provided 24 gigabyte of memory as well as
two Intel Xeon E5-2620 processors with 24 virtual cores.
This resulted in a maximum of 576 concurrently running
containers, of which each one was provided with its own
virtual processor core and one gigabyte of memory.

The results of this experiment are illustrated in Figure 4.
Scalability beyond 96 containers was limited by network
bandwidth. The results indicate that Hi-WAY performs
comparably to Tez while network resources are sufficient,
yet scales favorably in light of limited network resources
due to its data-aware scheduling policy, which reduced data
transfer by preferring to assign the data-intensive reference
alignment tasks to containers on compute nodes with a lo-
cally available replicate of the input data. However, proba-
bly the most important finding of this experiment was that
the implementation of the workflow in Cuneiform resulted
in very little code and was finished in a few days, whereas
it took several weeks and a lot of code in Tez.
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Figure 4: Mean runtimes of the variant calling work-
flow with increasing number of containers. Note
that both axes are in logarithmic scale.

In a second experiment, we increased the volume of input
data while at the same time reducing network load by (i) us-
ing additional genomic read files from the 1000 Genomes
Project, (ii) compressing intermediate alignment data using
CRAM referential compression [25], and (iii) obtaining in-
put read data during workflow execution from the Amazon
S3 bucket of the 1000 Genomes Project instead of storing
them on the cluster in HDFS.

In the process of this second experiment, the workflow
was first run using a single worker node, processing a single
genomic sample comprising eight files, each about one giga-
byte in size, thus amounting to eight gigabytes of input data
in total. In subsequent runs, we then repeatedly doubled the
number of worker nodes and volume of input data. In the
last run (after seven duplications), the computational infras-
tructure consisted of 128 worker nodes, whereas the work-

flow’s input data comprised 128 samples of eight roughly
gigabyte-sized files each, amounting to a total volume of
more than a terabyte of data.

The experiment was run three times on virtual clusters of
Amazon’s EC2. To investigate potential effects of datacen-
ter locality on workflow runtime (which we did not observe
during the experiment), these clusters were set up in differ-
ent EC2 regions – once in the EU West (Ireland) and twice
in the US East (North Virginia) region. Since we intended
to analyze the scalability of Hi-WAY, we isolated the Hi-
WAY AM from the worker threads and Hadoop’s master
threads. To this end, dedicated compute nodes were pro-
vided for (i) the Hi-WAY AM, running in its own YARN
container, and (ii) the two Hadoop master threads (HDFS’s
NameNode and YARN’s ResourceManager). All compute
nodes – the two master nodes and all of the up to 128 worker
nodes – were configured to be of type m3.large, each pro-
viding two virtual processing cores, 7.5 gigabytes of main
memory, and 32 gigabytes of local SSD storage.

All of the experiment runs were set up automatically using
Karamel [1]. Over the course of the experiment we deter-
mined the runtime of the workflow. Furthermore, the CPU,
I/O, and network performance of the master and worker
nodes was monitored during workflow execution using the
Linux tools uptime, ifstat, and iostat. Since the workflow’s
tasks required the whole memory provided by a single com-
pute node, we configured Hi-WAY to only allow a single
container per worker node at the same time, enabling multi-
threading for tasks running within that container whenever
possible. Hi-WAY was configured to utilize the basic FCFS
queue scheduler (see Section 3.4). Other than that, both
Hi-WAY and Hadoop were set up with default parameters.

The average of measured runtimes with steadily increasing
amounts of both compute nodes and input data is displayed
in Table 2 and Figure 5. The regression curve indicates
near-linear scalability : The doubling of input data and the
associated doubling of workload is almost fully offset by a
doubling of worker nodes. This is even true for the maxi-
mum investigated cluster size of 128 nodes, in which a ter-
abyte of genomic reads was aligned and analyzed against the
whole human genome. Note that extrapolating the average
runtime for processing eight gigabytes of data on a single
machine reveals that aligning a whole terabyte of genomic
read data against the whole human genome along with fur-
ther downstream processing would easily take a month on a
single machine.

We identified and evaluated several potential bottlenecks
when scaling out a Hi-WAY installation beyond 128 nodes.
For instance, Hadoop’s master processes, YARN’s Resource-
Manager and HDFS’s NameNode, could prove to limit scal-
ability. Similarly, the Hi-WAY AM process that handles the
scheduling of tasks, the assembly of results, and the tracing
of provenance, could collapse when further increasing the
workload and the number of available compute nodes. To
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Table 2: Summary of the scalability experiment described in Section 4.1. The number of provisioned VMs is
displayed alongside the volume of processed data, average runtime (over three runs), and the incurred cost.

number of worker VMs 1 2 4 8 16 32 64 128
number of master VMs 2 2 2 2 2 2 2 2

data volume 8.06 GB 16.97 GB 33.10 GB 69.47 GB 136.14 GB 270.98 GB 546.76 GB 1096.83 GB

avg. runtime in min. 340.12 350.36 351.62 344.82 375.57 372.09 380.24 353.39
runtime std. dev. 1.96 0.14 2.15 1.88 14.84 22.10 22.34 6.01

avg. cost1 per run $2.48 $3.41 $5.13 $8.39 $16.45 $30.78 $61.07 $111.79
avg. cost1 per GB $0.31 $0.20 $0.16 $0.12 $0.12 $0.11 $0.11 $0.10
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Figure 5: Mean runtimes for three runs of the variant calling workflow described in Section 4.1 when repeat-
edly doubling the number of compute nodes available to Hi-WAY along with the input data to be processed.
The error bars represent the standard deviation, whereas the line represents the (linear) regression curve2.

this end, we were interested in the resource utilization of
these potential bottlenecks, which is displayed in Figure 6.

We observe a steady increase in load across all resources
for the Hadoop and Hi-WAY master nodes when repeatedly
doubling the workload and number of worker nodes. How-
ever, resource load stays well below maximum utilization at
all cluster sizes. In fact, all resources are still utilized less
than 5 % even when processing one terabyte of data across
128 worker nodes. Furthermore, we observe that resource
utilization for Hi-WAY’s master process is of the same or-
der of magnitude as for Hadoop’s master processes, which
have been developed to scale to 10,000 compute nodes and
beyond [42].

While resource utilization on the master nodes increases
when growing the workload and computational infrastruc-
ture, we observe that CPU utilization stays close to the
maximum of 2.0 on the worker nodes, whereas the other
resources stay under-utilized. This finding is unsurprising,

1Here, we assume a price of $0.146 per minute, as listed for
m3.large instances in EC2’s EU West region at the time of
writing. We also assume billing per minute and disregard
time required to set up the experiment.
2The standard deviation is higher for cluster sizes of 16,
32, and 64 nodes, which is due to the observed runtime of
the CPU-bound variant calling step being notably higher in
one run of the experiment. Since these three measurements
were temporally co-located and we did not observe similar
distortions at any other point in time, this observation can
most likely be attributed to external factors.

since both the alignment step and the variant calling step of
the workflow support multithreading and are known to be
CPU-bound. Hence, this finding confirms that the cluster
is nearly fully utilized for processing the workflow, whereas
the master processes appear to be able to cope with a con-
siderable amount of additional load.

4.2 Performance / Bioinformatics
RNA sequencing (RNA-seq) methodology makes use of

next-generation sequencing technology to enable researchers
to determine and quantify the transcription of genes in a
given tissue sample. Trapnell et al. [40] have developed a
workflow that has has been established as the de facto stan-
dard for processing and comparing RNA-seq data.

In the first step of this workflow, genomic reads are aligned
against a reference genome using the two alignment tools
Bowtie 2 [24] and TopHat 2 [21]. The alignment serves the
purpose of identifying the reads’ genomic positions, which
have been lost during the sequencing process. This first step
is comparable to the first step in the variant calling work-
flow described in Section 4.1. However, in this workflow,
reads are obtained by sequencing only the transcriptome,
i.e., the set of transcribed genes, as opposed to sequencing
the whole genome. In the second step of the workflow, the
Cufflinks [40] package is utilized to assemble and quantify
transcripts of genes from these aligned reads and, finally, to
compare quantified transcripts for different input samples,
for instance between diseased and healthy samples. See Fig-
ure 7 for a visualization of the RNA-seq workflow.
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Figure 6: Resource utilization (CPU load, I/O utilization, and network throughput) of virtual machines
hosting the Hadoop master processes, the Hi-WAY AM and a Hi-WAY worker process. Average values
over the time of workflow execution and across experiment runs are shown along with their exponential
regression curve. We observed the following peak values for worker nodes: 2.0 for CPU load (due to two
virtual processing cores being available per machine), 1.0 for I/O utilization (since 1.0 corresponds to device
saturation, i.e., 100 % of CPU time spent for I/O requests) and 109.35 MB per second for network throughput.
Note the different scales for the master nodes on the left and the worker nodes on the right.

Wolfien et al. [46] implemented an extended version of this
workflow in Galaxy, making it available through Galaxy’s
public workflow repository. Their implementation of the
workflow, called TRAPLINE, compares two genomic sam-
ples. Since each of these two samples is expected to be avail-
able in triplicates and the majority of data processing tasks
composing the workflow are arranged in sequential order,
the workflow, without any manual alterations, has a degree
of parallelism of six across most of its parts.

We executed the TRAPLINE workflow on virtual clus-
ters of Amazon’s EC2 consisting of compute nodes of type
c3.2xlarge. Each of these nodes provides eight virtual pro-
cessing cores, 15 gigabytes of main memory and 160 giga-
bytes of local SSD storage. Due to the workflow’s degree of
parallelism of six, we ran the workflow on clusters of sizes
one up to six. For each cluster size, we executed this Galaxy
workflow five times on Hi-WAY, comparing the average run-
time against an execution on Galaxy CloudMan. Each run
was launched in its own cluster, set up in Amazon’s US East
(North Virginia) region.

As workflow input data, we used RNA-seq data of young
versus aged mice, obtained from the Gene Expression Om-
nibus (GEO) repository3, amounting to more than ten gi-
gabytes in total. We set up Hi-WAY using Karamel [1] and
CloudMan using its Cloud Launch web application. De-

3series GSE62762, samples GSM15330[14|15|16|45|46|47]

fault parameters were left unchanged. However, since sev-
eral tasks in TRAPLINE require large amounts of memory,
we configured both Hi-WAY as well as CloudMan’s default
underlying distributed resource manager, Slurm, to only al-
low execution of a single task per worker node at any time.
Omitting this configuration would lead either of the two sys-
tems to run out of memory at some point during workflow
execution. The results of executing the TRAPLINE work-
flow on both Hi-WAY and Galaxy CloudMan are displayed
in Figure 8. Across all of the tested cluster sizes, we ob-
served that Hi-WAY outperformed Galaxy CloudMan by at
least 25 %. These differences were found to be significant
by means of a one-sample t-test (p-values of 0.000127 and
lower).

The observed difference in performance is most notable
in the computationally costly TopHat2 step, which makes
heavy use of multithreading and generates large amounts of
intermediate files. Therefore, this finding can be attributed
to Hi-WAY utilizing the worker node’s transient local SSD
storage, since both HDFS as well as the storage of YARN
containers reside on the local file system. Conversely, Galaxy
CloudMan stores all of its data on an Amazon Elastic Block
Store (EBS) volume, a persistent drive that is accessed over
the network and shared among all compute nodes4.

4While EBS continues to be CloudMan’s default storage op-
tion, a recent update has introduced support for using tran-
sient storage instead.
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Figure 7: The RNA sequencing workflow described
in Section 4.2. Genomic reads, the output of whole
transcriptome sequencing, are aligned against a ref-
erence genome. Transcribed genes are then deter-
mined and quantified based on these alignments. Fi-
nally, transcription is compared between samples.

Apart from the observed gap in performance, it is im-
portant to point out that Galaxy CloudMan only supports
the automated setup of virtual clusters of up to 20 nodes.
Compared to Hi-WAY, it therefore only provides very lim-
ited scalability. We conclude that Hi-WAY leverages the
strengths of Galaxy, which lie in its intuitive means of work-
flow design and vast number of supported tools, by pro-
viding a more performant, flexible, and scalable alternative
to Galaxy CloudMan for executing data-intensive Galaxy
workflows with a high degree of parallelism.

4.3 Adaptive Scheduling / Astronomy
To underline the benefits of adaptive scheduling on hetero-

geneous computational infrastructures, an additional exper-
iment was performed in which we generated a Pegasus DAX
workflow using the Montage toolkit [7]. The resulting work-
flow assembles a 0.25 degree mosaic image of the Omega
Nebula. It comprises a number of steps in which images
obtained from telescopic readings are projected onto a com-
mon plane, analyzed for overlapping regions, cleaned from
background radiation noise and finally merged into a mosaic.

The Montage toolkit can be used to generate workflows
with very large number of tasks by increasing the degree
value. However, the degree of 0.25 used in this experiment
resulted in a comparably small workflow with a maximum
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Figure 8: Average runtime of executing the RNA-
seq workflow described in Section 4.2 on Hi-WAY
and Galaxy CloudMan. The number of EC2 com-
pute nodes of type c3.2xlarge was increased from
one up to six. Note that both axes are in logarith-
mic scale.

degree of parallelism of eleven during the image projection
and background radiation correction phases of the workflow.
In the experiment, this workflow was repeatedly executed on
a Hi-WAY installation set up on a virtual cluster in the EU
West (Ireland) region of Amazon’s EC2. The cluster com-
prised a single master node as well as eleven worker nodes to
match the workflow’s degree of parallelism. Similar to the
scalability experiment in Section 4.1, all of the provisioned
virtual machines were of type m3.large.

To simulate a heterogeneous and potentially shared com-
putational infrastructure, synthetic load was introduced on
these machines by means of the Linux tool stress. To this
end, only one worker machine was left unperturbed, whereas
five worker machines were taxed with increasingly many
CPU-bound processes and five other machines were impaired
by launching increasingly many (in both cases 1, 4, 16, 64,
and 256) processes writing data to the local disk.

A single run of the experiment, of which 80 were con-
ducted in total, encompassed (i) running the Montage work-
flow once using a FCFS scheduling policy, which served as a
baseline to compare against, and (ii) running the workflow
20 times consecutively using the HEFT scheduler. In the
process of these consecutive runs, larger and larger amounts
of provenance data became available over time as a conse-
quence of prior workflow executions. Hence, workflow execu-
tions using the HEFT scheduler were provided with increas-
ingly comprehensive runtime estimates. Between iterations
however, all provenance data was removed.

The results of this experiment are illustrated in Figure 9.
Evidently, the performance of HEFT scheduling improves
with more and more provenance data becoming available.
Employing HEFT scheduling in the absence of any available
provenance data results in subpar performance compared
to FCFS scheduling. This is due to HEFT being a static
scheduling policy, which entails that task assignments are
fixed, even if one worker node still has many tasks to run
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while another, possibly more performant worker node is idle.
However, with a single prior workflow run, HEFT already

outperforms FCFS scheduling significantly (two-sample t-
test, p-value of 0.033). The next significant performance
gain can then be observed between ten and eleven prior
workflow execution (two-sample t-test, p-value of 6.22·10−7).
At this point, any task composing the workflow, even the
ones that are only executed once per workflow run, have
been executed on all eleven worker nodes at least once.
Hence, runtime estimates are complete and scheduling is no
longer driven by the need to test additional task-machine-
assignments. Note that this also leads to more stable work-
flow runtimes, which is reflected in a major reduction of the
standard deviation of runtime. We argue that the observed
performance gains of HEFT over baseline FCFS schedul-
ing emphasize the importance of and potential for adaptive
scheduling in distributed scientific workflow execution.
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Figure 9: Median runtime of executing Montage on
a heterogeneous infrastructure when using HEFT
scheduling and increasing the number of previous
workflow runs and thus the amount of available
provenance data. The error bars represent the stan-
dard deviation.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented Hi-WAY, an application mas-

ter for executing arbitrary scientific workflows on top of
Hadoop YARN. Hi-WAY’s core features are a multilingual
workflow language interface, support for iterative workflow
structures, adaptive scheduling policies optimizing perfor-
mance, tools to provide reproducibility of experiments, and,
by employing Hadoop for resource management and storage,
scalability. We described Hi-WAY’s interface with YARN
as well as its architecture, which is built around the afore-
mentioned concepts. We then outlined four experiments, in
which real-life workflows from different domains were exe-
cuted on different computational infrastructures comprising
up to 128 worker machines.

As future work, we intend to further harness the statistics
on resource utilization provided by Hi-WAY’s Provenance
Manager. Currently, the containers requested by Hi-WAY
and provided by YARN all share an identical configuration,
i.e., they all have the same amounts of virtual processing
cores and memory. This can lead to under-utilization of
resources, since some tasks might not be able to put all of the

provided resources to use. To this end, we intend to extend
Hi-WAY with a mode of operation, in which containers are
custom-tailored to the tasks that are to be executed.
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