
Real Time Contextual Summarization of Highly Dynamic 
Data Streams 

 
Manoj K Agarwal  

Microsoft Bing 
Search Technology Center - India 

Hyderabad – 500032, India 

agarwalm@microsoft.com 

Krithi Ramamritham 
Dept. of Computer Science and Engineering 

IIT – Bombay, India 
Mumbai – 400076, India 

krithi@cse.iitb.ac.in 

  

ABSTRACT 
Microblogging streams typically contain information pertaining to 
emerging real world events. Due to the rapid pace of messages in 
these data streams, short message size and many concurrent events, 
it is often difficult for users to understand the full context behind 
an arriving message. Hence, users resort to the cumbersome task of 
sifting through many messages to obtain the full context of the 
underlying event. To address this problem, we propose a novel 
notion – Contextual Event Summary Threads – and present a 
technique to extract highly meaningful yet compact event summary 
threads, capturing the complete context of events appearing in data 
stream, in real time. Our technique is unsupervised and 
automatically identifies different facets of live events in an 
unfiltered data stream in a scalable way and presents them to the 
users as evolving event threads. Extensive experiments over real 
data demonstrate that our technique -- while avoiding per message 
processing -- can summarize live data streams with high accuracy 
and produce compact event summary threads. The summary size of 
each event is dependent only on the underlying information and not 
on the number of messages pertaining to that event. Our technique 
is generic and is applicable on any chronologically ordered data 
stream which can be modeled in a <user: message> framework. 

CCS Concepts 
 Information systems →  Information retrieval →  Retrieval 

tasks and goals →  Summarization 

Keywords 
Real Time Search; Data Streams; Event Summarization; 
Algorithm; Experiments. 

1. INTRODUCTION 
1.1 Motivation 
Unstructured data streams -- sequences of chronologically ordered 
messages posted by multiple users -- occur in various social media 
and enterprise domains. For example, on Twitter, with a large user 
base, messages are posted at a high rate. Twitter is often the first 
medium to report emerging events [14][18]. An event in a data 
stream is defined by “messages, posted by multiple users, in the 
same context, within a bounded time window”, for example, 
messages posted by the fans during the course of a football match. 

An event can be a real world or an abstract activity, relevant for a 
group of people. It is only natural that in a fast-moving world, a 
huge number of events occur concurrently.  

There have been many recent attempts [14][15][16] at identifying 
emerging events in real time over live social media streams.  
Existing unsupervised approaches identify emerging events as 
temporally and spatially correlated clusters of keywords over 
dynamic message streams. The temporally and spatially correlated 
cluster of keywords forms an ‘event-topic’. In order to capture the 
event-topic, a dynamic graph is constructed using the most recent 
messages, with a sliding window model. Therefore, nodes in the 
dynamic graph represent temporally correlated keywords. An edge 
between two nodes -- representing two keywords -- indicates that 
messages within the recent sliding window contain both the 
keywords, representing spatial correlation. Thus, nodes of dense 
sub-graphs embedded in the dynamic graph represent the keyword 
clusters with strong spatial and temporal correlations [15][16].  

When the tweets posted during the Nairobi terrorist attack [30] are 
fed to the system described in [15], one of the keyword clusters, 
i.e., event-topic, discovered contained the keywords: 

- A: UK, #kenya, #westgate, #nairobi” 

Clearly, the keywords are insufficient to describe the underlying 
event. The same is true of another event-topic: 

        -   B: was,  69,  kofi,  among,  #ghana, attacks,  
ghanaian,  awoonor,   killed,  poet,  prof., #kenya 

Systems such as [14][15] discover event-topics like A and B. To 
better understand an event-topic, users have to search for the 
relevant messages in the data stream by themselves. This burdens 
the users with the task of understanding the emerging events 
manually or to determine if there is a connection between A and B. 
The shortcomings of the message search-based approach are:  

(1) Keyword search over live data streams is primitive, e.g., Twitter 
just returns the most recent tweets for a given search query [19]. It 
is not necessary that the most recent tweets are also the most 
relevant and informative tweets for the event.  

(2) Keyword search can produce an information overload for a fast-
moving data stream. Often a large number of tweets are returned by 
Twitter for a search query [5]. Moreover, search results are 
continuously updated with recent messages. This poses difficulties 
for the users to keep pace with the evolving events. 

Typically, the rate at which messages are generated is high. Hence, 
even if a subset of the messages in the query response is 
informative, it is challenging to identify these messages in real-
time. The high rate of message arrival, and the fact that the 
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messages are short often makes it difficult for the users to 
understand the context of a standalone message. Thus, the first goal 
of this paper is to discover a minimal set of most informative 
messages from the message stream, related to an emerging event. 
These messages represent the complete summary of the event. 
Furthermore, live real-world events are not just point events – they 
evolve. Our second goal is, for each discovered event, its summary 
must be updated every time there is any significant change in the 
event. Note that the events evolving in real time may comprise 
several different aspects or facets. When these changes in the event 
summary are arranged temporally, an event thread results, 
capturing the complete event context with the passage of time.  

Given these needs, we present a novel method to automatically 
extract the Contextual Event Summary Threads in real-time for 
events unraveling in an unfiltered and fast moving data stream. 

In [31], we presented our methodology to create and update an 
index over discovered ‘Contextual Event Summary Threads’ in a 
highly dynamic data stream in real time and enabled keyword 
search over these events using it. In this paper, we present our 
technique to summarize the events and to discover the Contextual 
Event Summary Threads.  

1.2 Contributions 
Most real-world events comprise several facets. Therefore, the 
summary for an event is represented as a Directed Acyclic Graph 
(DAG) that reveals the way the event has evolved. Each node in an 
event thread, called sub-event, has an associated event-topic similar 
to A and B. An event-topic is summarized using a minimal set of 
most relevant messages discovered from the data stream.  

The event thread in Figure 1 was produced automatically by our 
system [31] from the tweets sent during ‘Nairobi Terrorist 
Attack’ [30]. There are 13 sub-events in the thread in Figure 1. The 
summary started with a tweet about a mall being attacked, followed 
by tweets about action against attackers, rumors, claims and 
counter claims by authorities and citizens, etc., which were 
discovered in real time. The event thread describes a meaningful 
chronological sequence of the event. Figure 1 depicts a part of the 
event thread discovered over 164K tweets. For each sub-event in 
the event thread, our method identified an appropriate summary. 

We identify most appropriate message(s) in the data stream, 
describing the event-topic. In Figure 1, sub-event 9 corresponds to 

 

A and sub-event 5 corresponds to B. Note, all the keywords for both 
the event-topics are present in their summaries. 

In summary, our system:  

     (i) Clusters the related messages together in the data stream: 
Event-topics are identified by discovering dense sub-graphs, called 
event-graphs, in the dynamic graph constructed over the message 
stream [15]. Our system exploits the event-graphs to pool the 
relevant messages together, related to event-topics.  

     (ii) Identifies important messages in the message pool to create 
an event summary: We identify a minimal set of the most relevant 
messages from the message pool of an event-topic such that the 
summary is complete and meaningful. In fact, we exploit the 
structural properties of the underlying event-graph to identify a 
subset of messages as ‘summary candidates’. 

     (iii) Discovers the event threads for evolving events: As the 
events evolve, the underlying event-graphs go through structural 
changes. These changes are tracked in real time. Event summary is 
updated whenever its event-graph goes through a ‘significant’ 
change (cf. Section 6). The updates in the event summaries are 
captured in contextual summary threads like one shown in Figure 
1. Our technique automatically discovers different facets of live 
events in real time. In general, an event thread can have multiple 
roots. We say that each unique path in the event thread, from each 
of its root(s) to each of its leaves, represents a different facet of the 
event. Event thread in Figure 1 has 6 facets.  

In a nutshell, our research contributions involve 

1. Summarizing all the events, discovered in a fast-moving 
unfiltered data stream, in real time, in a scalable and 
unsupervised manner. For each discovered event-topic, a 
minimal set of messages is identified to produce a meaningful, 
informative, stable and complete event summary (Section 5). 

2. Tracking the evolution, emergence and dissolution of dense 
graphs (event-graphs) in a large and highly dynamic graph in the 
presence of node and edge insertion and deletion. 

3. Exposing different facets of live events which are presented as 
a contextual event summary thread, representing one or more 
aspects of the event in real time (cf. Section 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Spread to all Kenyans - the westgate situation may be trying to distract 
Nairobi, a bigger attack may happen, STAY INDOORS- RT n SHARE 

2. Day 2: Al-Shabaab Jihadists Holding Innocent 
Civilians at Westgate in Nairobi, Death Toll at 59. 

4. KENYA UPDATE: Death toll in #Westgate siege rises to 68 
as 9 more bodies recovered during  rescue operation 5. Ghanaian poet & author- Prof. Kofi #Awoonor was among the 69 killed in the 

attack on #Nairobi's #Westgate mall. #Ghana #Kenya 

7. Israeli forces enter Nairobi mall: security source 
http://t.co/E0NoM7lxPA \u2026 #westgate 

8. Two helicopters landed on the roof of #westgate mall where 
#nairobi hostage crisis continues. 

10. Kenyan forces kill two terrorists, claim control of Westgate mall: 
Kenyan forces assaulted terrorists in Nairo... http://t.co/zoJaHgAuun 

9. Speculation that convertite 'white widow' Samantha Lewthwaite from UK is 
the mastermind of the attack on #Westgate Mall in #Nairobi, #Kenya 

13. Day 3: Kenyan Government Takes Westgate Mall From al-
Shabaab Jihadists p://t.co/E66dDy5l6y #BigTweet 

11. Something I never saw in 30 yrs as journalist: civilians bringing food, coffee 
to journalists covering #Nairobi's #Westgate siege. Amazing! 

12. Militants at the Westgate mall in Nairobi, Kenya, are still 
holding their ground, Somalia's Al-Shabab group claims 

1. #AlShabaab says it attacked #Westgate mall in 
#Nairobi to retaliate for Kenya's role in #Somalia.  

3. MAJOR assault by security forces ongoing to end two-day siege at Westgate 
mall. Fears abound death toll could be higher when dust settles. 

Figure 1: Contextual Event Summary Thread Discovered by our system for Nairobi Attack 
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To the best of our knowledge, ours is the first technique that 
captures the multi-faceted summary of live events and to arrange 
them in event threads. The event topics, discovered over an 
unfiltered and fast moving data stream, are summarized in real time 
in an unsupervised manner, in absence of any user query. The 
contextual event summary thread is a novel concept in contrast with 
the story-line generating techniques [4]. Our approach is generic 
and applicable on any data stream that is a sequence of <user: 
message>s. Experiments over real data show, our technique leads 
to compact and meaningful event summary threads for live events. 

The organization of the paper is: In Section 2, we present the related 
work. The event-graph model to capture the state of dynamic data 
stream and the challenges involved in discovering event summaries 
are presented in Section 3 and Section 4 respectively. In Section 5 
and Section 6, we present the methodology to discover event 
summary and event summary threads. We present our experimental 
study in Section 7 followed by conclusion in Section 8. 

2. RELATED WORK 
Topic Detection and Tracking [1][2] is related to our work. In [12], 
Yang et al., presented a method to summarize web documents. For 
these techniques, the document characteristics are completely 
different from microblog streams (‘large size/less in 
number/offline’ vs. ‘small size/too many of them/real time’). These 
methods work on static data only.  

In [5], Shou et al., presented a technique to summarize a Twitter 
data stream, filtered in the context of a given user query. In [23], 
authors reduce the summarization problem to that of optimizing 
probabilistic coverage on static data. In [8], Yang et al., present a 
method to compress the Twitter data stream. Lee et al., in [24] 
propose a snapshot based method to track the incremental evolution 
of event-topics. There is significant work [10][11][13] to identify a 
fixed size summary of microblog posts on a pre-specified topic and 
on static data, i.e., data which is not updated with new messages.  

Gao et al., [3] proposed an unsupervised approach to summarize 
events, by preparing a joint sentence-tweet level model, across 
news media and Twitter. Too similar or too different sentence/tweet 
pair were discarded. In [4], Lin et al. proposed a mechanism to 
generate a storyline from a microblog data stream. However, the 
technique is applicable only for static data sets. Vosecky et al., [7] 
presented a method to identify multiple facets of an event, i.e., 
important keywords, entities, location, etc., on a static Twitter 
stream.  

The basic difference between existing work and the problem 
addressed in this paper is: These techniques [1][4][5][7] work in 
the context of a given query, topic and/or on static data. In contrast, 
our technique organizes the event summary into event threads, 
capturing the complete context, for each underlying event 
discovered in the unfiltered data stream in real time.  

The dynamic graph model is exploited to identify the event 
summary. Our technique exploits the presence of Short Cycle 
Property (SCP) in the dense sub-graphs of a dynamic graph. In [15], 
it was shown that dense sub-graphs of a graph possess SCP. There 
is a large body of work for triangle counting and triangle listing in 
graphs. Triangle listing is considered an important measure for 
discovering dense neighborhood [28]. A triangle in a graph induces 
a cycle of length three. SCP extends this notion to cycle of up to 
length four, i.e., each node in a graph, possessing short cycle 
property, participates in a cycle of length at most four within the 
graph. Triangle listing problem can be divided into processing 
static graphs [20] and streaming graphs [27]. Streaming graph 

algorithms for triangle listing are further divided into edge insert 
graphs [27] and edge insert or delete graphs [9]. In contrast, our 
algorithm works on a graph with insertion and deletion of both 
edges and nodes. In this paper, we identify dense event-graphs, 
discovered based on SCP [15], representing emerging events in a 
large dynamic graph, with edge and node insert and delete. Our 
technique keeps track of emergence, evolution and dissolution of 
the dense sub-graphs in a large dynamic graph. This evolution is 
presented as contextual event summary thread for the event.  

3. EVENT-GRAPH MODEL 
Let S = St-wSt-w+1…St represents a message stream. Si = {di

1di
2…di

m} 
is the set of messages arriving in block i. A message dt

j=<ui, k> in 
the data stream contains message k and the userid uj of the user 
posting the message. A message k is an ordered set of keywords. 
m, called the block size, is the number of messages in a block. The 
stream is moved forward by expiring the messages in (t-w)th block 
and including the messages in (t+1)th block. The message 
timestamp is implicit with the arrival order in the data stream. For 
constructing the event thread as shown in Figure 1, we extract the 
<userid: message> from the incoming data stream. No pre-
processing is done on the message, except removing stop-words 
from it and tokenizing the message into keywords.  

Temporal and Spatial correlation: The data stream S is modeled 
as dynamic graph Gt (Vt, Et) [15]. For the problem studied in this 
paper, Gt is an input to our system. The graph Gt (Vt, Et) captures 
the state of the data stream at the arrival of messages in block t (t

N ). Keywords are represented as nodes in the graph Gt. At time 

step t-1, the graph is updated with the keywords present in the last 
block of m messages and t-1 is incremented to t. Vt contains the 
bursty and active keywords in the last w blocks at time t. Nodes Vt 
capture temporal correlation as only temporally correlated 
keywords (nodes) are present in the graph. 

Table 1: Notation 

St;|St|=m St is the block of m messages in the tth time step. 

Gt=(Vt, Et) Dynamic graph at time step t. Vt represent the keywords and 
edges Et the keyword-correlation in the graph Gt. 

Gt
c(Vt

c, Et
c) Gt

c is the event-graph embedded in Gt for event c at time step 
t. Vt

c represent the keywords in event-topic. 

N (v); vVt
c N(v) represent the set of adjacent nodes to node v Vt

c. 

dt
j=<ui, k>; 

1≤j≤m 
Message dt

j posted by user ui during time step t. k is set of 
keywords in the message. 

w Graph Gt contains the bursty and active keywords from last w 
message blocks.  

γ Keyword Burtstiness threshold.  

λ Edge correlation threshold.  

Mt
c Message set representing summary of event c at time t. 

Uv Set of userids associated with node v Vt. 

userCover Set of userids, whose messages include all the keywords in an 
event-topic. 

A keyword is bursty if it is used in γ (>1) messages in the current 
window of m messages. A keyword k is called active if its 
corresponding node vkVt is present in Gt (Vt, Et), i.e., the keyword 
is used in at least one of the messages in the last w message blocks. 
An active keyword remains in the graph Gt for as long as it is active. 
A keyword is removed from the graph Gt if it is inactive for w time 
windows. Hence, a keyword has to be bursty at least once to move 
into the graph Gt. The burstiness constraint helps identify events 
relevant for a community or group of users. 
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Each node vk   Vt is associated with a user list Uk, containing 
userids of the users who have used the corresponding keyword k 
since the time it has moved into the graph Gt. This list is used to 
establish spatial correlation among the keywords (nodes). For a 
pair of nodes {vi, vj}Vt, if the similarity score between their 
respective user lists Ui and Uj  is above a given threshold λ, an edge 
e is placed between the nodes. Jaccard coefficient (Jc) is used as 
the similarity measure. Jc between two nodes vi, vj in graph Gt is 
calculated as |||| jiji UUUU  ; hence 0≤λ≤1. Edge e   Et 

captures the spatial correlation between the associated keywords. 

Dense sub-graphs in graph Gt represent an event: Dense sub-
graphs, embedded in the graph Gt (Vt, Et) are called event-graphs. 
The nodes Vt

c   Vt in the event- graph Gt
c (Vt

c, Et
c) are the 

keywords in the event-topic c and edges Et
c  Et represent the 

correlation between these keywords. Gt
c represents the keywords 

with strong spatial and temporal correlation. In a data stream, 
modeled as dynamic graph, emerging dense sub-graphs represent 
the emerging events [15][16]. 

Short cycles in dense graphs: The length of the Shortest-cycle in 
a graph has a strong correlation with graph density. For example, 
triangle listing is a well-known method to measure graph density 
[27]. Each edge of a triangle induces a cycle of length 3. Similarly, 
in chordal graphs [29], each node is part of a cycle of length 3. In 
[15], authors expose a property for the dense sub-graphs embedded 
in a large graph, called the short-cycle property; each node in a 
dense sub-graph participates in at least one cycle of length at most 
4, within the sub-graph. Next, we formally define the Shortest-cycle 
and short-cycle property. 

Def. 3.1.1 Shortest-cycle: For a graph G (V, E) and a node vV, 
Shortest-cycle is the shortest path P through which one can return 
to node v; EePe  , .  

Def. 3.1.2 Short Cycle Property (SCP): For a keyword cluster c, 
let Gt

c (Vt
c, Et

c) represent the corresponding subgraph embedded in 

graph Gt (Vt, Et) ( t
ck Vvck  ; ). Vt

c Vt, Et
c Et and

t
c

t
cvu VvuEe  },{,),( . Gt

c possesses the short-cycle property if it 

satisfies the following conditions:  

P1. For any two adjacent nodes u and v in the Gt
c, there exists at 

least one more path P between u and v, such that |P| ≤ 3 and
 t

cvuvu EePe  ),(),( , . Therefore, the length of Shortest-cycle 

for t
cVv is ≤ 4. Note, length of the Shortest-cycle for node v is 

|P| + 1 (for edge e(u, v)).  

P2. For a node vVt
c in graph Gt

c, all the Shortest-cycles node v 
participates in within the graph are of length at most 4. 

P3. There is no articulation point in Gt
c. An articulation point is a 

node whose removal breaks the graph into multiple disconnected 
components (e.g. in Figure 3(a), node a4). 

In Figure 2 (a), in the absence of P3, clusters C1 to C4 will merge 
into a single cluster since the merged cluster satisfies P1 and P2. 
Similarly, in the absence of P2, C1 to C5 will merge together into a 
single cluster. Please note, due to SCP, though necessary, it is not 
sufficient for two event-topics to just share two or more keywords 
to merge into a single event-topic. In Figure 2(b), C6 and C5 share 
two keywords, but they are not merged together since the merged 
cluster does not satisfy P2 of SCP. Thus, SCP ensures discovery of 
dense clusters efficiently [15]. 

 
Figure 2: Example event-graphs 

Example 1: In Figure 3(a), sets {a1, a3, a4} and {a2, a4, a5} represent 
an independent event each. Event-graph in Figure 3(b) represents a 
single event. In Figure 3(b), keywords having their Jc ≥ 0.25, have 
an edge between them. An event-graph satisfies the SCP (Def. 
3.1.2). 

In Figure 3 (b), k2 and k3 participate in two Shortest-cycles each. 
Cycle k1→ k2→ k4→ k3→ k1 is an intra-graph cycle too but not the 
Shortest-cycle (Def. 3.1.1). In [15], authors present an efficient 
algorithm to identify dense-graphs in a dynamic graph by 
exploiting SCP. SCP ensures that keywords that show a strong 
temporal and spatial correlation are identified as event-topics. 

 
Figure 3: Example event-graphs  

4. ISSUES in EVENT SUMMARIZATION 
There is a user list Uv associated with each node vk t

cV in event-

graph Gt
c (Vt

c, Et
c) for event c. vk is the node corresponding to 

keyword k. We represent vk by just v when the context is clear. The 

messages posted by users in list Uv, t
cVv , are considered the 

pool of message related to event c. Event summary is identified 
from these messages.  

Def. 4.1 Event Summary: Event summary is a set of messages Mt
c 

from a set of users Uc );( t
cv VvU  such that t

ck Vv  , 

cUu  where u has used the keyword k in its message(s).  

Thus, the event summary is defined as a set of message(s) from a 
set of users whose messages covers all the keywords in the event-
topic. This set of users is also called the valid userCover.  

Let vUu of the userid list of node vk t
cV . Let N(vk) represents 

the set of nodes adjacent to vk in Gt
c (Vt

c, Et
c). )( kvNn , if

nUu , node n is considered covered. Thus, all neighbors of node 

vk that contain u in their respective user lists are considered covered. 
Note, only the user lists of the neighbors of node vk in the event-
graph are checked for the presence of user u. The messages in the 
current time window from the users in the userCover become part 
of the event summary Mt

c. The summary Mt
c for a new event c, 

emerging in the tth time window is defined as ct
u

t
c UuS  |M

where Su
t is a set of messages from user u in tth message block. Mt

c 

is the ordered sequence of messages based on the message 
timestamp.  

Def. 4.3 Optimal UserCover: An optimal userCover T is the 

smallest subset of users such that  TUVvU v
t
cv ,| . 

C6 

C5 

C2 C2 C4 C1 

C5 

(a) (b) 

a1 a2 

a3 a4 a5 

k4: 5,6,7,8 

 

Articulation point 

(a) (b) 

 

k2: 2,3,6,8 k3: 1,2,5,6 

k1: 1,2,3,4 
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Theorem 1: Discovering optimal userCover is NP-hard. 

Proof Sketch:  Hitting set is a well-known NP-complete problem 
[25]. It is defined as follows: Given a collection S of sets Sis; 1≤i≤n, 

find the smallest size set H such that  HSSS ii , . By 

mapping each element in a set Si to a user id in userCover, Hitting 
set problem is polynomial time reducible to userCover. If T* is a 
solution for userCover and H* is a solution for Hitting set, |H*| = 
|T*|.                                                                                                  □ 

Theorem 1 states, discovering optimal userCover is NP-hard even 
when the user lists associated with keywords are static. However, 
the set of nodes Vt

c in an event graph Gt
c as well as the user lists Uv 

associated with each node t
cVv  are highly dynamic due to 

continuous updates in the message stream. Thus, it is non-trivial to 
identify a minimal set of most relevant messages from the data 
stream that ensures that the event summary be informative, 
compact, complete, meaningful and stable. 

Identifying users (and not messages) helps us create a more 
meaningful event summary (at times, users post multiple messages 
in a small time window to explain the full context of their 
messages). Since user lists are large for popular events, it is non-
trivial to identify optimal UserCover. To efficiently identify these 
users, each arriving message is assigned a score in a scalable 
manner to rank more relevant messages higher (cf. Section 5.3). 

We next highlight how the dynamic updates in the data stream may 
result in an unstable event summary:   

Figure 4: Evolution in the event-graph 

Live updates can make a summary unstable: For an event 
present in a live data stream, let its initial event-graph be as shown 
in Figure 4(a). The userCover had been identified as {1, 3} by any 
userCover discovery algorithm (k1 in Figure 4(a) is not part of the 
event-graph). In the next time step, the event-graph gets updated to 
as shown in Figure 4(b). However, the same algorithm identifies 
{2, 9} as userCover, which results in a different set of messages as 
summary, making it difficult for users to keep track of evolving 
event. Thus, due to live updates, event summary may be unstable.  

The evolution of the summary for a live event is handled as 
described in Section 6. We present our algorithm to summarize the 
event by identifying an approximate userCover in Section 5. 

5. DISCOVERING EVENT SUMMARIES 
In this section, we present our method to discover meaningful event 
summaries, with the aid of central nodes, called pivot nodes, in the 
dense event-graphs. In Section 5.2, we present our algorithm to 
identify the event summaries. In Section 5.3, we present our method 
to rank the messages in the data stream. 

5.1 Pivot Nodes and Pivot Edges 
Def. 5.1.1 Pivot Edge: An edge that participates in more than one 
Shortest-cycles within the event-graph is defined as a pivot edge. 
Higher the number of Shortest-cycles a pivot edge participates in, 
the more central it is in the event graph.  

Def. 5.1.2 Pivot Node: Nodes associated with a pivot edge are 
called pivot nodes.  

Nodes which are not pivot nodes are called peripheral nodes. In 
Figure 4(b), edge (k2, k4) is a pivot edge. {k2, k4} are pivot nodes.  

Lemma 1:  A graph possessing short-cycle property with more 
than one shortest-cycles within the graph, has a pivot edge. 

Proof: Let event-graph Gt
c (Vt

c, Et
c) has multiple short cycles, 

satisfying SCP. Let C (V, E) be a cycle in the event-graph Gt
c such 

that it has no common edge with any other cycle in the graph. Let 

n )(VC  be a node common with another cycle in graph Gt
c (if 

cycle C has not even one node common with any other cycle within 
the graph; Gt

c will be disconnected); Since no edge in cycle C 
participates in another cycle, for any node v in C(V) - n, and for any 
node u in Vt

c – V, there exist just one path from v to u via node n. 
Hence in graph Gt

c, node n is an articulation point, violating Def. 
3.1.2 of SCP event-graph. Therefore, there must exist another path 
from v to u. Hence, there exist a cycle vunv  . Hence any 

edge e )(EC in path nv  participates in another cycle, i.e., e is 

a pivot edge. Therefore, for each Shortest-cycle C (V, E) in an 

event-graph, )(ECe that is a pivot edge.                                   □ 

Corollary of Lemma 1: Either a node itself or one of its neighbors 
is the pivot node in the event-graphs that possesses SCP. Due to 
this corollary, we can create a pivot edge cover (PECover), as 
described below.  

Def. 5.1.3 PECover: For Gt
c (Vt

c, Et
c), a PECover is a subset  of 

pivot edges o
pE    Et

c such that, t
cVv , o

p
t
c VvEvue  |),( . 

Hence, a PECover (corresponding PNCover) o
pE  ( o

pV ) is a subset 

of pivot edges (corresponding pivot nodes) in the event-graph Gt
c 

(Vt
c, Et

c) such that )( o
p

t
c VVv  , node v is adjacent to a node in

o
pV .  

Let Uv be the user list for node v  Vt
c and C be a collection of all 

the user lists in Gt
c (Vt

c, Et
c). Let Cp be a collection of user lists 

associated with pivot nodes o
pV  in graph Gt

c (Cp   C).  

Lemma 2: For collection Cp |; pjpi CUCCU  ,  

ji UU  . 

Proof: For two nodes vi and vj and their associated user lists Ui and 
Uj in an event-graph Gt

c(Vt
c, Et

c), if edge (vi, vj) Et
c, 

   ||,0|;|.|| },{ jiljiji UUUUU  . Therefore, for any 

edge e Et
c there exists at least one userid which occurs in the user 

lists of both the nodes. Since, each node in Gt
c is adjacent to a node 

in the PECover of Gt
c, therefore, for collection Cp,  

 jipjpi UUCUCCU |; .                                    □ 

Hence, we first identify a set of pivot edges, called PECover. A 
valid userCover can be identified only from the user lists associated 
with pivot edges (cf. Lemma 2). Thus, pivot edges help us avoid 
processing a large number of messages associated with peripheral 
nodes and yet ensure that the event summary is complete.  

Further motivation to use the pivot edges is explained below: 

5.1.1 Informative 
A message containing more keywords from the event graph is 
considered more informative. Naturally, a keyword with higher 
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number of neighbors in the event graph is likely to contain such 
messages. We capture this notion of informative-ness as follows:  

Def. 5.1.4 Informative-ness: Informative-ness of a node v is 
defined as N(v), the set of nodes adjacent to v in event graph Gt

c.  

Let edge e (u, v) be a pivot edge. Let s be a neighbor of u such that 
e (u, s) be a non-pivot edge (s is a peripheral node). N(v) represents 
the set of nodes adjacent to v in Gt (Vt, Et).  

Lemma 3: |N(u)| > |N(s)|. 

Proof: Omitted (cf. Lemma 5).                                            □ 

Lemma 3 shows that the messages from the users associated with 
the pivot nodes contain more keywords from the event-topic. 
Identification of summary from these messages leads to a more 
informative and compact summary. 

5.1.2 Stable 
Since a pivot edge participates in multiple cycles, it is more stable 
than the other edges in a dynamic event-graph. Even if one or more 
edges/nodes, among edges and nodes adjacent to a pivot edge get 
deleted in the underlying event-graph, the message set identified as 
the event summary continues to be a valid event summary (cf. 
Section 6.2). Hence, identification of event summary based on 
pivot edges, leads to more stable event summary. 

5.1.3 Complete 
An event summary containing messages that cover all the keywords 
in an event-graph is considered a complete event summary. 
However, we identify the users only from the user lists associated 
with pivot nodes, i.e., from the collection Cp.  

Lemma 4: A user cover identified only from the pivot nodes of an 
event-graph, possessing short cycle property, is a valid userCover. 

Proof: The corollary of Lemma 1 along with Lemma 2 completes 
the proof.                                                                                         □ 

Lemma 4 shows that the userCover identified from the user lists in 
collection Cp results in a valid userCover. With the help of pivot 

edges, we identify a subset of user lists Cp (from the entire user list 
collection C for event c) and a valid userCover can be identified 
only from these sets. Thus, the event-graph structure helps us 
identify a small number of more relevant user lists for discovering 
a valid userCover. However, discovering optimal set of pivot nodes 
in an event-graph remains an NP-hard problem (cf. Theorem 3).  

5.1.4 Optimal Summary Size 
We next show that the summary size discovered with the aid of 
optimal PECover leads to the optimal size summary.  

As shown in Lemma 2, once a pivot edge e(u, v) is identified, all the 
nodes adjacent to the pivot nodes {u, v} can be covered using only 
the user lists associated with these nodes. We now show that there 
cannot be any smaller collection of user ids than optimal size 
PECover that results in a valid userCover.  

Let T* represent the optimal collection of user ids that provide a 
valid userCover for a given event-graph Gt and let PECover* be 
the optimal PECover.  

Theorem 2: |PECover*| ≤ |T*|. 

Proof: For a given event-graph Gt (Vt, Et), a dominating set D is 
subset of nodes in Vt such that each node in (Vt – D) is adjacent to 

a node in D [25]. Let D* tV be the optimal size dominating set. 

Therefore, D* is the smallest set of nodes such that each node in Vt 

– D* is adjacent to a node in D*.  

Step 1: Each node in Vt, is adjacent to a pivot edge (corollary of 
Lemma 1). Therefore, for each node v in D* we get a corresponding 

pivot edge as follows: either edge e(v, u) is a pivot edge; )(vNu  

or edge e (u, N(u)) is a pivot edge.  

In this manner, we get a pivot edge cover peCover from D* which 
is a valid PECover since D* is a dominating set for graph Gt; 
|peCover| = |D*|.  Let PECover* is the optimal PECover. Hence, 
|PECover*| ≤|peCover| ≤ |D*|.  

Step 2: Any two nodes that share an edge, have at least one userid 
common (Lemma 2).  Let T* be the optimal set of user ids, 
providing the valid userCover. Since D* is the optimal dominating 
set, therefore, |T*| ≥ |D*| because for each node in D*, at least one 
userid has to be selected in T* (since the user lists of only the 
neighbors of a node in the event-graph are considered while 
constructing userCover)   

From Step 1 and Step 2, |PECover*| ≤ |T*|                                       □ 

Thus, optimal pivot edge cover leads to optimal summary size.  

On event graph Gt
c we induce a graph G’(V’, E’) such that each 

edge in G’ is a pivot edge in Gt
c (with the aid of Lemma 5, Section 

5.2). We identify a smallest subset VPN V’ of nodes in G’ such 
that every node in V’ – VPN is adjacent to at least one node in VPN. 
We call the set VPN Pivot nodes cover or PNCover.    

Theorem 3: Discovering optimal PNCover for a given event-graph 
Gt

c(Vt
c, Et

c)  is NP-hard.  

Proof Sketch: Dominating set is a NP-complete problem [25]. It 

can be shown that PNCoveratingSetDo Pmin .                          □ 

 

Figure 5: Dominating set Vs. Pivot nodes over event-graph 

An alternative to pivot edges is to identify the dominating set of 
nodes [25] itself in an event-graph. Our primary reason to choose 
the pivot edges over dominating set is, nodes in dominating set 
divides a graph into stars whereas the pivot edges divide it into 
cycles (i.e., quasi-cliques). The userCover discovered from nodes 
that are part of same quasi-clique leads to more informative event 
summary. For instance, black nodes in Figure 5 (a) and Figure 5 (b) 
both represent the dominating sets. However, Figure 5 (b) 
represents the dominating set induced due to the pivot edge. 
Therefore, pivot edges ensure that a message summary discovered 
based on pivot edges is more informative, stable, complete, and 
compact.      

Pivot nodes are ‘central nodes’ in an event graph. There are other 
notions of central nodes in a graph, for example, HITS [17] and 
PageRank [21] identify central nodes (authorities). However, there 
are basic differences in the settings of our two problems as:  

a) [17][21] techniques are iterative in nature, therefore not 
amenable to rapidly changing dynamic graphs;  

b) The notion of ‘completeness’ (Section 5.1.3) is not applicable 
for these methods. Due to the same reason, the notion of between-
ness centrality [22] is not applicable; 

(b) Black nodes 
depicting optimal 
pivot nodes (c=2) 

(a) Black nodes 
depicting optimal 
dominating set 

 (d=3) 
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c) These techniques exploit the link structure to identify the 
authorities, whereas we exploit the graph structure to identify the 
pivot nodes (since the objectives of two problems are different). 

5.2 Approximate User Cover 
Next, we present our algorithm to identify approximate userCover. 
On an event-graph Gt

c(Vt
c, Et

c), we induce a graph G’(V’, E’), 
t

cVV ' and )( ''' VVEE t
c    such that 'Vv ; v is a pivot 

node in graph Gt
c. The induced graph G’ is called the core event-

graph. The event summary discovered from G’(V’, E’) follows the 
same notion of event-summary (Def. 4.1) except that it is 
discovered on induced graph G’.  

Instead of identifying the userCover for graph Gt
c, we identify the 

userCover on G’. The core event-graph G’ does not contain the 
peripheral nodes in Gt

c. However, presence of peripheral nodes in 
the event-graph Gt

c defines the pivot nodes.  Therefore, peripheral 
nodes impact the event summary only indirectly.  

Lemma 5: A node v with degree Δ(v) > 2 in graph Gt
c(Vt

c, Et
c) is a 

pivot node. 

Proof: 2)(,  vVv t
c  (node v is part of a cycle). Let v t

cV |Δ 

(v) > 2 be a node in graph Gt
c  such that v is not a pivot node. Since 

Δ(v) > 2, node v is part of more than one cycles. Let C1 and C2 be 
two cycles node v is part of. Let edge e (v, n’) belong to C1 and edge 
e (v, n”) belong to C2. Hence, there exists one path from node n’ to 
node n” via node v.  However, if this is the only path between the 
two nodes, node v becomes an articulation point violating the short 
cycle property. Hence there exists one more path p from node n’ to 

n” inducing a cycle C (v→n’ 
p  n”→v). Length of cycle |C|≤4 

(SCP). Therefore, edge e(v, n’) participates in two cycles C1 and C. 
Hence e(v, n’)  is a pivot edge and v is a pivot node.                         □ 

With the aid of this lemma, it is easy to induce graph G’ on Gt
c. 

Note, G’ may not follow the short cycle property. 

 

Figure 6: Discovering core graph from an event-graph 

Each node v in G’ is assigned a score p(v); p(v) ← dv(Gt
c); dv(Gt

c) 
is the degree of node v in graph Gt

c. This score is used to identify 
userids in the userCover. In Lemma 2, it is shown that if two nodes 
are adjacent, they have one or more userids common. Therefore, by 
selecting the nodes with higher score, event summary is likely to 
contain more keywords in event-graph Gt

c. We describe our 
algorithm to find userCover for graph G’ below. 

Algorithm approxUserCover (nodeList nL) 
1. Let Gt

c(Vt
c, Et

c) be an event-graph. 
a. let cId be its clusterId; 

2. G’ is the core event-graph induced on graph Gt
c. 

a. )();,( ''' t
cvv GdpEVGv   

b.  Uv ← list of userids associated with node v 
3. S ← Φ 

4. for )( 'VGv  {if nLv { vSS  }} 

5. cId.nL ← V’; /*we record the pivot node to efficiently update  
                           the event summary when cluster evolves later*/ 

6. uC ← Φ /*userCover is set to null*/ 

7. while ( S ) 

a. v← )((arg '
' GdpMax vvVv




 /*return node with   

                                                highest pv dv(G’) score*/ 
b. U ← Uv ; 
c. Let Un be userids set associated with a node n, such that n is 

neighbor of node v in G’. 
i. T ← )(arg tkmessageRanMax

nUUt   

ii. uC ←uC  {T}; 

iii. U = U – U  Un /*We do not select any more userids 
covering same keyword*/ 

d. For each remaining neighbor, check if userid T exists in their 
userid list  

i. A← v.adjList (G’) /*adjacency list of v in G’*/ 

ii. nAuu  | , if T  Uu, S ←S-u; 

8. return uC; 
 
Each edge in graph G’ is a pivot edge in Gt

c. The degree of a node 
v in G’, dv(G’) is a measure of the number of cycles it participates 
in graph Gt

c. messageRank (.) returns the userid of the message with 
highest rank. Since, a user is added in the user list of a node one at 
a time, it is kept sorted in the message score efficiently. In the above 
algorithm, each node in the event-graph is visited exactly once. 
Thus, the complexity of identifying userCover is O(|Vt

c|). 
Algorithm approxUserCover is greedy and achieves the same 
complexity as Dominating set [25], i.e., (1+ log (Δ)) OPT; OPT is 
optimal userCover size and Δ is the maximal degree in graph G’. 
Dominating set problem is LOG-APX-COMPLETE and no better 
bound is possible. 

5.3 Ranking the Messages 
Since our objective is to summarize a highly dynamic data stream 
in real time, the methodology to rank each arriving message must 
be i) fast and efficient; ii) rank more meaningful messages higher; 
and iii) does not re-rank the already ranked messages with fresh 
updates in the data stream. There are many studies related to 
ranking the microblogs [18][19][6]. A common conclusion across 
these studies is that the rank of a tweet depends on the authority of 
its author and the authority of the message. We exploit these 
features to establish the rank of a tweet. 

Let di, djSt be two messages in the data stream S. Let R(.) be a 
monotonically increasing function such that if di is deemed more 
important than dj, R(di) > R(dj). To efficiently rank the messages, 
R(.) is applied on both these messages independently.  

A tweet is considered more meaningful i) if it is retweeted more 
(retweet count RT captures the authority of the tweet [18]); and ii) 
if it is tweeted by a person with many followers (follower count f 
captures the authority of the user [19]). Therefore, the tweet score 
R(d) of a tweet d is computed as:  

R(d) =   αRT.log f 

Since the dynamics of an event vary at much finer time scale 
compared to a user’s follower’s count, f is a logarithmic factor.  

The ranking function scores each arriving message efficiently, as 
soon as it arrives such that the more important messages are likely 
to be ranked higher. Please note the first criterion to choose a 
message is the underlying event-graph structure. The highest 
ranked messages associated with the pivot nodes in the event-graph 
are identified as summary (Section 5.2). Therefore a message from 
a user with lesser following and/or retweets would be picked in the 
event summary, if it is more relevant in the context of an event. 

In summary, we translate our goal to provide an event’s summary 
into one of discovering a set of users, collectively using all the 
keywords in the event-topic. We show, this set of users can be 
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discovered only from pivot nodes in the event-graph. We also show 
that pivot nodes enable us to discover informative, stable and 
compact summary. 

6. DISCOVERING EVENT THREADS 
In this section, we present our technique to discover the contextual 
event summary threads capturing the evolution of live events. The 
evolution of an event is tracked by tracking changes in its 
underlying event-graph Gt

c(Vt
c, Et

c).  

A possible approach for constructing the event threads is to 
maintain the snapshots of each event-graph in each time window 
[24], but it is not practical to construct summary threads in real time 
from these snapshots, as 1) instead of incrementally processing the 
graph, the complete event-graph needs to be processed for each 
event for each snapshot, thus making it impractical for processing 
a fast moving data stream in real time; 2) it is shown in [31], that a 
highly efficient mechanism is needed to keep the indexes updated 
for the event threads. Thus, it is not practical to create the index 
again for each snapshot. 

Hence, we maintain contextual event threads for each event by 
keeping a corresponding eventTree. EventTree captures the 
evaluation of the event-graph. We assign a unique event-id (called 
clusterId) to each event-graph. When an event-graph evolves, the 
summary is updated and the change is recorded in its eventTree. 
With changes in event-graph, eventTree is maintained as follows:  

Incremental changes in the event-graph: There are incremental 
changes in the event-graph due to addition and deletion of nodes 
and edges. Due to these changes, the summary may or may not 
change but the clusterId of the event-graph remains the same. 

Disruptive changes in the event-graph: If the structure of an event-
graph changes so much that we need to assign it a new clusterId, 
such a change is called disruptive change. For example, when two 
independent event-graphs with clusterId c1 and c2 merge into a 
single event-graph c due to emergence of new nodes/edges. The 
mapping c←c1, c2 is recorded in the eventTree. When two event-
graphs merge, their corresponding threads also merge in a single 
thread. Similarly, due to deletion of nodes/edges, if an event-graph 
c breaks into say two sub-graphs, c1, c2, we record c1← c and c2← 
c in the eventTree. Thus, a eventTree captures the evolution in the 
corresponding event-graph.  

Whenever a disruptive change occurs, we record the parent 
clusterId (cp)and child clusterId (c)relationship as an 
‘evolutionEdge’ (c← cp is an ‘evolutionEdge’). Each 
‘evolutionEdge’ that emerges in the current time window w, is 
processed at the end of the window, and the event summary is 
updated (cf. Section 6.3). We exploit the graph structure so that 
only the necessary ‘evolutionEdges’ are recorded. Note that 
‘evolutionEdges’ track the evolution of event-graphs and they are 
not the edges in the graph Gt (Vt, Et). Instead of maintaining 
complete snapshots, we just maintain ‘evolutionEdges’ to capture 
the differences between Gt and Gt+1.   

We next illustrate how the event summary changes due to addition 
and deletion of nodes. Similar process is applicable on graph edges. 

6.1 Effect of Node Addition 
Gt

c(Vt
c, Et

c) is an event-graph and G’(V’, E’) is the graph induced 
on Gt

c such that E’  Et
c be the set of pivot edges for graph Gt

c. 
When a new node (keyword) n joins the event-graph, it may induce 
a new pivot edge in graph Gt+1

c. A node n can join the event-graph 
Gt

c in two possible ways: 

Case 1: Due to the addition of node n, an edge e  Et+1
c – E’ 

becomes a new pivot edge.  

For example, as shown in Figure 7, when a new node n joins the 
cluster {A, B, C, D}, a new short cycle n→A→B→n is induced 
such that edge AB becomes a new pivot edge. 

In this case, the induced graph G’ includes an extra node (node A) 
and the corresponding edge(s). The existing userCover is extended 
to cover ‘A’. Please note, it is possible that the event summary does 
not change as the existing userCover could be sufficient due to 
pivot edge e(B, C). This check is done in O (1). 

  

Figure 7: Change in event summary with node addition 

Case 2: A node n joins the cluster such that it induces a new cycle 
on an existing pivot edges epE’.  

In Figure 7, n’ induces a new short cycle on edge BC (B→n’→C) 
which was already a pivot edge. Therefore, node n’ is a peripheral 
node and no change is made in the event summary. 

The cases underline the way event-graph is exploited to update the 
summary; due to the concept of pivot edges, summary does not 
change rapidly because of minor changes in the event-graph. 

6.2 Effect of Node Deletion 
A departing node breaks at least one short cycle. Departing node is 
either a pivot node or a non-pivot node. 

Case 1: The departing node n is a non-pivot node (e.g., node n in 
Figure 7); nV’. With the departure of node n, a pivot edge may 
no longer remain the pivot edge. Since n is not a pivot node it can 
impact only one pivot edge as it induces only one cycle. However, 
the userCover continues to remain a valid user cover as the edge 
e(n’, u), erstwhile pivot edge, remains part of the event-graph Gt+1

c.  

Case 2: The departing node n is a pivot node for edge e (n, v). For 
example, consider node B in Figure 7. Departure of a pivot node 
has a significant impact on the event-graph Gt

c and the graph may 
break into multiple sub-graphs or it may get dissolved if it no longer 
possesses the short-cycle property (in that case, the event ceases to 
exist as a live event). Each surviving sub-graph must possess SCP. 
Each of the surviving sub-graphs is assigned a new clusterId. The 
updateEvolutionEdge () records the relationship between the old 
and each new clusterId. For each ‘evolutionEdge’ ci← c, we extract 
the event-graph Gt+1

ci, update its summary and its event thread.  

Algorithm: UpdatePECover (node n) 

 'n N (n) /*N(n) returns neighbors of n in Gt
c*/ 

    If n’   V’  /* V’ is a set of pivot nodes in induced graph G’*/ 

      u N (n’) 

           if e(n’, u)  E’   

              if ep is no longer a pivot edge 

                 E’ ← E’ – e(n’, u); 

           else /*edge is a pivot edge*/ 

              childId ← getNewClusterId(); 

              updateEvolutionEdge (childId, clusterId);  
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The merging and splitting of event-graphs, results in an eventTree 
which is a Directed Acyclic Graph (DAG), representing the 
contextual event summary thread similar to shown in Figure 1. 

6.3 Temporal Evolution of Event Thread 

 
Figure 8: Processing ‘evolutionEdges’ to update event threads 

For all the ‘evolutionEdges’ (childId←parentId), the 
corresponding event threads are updated. Figure 8 depicts how the 
event threads evolve with time. Each eventTree is identified by a 
unique id, called tId. For each childId←parentId ‘edge’, if the 
parent cluster’s tId is null, it is a new event. We initialize its 
eventTree and identify event summary (using approxUserCover). 
Otherwise, we merge the eventTree of the parent cluster with the 
tId of the child cluster and update the event summary. The evolving 
event summary is recorded in the event thread. Similarly, event 
threads are updated in case of event-graph split. For two clusterIds 
c1 and c2 in an eventTree, if c1 is ancestor of c2, c1 has occurred 
before c2 in real world time. Each path in an event thread, from each 
of its roots to each of its leaves, exposes a different facet of the 
event. The event thread in Figure 1 has 6 facets. 

7. PERFORMANCE EVALUATION 
The goals of our experiments are to study our system’s ability a) to 
construct informative, complete, meaningful, stable and compact 
event summaries in real time (Section 7.2); b) to discover the 
contextual event summary threads in real time (similar to Figure 1) 
and to study the impact of the changes in the granularity of the 
event-graph on the event summary and event threads (Section 7.3); 
c) to discover event threads efficiently and in a scalable manner 
(Section 7.4). The experiments use the prototype built by us [31] 
and run on a quad-core 2.61 GHz, 4GB RAM machine running 
Windows 8 and Java as programming language. 

In Table 2, we describe the Twitter traces used in experiments. We 
use two types of traces: a) general timeline based (ALL) which 
contains all the tweets generated within US geography within a 
time window, provided by Twitter API and b) event specific (ES) 
traces. The event specific traces were created as follows: For each 
event, we specify a set of rules. Each rule contains one or more 
relevant keywords and/or hashtags associated with the event. Any 
tweet, containing the keywords from a rule is included in the event 
trace. We have carefully selected the traces to cover the entire 
spectrum of event change density -- from very low (22) to very high 
(775). Events change density specifies total number of times all 
the underlying event-graphs in a trace evolve every 100k tweets. 
Traces are read in their chronological order to mimic the real-time 
arrival of the tweets. 

Table 2: Details of Datasets 

Event #of Tweets Events change density 

Big Data 200k 775 changes/100k tweets 

Nairobi–complete 720k 274 changes/100k tweets 

Syria   1.7million 182 changes/100k tweets 

Twitter Time Line (ALL) 3.2million 22 changes/100k tweets 

7.1 Discovering Base Events 
To the best of our knowledge, no previous system exists that 
summarizes a complete live data stream in the absence of any user 
query. Therefore, we construct the ground truth as follows: Live 
events unraveling in the data stream are the base events and form 
the ground truth for our system. The objective of our experiments 
is to study the performance of our summarization technique and its 
ability to construct meaningful contextual summary threads for the 
events given to it as ground truth. Any algorithm discovering dense 
graphs as event-topics in a highly dynamic graph can be used to 
provide the base events. For our experiments, we use the algorithm 
in [15] – it efficiently discovers the events in a live data stream with 
high precision and recall. It is shown in [15] that the events 
discovered by this system correlates highly with real world events 
reported in Google news headlines. Additionally, it discovers many 
other real world events that do not occur in Google news headlines. 

The number of event-topics as well as the number of keywords in 
an event-topic in a data stream depends on the dynamic event-graph 
Gt (Vt, Et) at time t. The set of nodes Vt in the graph Gt depends on 
burstiness threshold γ and the set of edges Et depends on the edge 
similarity threshold λ. The default values are: γ=5 and λ=0.2, unless 
specified otherwise. The message block size m is set to 1000 and w 
(cf. Table 1) is set to be 75 for all the experiments. 

7.2 Quality of Event Summarization 
Informative-ness: We identify the userCover only for the pivot 
nodes in an event-graph (Section 5). The premise is that the 
important keywords in the event-graph are likely to be pivot nodes. 
The peripheral nodes in the event-graph may or may not be covered 
in the event summary. We quantify the informative-ness of the 
summary as follows: If there is a keyword in an event-topic that is 
a proper noun and is not present in the event summary, we count it 
towards loss of precision. Precision is computed as the fraction of 
proper noun keywords present in the event summary among all the 
proper noun keywords in the event-topic. Let there be N events in 
a given trace. Let Ri be the set of proper noun words in the summary 
of the ith event discovered by our algorithm; 1≤ i ≤ N. Let Bi be the 
set of all the proper noun keywords present in the event-topic of 
event i. The precision of informative-ness, PI, is defined as: 

PI = Ni
B

R

i

i 



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Figure 9: Summary Informative-ness and Completeness 

Complete-ness: We compute the fraction of total keywords in the 
event-topic covered in the event summary to compute the complete-
ness score PC. As shown in Figure 9, PC for various traces varies 
from 79% to 99%. PC is marginally lower than PI, as typically noun 
keywords are more central in the event-graphs. For the ALL trace, 
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since almost all the keywords are covered in the event summary, 
there is no difference in the two scores. We see, that our system 
achieves very high informative-ness and complete-ness score.      

Stability: We study the stability of the event summaries by our 
algorithm for live events. The results are shown in Table 3. Since 
different traces have different sizes, we report the results in terms 
of event change density/100k tweets. 

Table 3: Rate of changes in event-graphs for different traces 

Total event-
graph 
changes/  
100k tweets 

Changes 
(addition 
in event-
graph) 

Changes 
(event-
graph 
break) 

No change 
in 
summary  
(additions) 

No change 
in 
summary 
(deletions) 

Big data-775 114 33 411 217 

Nairobi-274 43 5 173 53 

Syria-182 30 3 114 35 

ALL- 22 1.5 0 13.5 7 

We see that across the traces, more than 80% of the changes in the 
event-graphs do not result in any change in the summary. For 
example, for Big-Data trace, for every 775 changes in the event-
graphs; event summary remains the same for 411 changes when 
nodes/edges or messages get added to the event-graph and for 217 
changes when a node/edge gets deleted from the event-graph, i.e., 
no summary change for 81% of event-graph changes. Thus, the 
event summary remains stable for a large fraction of changes. 

Summary-size: Next, we compare the message pool size of an 
event with the number of messages in its summary (summary-size). 
The average message pool size varies from 74 tweets (for ALL 
trace) to 1394 tweets (for Syria trace) as shown in Figure 11, 
denoting that for an emerging event in the Twitter data stream, a 
large number of related messages are posted. The number of 
messages is per event-graph and not per event thread (an event 
thread captures the evolution of associated event-graph(s)). We 
divide the events based on the number of keywords in the event-
topic, as shown in Figure 10 and Figure 11. For ALL trace, no 
event-topic contained more than 16 keywords. 

 
Figure 10: Average number of tweets in ‘event summary’ for 

different event-topics sizes 

As expected, summary-size increases with increasing event-topic 
size (Figure 10). Similarly, number of messages pertaining to an 
event increases with event cluster size (Figure 11). The key insights 
are: 

1) Summary-size is independent of the message pool size (i.e., 
tweets associated with an event-graph). It depends only on the 
underlying information. For example, for Syria trace, average 
message pool size increase from 128 to 1394 for different size 

event-topics but the summary-size remains almost stable. The event 
summaries were highly meaningful. 

2) Average summary-size varies from 2.61 to 7.71 tweets for 
different traces for event-topics comprising up to a few hundred 
tweets. Thus, our system discovers highly compact summaries. 

Figure 11: Average number of tweets in the event ‘message 
pool’ for different sizes of event-topics 

We construct alternative summary for a discovered as follows: For 
an event-graph, we randomly select a message from the message 
pool covering an event keyword. We keep on selecting messages 
till each keyword in the event graph is covered by at least one 
message. This ‘naïve method’ serves as a baseline to compare the 
performance of our system.  

Since we select the messages randomly in ‘naïve method’, 
qualitatively, the summary by naïve method was markedly inferior 
for almost all the events. The other issues with this naïve method 
were; 1) A significant number of redundant messages occur in the 
event summary. For many events, the summary size was more than 
twice the summary discovered by our system.; 2) the naïve method 
will not discover the event threads, exposing different event facets.       

To further compare the quality of event summary we compared the 
summary discovered based on our approach with Google News 
headlines (for the events which also appear in Google headlines). 
In Table 4, we present the comparisons between a few of the 
Google headlines with our summary tweets.  

  Table 4:  Google News Headlines Vs. Event Summary 
discovered by our approach 

Google Headline Summary based on our approach 

India vs New Zealand, 3rd Test: 
Ashwin 6/81 hands India huge 
first innings lead 

India vs New Zealand, 3rd Test: Ashwin 6/81 
hands India huge first innings lead 
https://t.co/ih5oTkOlIY 

NASA Mission Tests Thrusters 
On Journey To Asteroid 

NASA probe tests thrusters on journey to 
asteroid Bennu - Zee News: NASA probe tests 
thrusters on jou... https://t.co/2Tv0XC71cJ 

Pampore attack: Militants holed 
up inside govt building; combing 
operations intensify 

RT @kashmirglobal: Smoke and dust 
engulf a government building where 
suspected militants have fighting with 
Indian forced in Pampore… 

NASA resupply mission to space 
station postponed 

Atlantic Storm System Delays NASA 
Resupply Launch to Space Station via 
NASA https://t.co/wdWmqwhz7k 

Obama pushes NASA to send 
humans to Mars by 2030s 

Can the U.S. Really Get Astronauts to Mars by 
2030?: President Obama renewed his call to 
send Americans to th... 
https://t.co/ZeSADfvDNZ 

1000 asteroids heading towards 
Earth; conspiracy theorists claim 
end of the world is near! 

RT @Ufo_area: Asteroid mission: 1000 
space rocks heading towards Earth – Daily Star 
https://t.co/ExDVSJOzly #Asteroid 
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Microsoft Office for Android will 
be supported on Chrome OS 

Microsoft Office for Android will be 
supported on Chrome OS +AC0- The 
Indian Express https://t.co/7xLBJJpSKW 

We see that the summary tweets represent the Google headlines 
very accurately. For a few headlines, Google headline matches 
completely with the tweet selected by our approach. However, the 
timestamp of tweets in our summary is ahead by few minutes to 
few hours, for different event, compared to their corresponding 
appearance in Google headlines.  Details are omitted due to lack of 
space.  

In our next experiment, we study the performance of our system to 
expose context event summary threads.  

7.3 Contextual Event Summary Threads 
How do Real-time Events Evolve with Time? – Next, we study 
what fraction of the real-time events evolve into event threads. We 
divide the events into; 1) standalone events, i.e., events which do 
not result in threads and 2) event threads. We plot the density of 
events per 100k tweets for each trace. The results are shown in 
Table 5. The event density is highest for Big-data trace. We see; 1) 
a significant number of events result in event threads; and 2) the 
density of events is much higher for event specific traces as 
opposed to ALL trace. ALL trace has a density of 1.1 standalone 
events and 1 event thread/100k tweets respectively. Since the 
average tweets/event is highest for Syria trace (Figure 11), the 
density of events for it is relatively smaller. 

We show the average number of times an event-graph changes 
during its life cycle in Table 5. An interesting insight is that even 
though the density of events is lowest for ALL trace, the average 
number of times its event-graphs changes during their life span is 
significantly higher compared to ES traces. The reason is, density 
of tweets related to a single event in ALL trace is very low. 
Therefore, the changes in the existing event-graphs are only 
marginal and the event-graphs absorb such changes, resulting in a 
longer life span. In summary, a large fraction of events result in 
threads. Further event threads evolve only when there are 
significant changes in the event. 

Table 5:  Event density and Average number of times an 
event-topic changes during its life span 

Density/100K Tweets Nairobi Big Data Syria All 

Density of Standalone Events  19.44 94.38 16.25 1.1 

Density of Event Threads 39.9 59.9 15.6 1 

# of Changes in an event-
topic during its life span 

6.22 5.88 6.46 10.88 

How Complete are the Event Threads? - In this experiment, we 
study how the real-time events evolve. An event thread is a DAG. 
The depth of a DAG is the length of the path from its root to its 
deepest leaf (depth of DAG in Figure 1 is 9). To count the number 
of facets in the DAG, we sum the total number of unique paths from 
the root(s) to each of the leaf nodes of an event thread. We study 
the temporal evolution of the events by computing the average 
depth and average number of facets of the event threads. The facets 

are counted as: 
 



Ll Rr

r
lpfacets where r

lp  is total number of 

paths to reach from root node r to leaf node l and L (R) is the set of 
leaf (root) nodes in the event-graph. Depth of an event thread and 
its facets capture the complexity of the events. The results for 
different datasets are shown in Table 6. Only the event threads, not 
the stand-alone events, are considered for this experiment. 

Table 6: Average depth and average facets for an event 

Event Thread 
Complexity  

Nairobi Big Data Syria All 

Average event depth 5.98 4.97 5.42 2.77 

Average event facets  2.63 2.25 2.27 1.21 

Average depth/facets of the event threads are highest for Nairobi 
trace at 5.98/2.63 and lowest for ALL trace at 2.77/1.21. Hence, 
event complexity is highest for Nairobi trace. The result signifies 
that our algorithm can handle changes in a fast- moving data stream 
gracefully. For the default values of λ and γ, the maximum depth of 
an event was 30 (for Nairobi trace) with 9 facets, exposing the 
complex way the live events evolve. 

How does Granularity of Event-Graph impact the summary? 
To vary the granularity of the dynamic graph Gt (Vt, Et), we vary 
the burstiness threshold (Bt) γ and edge correlation threshold (Ec) 
λ. If γ and/or λ are reduced, there will be more nodes and/or edges 
in the graph Gt (Vt, Et), leading to more events being discovered and 
vice versa. In Figure 12, we show how the number of event threads 
(every 100k tweets) varies -- by varying γ and λ for different traces.  

We find two distinct trends: 1) for Big-Data and Syria traces, with 
more nodes/edges in the dynamic graph Gt (lower γ and/or λ), the 
number of event threads increase but the depth and the facets are 
not significantly impacted; 2) for Nairobi and ALL traces, with 
more nodes/edges in Gt, the number of events is not impacted much 
but the event depth/facets increase, exposing the same events at 
finer granularity. In summary, when the messages related to an 
event tend to come in bursts, we observe trend (1). If the messages 
related to an event are distributed more evenly in the data stream, 
we observe trend (2). 

 
Figure 12. Event Density (blue), event thread depth (red) and 

event thread facets (green) with varying γ (Bt), λ (Ec) 

7.4 Efficiency and Scalability 
In this experiment, we analyze the overhead of our method to 
summarize the events and arrange them into contextual summary 
threads. We also analyze the scalability of our approach, i.e., how 
many tweets are processed/second (TPS). We discover the event-
topics in a twitter trace without contextual summarization system 
and with it. In Table 7, we show the overhead of our system. We 
see that the summarization algorithm imposes only a marginal 
overhead over base event discovery system in [15]. Overhead of 
our method is highest for Nairobi trace at 12.36% and smallest for 
ALL trace at 3.17%. The tweet processing rate is highest for ALL 
trace at 6631 TPS and lowest for Big-Data trace at 1044 TPS, with 
summarization system on. For Nairobi trace, the rate is 4473 TPS 
with summarization and 5026 without summarization. 
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Table 7:  Tweet processing rate per second (TPS) 

TPS Nairobi Big Data Syria All 

With Summarization 4473 1044 2505 6631 

Without Summarization 5026 1129 2614 6841 

Without the summarization, the TPS for ALL trace is 6841 for the 
algorithm presented in [15]. ALL trace is closest to the general 
Twitter data stream. The average rate for global Twitter data stream 
is reported to be 5700 TPS in August 2013 (peak rate is ~144k TPS) 
[26]. Therefore, our technique is highly scalable for real time 
processing and does not impose a big overhead to identify event 
summary and event threads over event discovery algorithm. 

In summary, we present a novel system that constructs meaningful, 
stable, and compact event summaries for the events present in an 
unfiltered data stream. We also discover contextual event threads 
in real time over live data streams efficiently. 

8. CONCLUSION 
In this paper, we present a novel unsupervised technique that builds 
the summaries for emerging events in real time in a complete fast 
moving data streams in absence of any user query. The summaries 
are complete and meaningful and contain the informative messages 
for the underlying events. Our technique also discovers the 
contextual event summary threads in a scalable manner. It is not 
necessary that the most recent messages are also the most 
informative for a live event. However, the most informative 
messages about the event are present in its summaries. We plan to 
extend our technique to enable improved real time search over data 
streams. 
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