
Real Time Contextual Summarization of Highly Dynamic
Data Streams

Manoj K Agarwal

Microsoft Bing
Search Technology Center - India

Hyderabad – 500032, India

agarwalm@microsoft.com

Krithi Ramamritham
Dept. of Computer Science and Engineering

IIT – Bombay, India
Mumbai – 400076, India

krithi@cse.iitb.ac.in

ABSTRACT
Microblogging streams typically contain information pertaining to
emerging real world events. Due to the rapid pace of messages in
these data streams, short message size and many concurrent events,
it is often difficult for users to understand the full context behind
an arriving message. Hence, users resort to the cumbersome task of
sifting through many messages to obtain the full context of the
underlying event. To address this problem, we propose a novel
notion – Contextual Event Summary Threads – and present a
technique to extract highly meaningful yet compact event summary
threads, capturing the complete context of events appearing in data
stream, in real time. Our technique is unsupervised and
automatically identifies different facets of live events in an
unfiltered data stream in a scalable way and presents them to the
users as evolving event threads. Extensive experiments over real
data demonstrate that our technique -- while avoiding per message
processing -- can summarize live data streams with high accuracy
and produce compact event summary threads. The summary size of
each event is dependent only on the underlying information and not
on the number of messages pertaining to that event. Our technique
is generic and is applicable on any chronologically ordered data
stream which can be modeled in a <user: message> framework.

CCS Concepts
 Information systems → Information retrieval → Retrieval

tasks and goals → Summarization

Keywords
Real Time Search; Data Streams; Event Summarization;
Algorithm; Experiments.

1. INTRODUCTION
1.1 Motivation
Unstructured data streams -- sequences of chronologically ordered
messages posted by multiple users -- occur in various social media
and enterprise domains. For example, on Twitter, with a large user
base, messages are posted at a high rate. Twitter is often the first
medium to report emerging events [14][18]. An event in a data
stream is defined by “messages, posted by multiple users, in the
same context, within a bounded time window”, for example,
messages posted by the fans during the course of a football match.

An event can be a real world or an abstract activity, relevant for a
group of people. It is only natural that in a fast-moving world, a
huge number of events occur concurrently.

There have been many recent attempts [14][15][16] at identifying
emerging events in real time over live social media streams.
Existing unsupervised approaches identify emerging events as
temporally and spatially correlated clusters of keywords over
dynamic message streams. The temporally and spatially correlated
cluster of keywords forms an ‘event-topic’. In order to capture the
event-topic, a dynamic graph is constructed using the most recent
messages, with a sliding window model. Therefore, nodes in the
dynamic graph represent temporally correlated keywords. An edge
between two nodes -- representing two keywords -- indicates that
messages within the recent sliding window contain both the
keywords, representing spatial correlation. Thus, nodes of dense
sub-graphs embedded in the dynamic graph represent the keyword
clusters with strong spatial and temporal correlations [15][16].

When the tweets posted during the Nairobi terrorist attack [30] are
fed to the system described in [15], one of the keyword clusters,
i.e., event-topic, discovered contained the keywords:

- A: UK, #kenya, #westgate, #nairobi”

Clearly, the keywords are insufficient to describe the underlying
event. The same is true of another event-topic:

 - B: was, 69, kofi, among, #ghana, attacks,
ghanaian, awoonor, killed, poet, prof., #kenya

Systems such as [14][15] discover event-topics like A and B. To
better understand an event-topic, users have to search for the
relevant messages in the data stream by themselves. This burdens
the users with the task of understanding the emerging events
manually or to determine if there is a connection between A and B.
The shortcomings of the message search-based approach are:

(1) Keyword search over live data streams is primitive, e.g., Twitter
just returns the most recent tweets for a given search query [19]. It
is not necessary that the most recent tweets are also the most
relevant and informative tweets for the event.

(2) Keyword search can produce an information overload for a fast-
moving data stream. Often a large number of tweets are returned by
Twitter for a search query [5]. Moreover, search results are
continuously updated with recent messages. This poses difficulties
for the users to keep pace with the evolving events.

Typically, the rate at which messages are generated is high. Hence,
even if a subset of the messages in the query response is
informative, it is challenging to identify these messages in real-
time. The high rate of message arrival, and the fact that the

© 2017, Copyright is with the authors. Published in Proc. 20th
International Conference on Extending Database Technology (EDBT),
March 21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on
OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0

Series ISSN: 2367-2005 168 10.5441/002/edbt.2017.16

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.16

messages are short often makes it difficult for the users to
understand the context of a standalone message. Thus, the first goal
of this paper is to discover a minimal set of most informative
messages from the message stream, related to an emerging event.
These messages represent the complete summary of the event.
Furthermore, live real-world events are not just point events – they
evolve. Our second goal is, for each discovered event, its summary
must be updated every time there is any significant change in the
event. Note that the events evolving in real time may comprise
several different aspects or facets. When these changes in the event
summary are arranged temporally, an event thread results,
capturing the complete event context with the passage of time.

Given these needs, we present a novel method to automatically
extract the Contextual Event Summary Threads in real-time for
events unraveling in an unfiltered and fast moving data stream.

In [31], we presented our methodology to create and update an
index over discovered ‘Contextual Event Summary Threads’ in a
highly dynamic data stream in real time and enabled keyword
search over these events using it. In this paper, we present our
technique to summarize the events and to discover the Contextual
Event Summary Threads.

1.2 Contributions
Most real-world events comprise several facets. Therefore, the
summary for an event is represented as a Directed Acyclic Graph
(DAG) that reveals the way the event has evolved. Each node in an
event thread, called sub-event, has an associated event-topic similar
to A and B. An event-topic is summarized using a minimal set of
most relevant messages discovered from the data stream.

The event thread in Figure 1 was produced automatically by our
system [31] from the tweets sent during ‘Nairobi Terrorist
Attack’ [30]. There are 13 sub-events in the thread in Figure 1. The
summary started with a tweet about a mall being attacked, followed
by tweets about action against attackers, rumors, claims and
counter claims by authorities and citizens, etc., which were
discovered in real time. The event thread describes a meaningful
chronological sequence of the event. Figure 1 depicts a part of the
event thread discovered over 164K tweets. For each sub-event in
the event thread, our method identified an appropriate summary.

We identify most appropriate message(s) in the data stream,
describing the event-topic. In Figure 1, sub-event 9 corresponds to

A and sub-event 5 corresponds to B. Note, all the keywords for both
the event-topics are present in their summaries.

In summary, our system:

 (i) Clusters the related messages together in the data stream:
Event-topics are identified by discovering dense sub-graphs, called
event-graphs, in the dynamic graph constructed over the message
stream [15]. Our system exploits the event-graphs to pool the
relevant messages together, related to event-topics.

 (ii) Identifies important messages in the message pool to create
an event summary: We identify a minimal set of the most relevant
messages from the message pool of an event-topic such that the
summary is complete and meaningful. In fact, we exploit the
structural properties of the underlying event-graph to identify a
subset of messages as ‘summary candidates’.

 (iii) Discovers the event threads for evolving events: As the
events evolve, the underlying event-graphs go through structural
changes. These changes are tracked in real time. Event summary is
updated whenever its event-graph goes through a ‘significant’
change (cf. Section 6). The updates in the event summaries are
captured in contextual summary threads like one shown in Figure
1. Our technique automatically discovers different facets of live
events in real time. In general, an event thread can have multiple
roots. We say that each unique path in the event thread, from each
of its root(s) to each of its leaves, represents a different facet of the
event. Event thread in Figure 1 has 6 facets.

In a nutshell, our research contributions involve

1. Summarizing all the events, discovered in a fast-moving
unfiltered data stream, in real time, in a scalable and
unsupervised manner. For each discovered event-topic, a
minimal set of messages is identified to produce a meaningful,
informative, stable and complete event summary (Section 5).

2. Tracking the evolution, emergence and dissolution of dense
graphs (event-graphs) in a large and highly dynamic graph in the
presence of node and edge insertion and deletion.

3. Exposing different facets of live events which are presented as
a contextual event summary thread, representing one or more
aspects of the event in real time (cf. Section 6).

6. Spread to all Kenyans - the westgate situation may be trying to distract
Nairobi, a bigger attack may happen, STAY INDOORS- RT n SHARE

2. Day 2: Al-Shabaab Jihadists Holding Innocent
Civilians at Westgate in Nairobi, Death Toll at 59.

4. KENYA UPDATE: Death toll in #Westgate siege rises to 68
as 9 more bodies recovered during rescue operation 5. Ghanaian poet & author- Prof. Kofi #Awoonor was among the 69 killed in the

attack on #Nairobi's #Westgate mall. #Ghana #Kenya

7. Israeli forces enter Nairobi mall: security source
http://t.co/E0NoM7lxPA \u2026 #westgate

8. Two helicopters landed on the roof of #westgate mall where
#nairobi hostage crisis continues.

10. Kenyan forces kill two terrorists, claim control of Westgate mall:
Kenyan forces assaulted terrorists in Nairo... http://t.co/zoJaHgAuun

9. Speculation that convertite 'white widow' Samantha Lewthwaite from UK is
the mastermind of the attack on #Westgate Mall in #Nairobi, #Kenya

13. Day 3: Kenyan Government Takes Westgate Mall From al-
Shabaab Jihadists p://t.co/E66dDy5l6y #BigTweet

11. Something I never saw in 30 yrs as journalist: civilians bringing food, coffee
to journalists covering #Nairobi's #Westgate siege. Amazing!

12. Militants at the Westgate mall in Nairobi, Kenya, are still
holding their ground, Somalia's Al-Shabab group claims

1. #AlShabaab says it attacked #Westgate mall in
#Nairobi to retaliate for Kenya's role in #Somalia.

3. MAJOR assault by security forces ongoing to end two-day siege at Westgate
mall. Fears abound death toll could be higher when dust settles.

Figure 1: Contextual Event Summary Thread Discovered by our system for Nairobi Attack

169

To the best of our knowledge, ours is the first technique that
captures the multi-faceted summary of live events and to arrange
them in event threads. The event topics, discovered over an
unfiltered and fast moving data stream, are summarized in real time
in an unsupervised manner, in absence of any user query. The
contextual event summary thread is a novel concept in contrast with
the story-line generating techniques [4]. Our approach is generic
and applicable on any data stream that is a sequence of <user:
message>s. Experiments over real data show, our technique leads
to compact and meaningful event summary threads for live events.

The organization of the paper is: In Section 2, we present the related
work. The event-graph model to capture the state of dynamic data
stream and the challenges involved in discovering event summaries
are presented in Section 3 and Section 4 respectively. In Section 5
and Section 6, we present the methodology to discover event
summary and event summary threads. We present our experimental
study in Section 7 followed by conclusion in Section 8.

2. RELATED WORK
Topic Detection and Tracking [1][2] is related to our work. In [12],
Yang et al., presented a method to summarize web documents. For
these techniques, the document characteristics are completely
different from microblog streams (‘large size/less in
number/offline’ vs. ‘small size/too many of them/real time’). These
methods work on static data only.

In [5], Shou et al., presented a technique to summarize a Twitter
data stream, filtered in the context of a given user query. In [23],
authors reduce the summarization problem to that of optimizing
probabilistic coverage on static data. In [8], Yang et al., present a
method to compress the Twitter data stream. Lee et al., in [24]
propose a snapshot based method to track the incremental evolution
of event-topics. There is significant work [10][11][13] to identify a
fixed size summary of microblog posts on a pre-specified topic and
on static data, i.e., data which is not updated with new messages.

Gao et al., [3] proposed an unsupervised approach to summarize
events, by preparing a joint sentence-tweet level model, across
news media and Twitter. Too similar or too different sentence/tweet
pair were discarded. In [4], Lin et al. proposed a mechanism to
generate a storyline from a microblog data stream. However, the
technique is applicable only for static data sets. Vosecky et al., [7]
presented a method to identify multiple facets of an event, i.e.,
important keywords, entities, location, etc., on a static Twitter
stream.

The basic difference between existing work and the problem
addressed in this paper is: These techniques [1][4][5][7] work in
the context of a given query, topic and/or on static data. In contrast,
our technique organizes the event summary into event threads,
capturing the complete context, for each underlying event
discovered in the unfiltered data stream in real time.

The dynamic graph model is exploited to identify the event
summary. Our technique exploits the presence of Short Cycle
Property (SCP) in the dense sub-graphs of a dynamic graph. In [15],
it was shown that dense sub-graphs of a graph possess SCP. There
is a large body of work for triangle counting and triangle listing in
graphs. Triangle listing is considered an important measure for
discovering dense neighborhood [28]. A triangle in a graph induces
a cycle of length three. SCP extends this notion to cycle of up to
length four, i.e., each node in a graph, possessing short cycle
property, participates in a cycle of length at most four within the
graph. Triangle listing problem can be divided into processing
static graphs [20] and streaming graphs [27]. Streaming graph

algorithms for triangle listing are further divided into edge insert
graphs [27] and edge insert or delete graphs [9]. In contrast, our
algorithm works on a graph with insertion and deletion of both
edges and nodes. In this paper, we identify dense event-graphs,
discovered based on SCP [15], representing emerging events in a
large dynamic graph, with edge and node insert and delete. Our
technique keeps track of emergence, evolution and dissolution of
the dense sub-graphs in a large dynamic graph. This evolution is
presented as contextual event summary thread for the event.

3. EVENT-GRAPH MODEL
Let S = St-wSt-w+1…St represents a message stream. Si = {di

1di
2…di

m}
is the set of messages arriving in block i. A message dt

j=<ui, k> in
the data stream contains message k and the userid uj of the user
posting the message. A message k is an ordered set of keywords.
m, called the block size, is the number of messages in a block. The
stream is moved forward by expiring the messages in (t-w)th block
and including the messages in (t+1)th block. The message
timestamp is implicit with the arrival order in the data stream. For
constructing the event thread as shown in Figure 1, we extract the
<userid: message> from the incoming data stream. No pre-
processing is done on the message, except removing stop-words
from it and tokenizing the message into keywords.

Temporal and Spatial correlation: The data stream S is modeled
as dynamic graph Gt (Vt, Et) [15]. For the problem studied in this
paper, Gt is an input to our system. The graph Gt (Vt, Et) captures
the state of the data stream at the arrival of messages in block t (t

N). Keywords are represented as nodes in the graph Gt. At time

step t-1, the graph is updated with the keywords present in the last
block of m messages and t-1 is incremented to t. Vt contains the
bursty and active keywords in the last w blocks at time t. Nodes Vt
capture temporal correlation as only temporally correlated
keywords (nodes) are present in the graph.

Table 1: Notation

St;|St|=m St is the block of m messages in the tth time step.

Gt=(Vt, Et) Dynamic graph at time step t. Vt represent the keywords and
edges Et the keyword-correlation in the graph Gt.

Gt
c(Vt

c, Et
c) Gt

c is the event-graph embedded in Gt for event c at time step
t. Vt

c represent the keywords in event-topic.

N (v); vVt
c N(v) represent the set of adjacent nodes to node v Vt

c.

dt
j=<ui, k>;

1≤j≤m
Message dt

j posted by user ui during time step t. k is set of
keywords in the message.

w Graph Gt contains the bursty and active keywords from last w
message blocks.

γ Keyword Burtstiness threshold.

λ Edge correlation threshold.

Mt
c Message set representing summary of event c at time t.

Uv Set of userids associated with node v Vt.

userCover Set of userids, whose messages include all the keywords in an
event-topic.

A keyword is bursty if it is used in γ (>1) messages in the current
window of m messages. A keyword k is called active if its
corresponding node vkVt is present in Gt (Vt, Et), i.e., the keyword
is used in at least one of the messages in the last w message blocks.
An active keyword remains in the graph Gt for as long as it is active.
A keyword is removed from the graph Gt if it is inactive for w time
windows. Hence, a keyword has to be bursty at least once to move
into the graph Gt. The burstiness constraint helps identify events
relevant for a community or group of users.

170

Each node vk  Vt is associated with a user list Uk, containing
userids of the users who have used the corresponding keyword k
since the time it has moved into the graph Gt. This list is used to
establish spatial correlation among the keywords (nodes). For a
pair of nodes {vi, vj}Vt, if the similarity score between their
respective user lists Ui and Uj is above a given threshold λ, an edge
e is placed between the nodes. Jaccard coefficient (Jc) is used as
the similarity measure. Jc between two nodes vi, vj in graph Gt is
calculated as |||| jiji UUUU  ; hence 0≤λ≤1. Edge e  Et

captures the spatial correlation between the associated keywords.

Dense sub-graphs in graph Gt represent an event: Dense sub-
graphs, embedded in the graph Gt (Vt, Et) are called event-graphs.
The nodes Vt

c  Vt in the event- graph Gt
c (Vt

c, Et
c) are the

keywords in the event-topic c and edges Et
c Et represent the

correlation between these keywords. Gt
c represents the keywords

with strong spatial and temporal correlation. In a data stream,
modeled as dynamic graph, emerging dense sub-graphs represent
the emerging events [15][16].

Short cycles in dense graphs: The length of the Shortest-cycle in
a graph has a strong correlation with graph density. For example,
triangle listing is a well-known method to measure graph density
[27]. Each edge of a triangle induces a cycle of length 3. Similarly,
in chordal graphs [29], each node is part of a cycle of length 3. In
[15], authors expose a property for the dense sub-graphs embedded
in a large graph, called the short-cycle property; each node in a
dense sub-graph participates in at least one cycle of length at most
4, within the sub-graph. Next, we formally define the Shortest-cycle
and short-cycle property.

Def. 3.1.1 Shortest-cycle: For a graph G (V, E) and a node vV,
Shortest-cycle is the shortest path P through which one can return
to node v; EePe  , .

Def. 3.1.2 Short Cycle Property (SCP): For a keyword cluster c,
let Gt

c (Vt
c, Et

c) represent the corresponding subgraph embedded in

graph Gt (Vt, Et) (t
ck Vvck  ;). Vt

c Vt, Et
c Et and

t
c

t
cvu VvuEe  },{,),(. Gt

c possesses the short-cycle property if it

satisfies the following conditions:

P1. For any two adjacent nodes u and v in the Gt
c, there exists at

least one more path P between u and v, such that |P| ≤ 3 and
 t

cvuvu EePe ),(),(, . Therefore, the length of Shortest-cycle

for t
cVv is ≤ 4. Note, length of the Shortest-cycle for node v is

|P| + 1 (for edge e(u, v)).

P2. For a node vVt
c in graph Gt

c, all the Shortest-cycles node v
participates in within the graph are of length at most 4.

P3. There is no articulation point in Gt
c. An articulation point is a

node whose removal breaks the graph into multiple disconnected
components (e.g. in Figure 3(a), node a4).

In Figure 2 (a), in the absence of P3, clusters C1 to C4 will merge
into a single cluster since the merged cluster satisfies P1 and P2.
Similarly, in the absence of P2, C1 to C5 will merge together into a
single cluster. Please note, due to SCP, though necessary, it is not
sufficient for two event-topics to just share two or more keywords
to merge into a single event-topic. In Figure 2(b), C6 and C5 share
two keywords, but they are not merged together since the merged
cluster does not satisfy P2 of SCP. Thus, SCP ensures discovery of
dense clusters efficiently [15].

Figure 2: Example event-graphs

Example 1: In Figure 3(a), sets {a1, a3, a4} and {a2, a4, a5} represent
an independent event each. Event-graph in Figure 3(b) represents a
single event. In Figure 3(b), keywords having their Jc ≥ 0.25, have
an edge between them. An event-graph satisfies the SCP (Def.
3.1.2).

In Figure 3 (b), k2 and k3 participate in two Shortest-cycles each.
Cycle k1→ k2→ k4→ k3→ k1 is an intra-graph cycle too but not the
Shortest-cycle (Def. 3.1.1). In [15], authors present an efficient
algorithm to identify dense-graphs in a dynamic graph by
exploiting SCP. SCP ensures that keywords that show a strong
temporal and spatial correlation are identified as event-topics.

Figure 3: Example event-graphs

4. ISSUES in EVENT SUMMARIZATION
There is a user list Uv associated with each node vk t

cV in event-

graph Gt
c (Vt

c, Et
c) for event c. vk is the node corresponding to

keyword k. We represent vk by just v when the context is clear. The

messages posted by users in list Uv, t
cVv , are considered the

pool of message related to event c. Event summary is identified
from these messages.

Def. 4.1 Event Summary: Event summary is a set of messages Mt
c

from a set of users Uc);(t
cv VvU  such that t

ck Vv  ,

cUu where u has used the keyword k in its message(s).

Thus, the event summary is defined as a set of message(s) from a
set of users whose messages covers all the keywords in the event-
topic. This set of users is also called the valid userCover.

Let vUu of the userid list of node vk t
cV . Let N(vk) represents

the set of nodes adjacent to vk in Gt
c (Vt

c, Et
c).)(kvNn , if

nUu , node n is considered covered. Thus, all neighbors of node

vk that contain u in their respective user lists are considered covered.
Note, only the user lists of the neighbors of node vk in the event-
graph are checked for the presence of user u. The messages in the
current time window from the users in the userCover become part
of the event summary Mt

c. The summary Mt
c for a new event c,

emerging in the tth time window is defined as ct
u

t
c UuS  |M

where Su
t is a set of messages from user u in tth message block. Mt

c

is the ordered sequence of messages based on the message
timestamp.

Def. 4.3 Optimal UserCover: An optimal userCover T is the

smallest subset of users such that  TUVvU v
t
cv ,| .

C6

C5

C2 C2 C4 C1

C5

(a) (b)

a1 a2

a3 a4 a5

k4: 5,6,7,8

Articulation point

(a) (b)

k2: 2,3,6,8 k3: 1,2,5,6

k1: 1,2,3,4

171

Theorem 1: Discovering optimal userCover is NP-hard.

Proof Sketch: Hitting set is a well-known NP-complete problem
[25]. It is defined as follows: Given a collection S of sets Sis; 1≤i≤n,

find the smallest size set H such that  HSSS ii , . By

mapping each element in a set Si to a user id in userCover, Hitting
set problem is polynomial time reducible to userCover. If T* is a
solution for userCover and H* is a solution for Hitting set, |H*| =
|T*|. □

Theorem 1 states, discovering optimal userCover is NP-hard even
when the user lists associated with keywords are static. However,
the set of nodes Vt

c in an event graph Gt
c as well as the user lists Uv

associated with each node t
cVv are highly dynamic due to

continuous updates in the message stream. Thus, it is non-trivial to
identify a minimal set of most relevant messages from the data
stream that ensures that the event summary be informative,
compact, complete, meaningful and stable.

Identifying users (and not messages) helps us create a more
meaningful event summary (at times, users post multiple messages
in a small time window to explain the full context of their
messages). Since user lists are large for popular events, it is non-
trivial to identify optimal UserCover. To efficiently identify these
users, each arriving message is assigned a score in a scalable
manner to rank more relevant messages higher (cf. Section 5.3).

We next highlight how the dynamic updates in the data stream may
result in an unstable event summary:

Figure 4: Evolution in the event-graph

Live updates can make a summary unstable: For an event
present in a live data stream, let its initial event-graph be as shown
in Figure 4(a). The userCover had been identified as {1, 3} by any
userCover discovery algorithm (k1 in Figure 4(a) is not part of the
event-graph). In the next time step, the event-graph gets updated to
as shown in Figure 4(b). However, the same algorithm identifies
{2, 9} as userCover, which results in a different set of messages as
summary, making it difficult for users to keep track of evolving
event. Thus, due to live updates, event summary may be unstable.

The evolution of the summary for a live event is handled as
described in Section 6. We present our algorithm to summarize the
event by identifying an approximate userCover in Section 5.

5. DISCOVERING EVENT SUMMARIES
In this section, we present our method to discover meaningful event
summaries, with the aid of central nodes, called pivot nodes, in the
dense event-graphs. In Section 5.2, we present our algorithm to
identify the event summaries. In Section 5.3, we present our method
to rank the messages in the data stream.

5.1 Pivot Nodes and Pivot Edges
Def. 5.1.1 Pivot Edge: An edge that participates in more than one
Shortest-cycles within the event-graph is defined as a pivot edge.
Higher the number of Shortest-cycles a pivot edge participates in,
the more central it is in the event graph.

Def. 5.1.2 Pivot Node: Nodes associated with a pivot edge are
called pivot nodes.

Nodes which are not pivot nodes are called peripheral nodes. In
Figure 4(b), edge (k2, k4) is a pivot edge. {k2, k4} are pivot nodes.

Lemma 1: A graph possessing short-cycle property with more
than one shortest-cycles within the graph, has a pivot edge.

Proof: Let event-graph Gt
c (Vt

c, Et
c) has multiple short cycles,

satisfying SCP. Let C (V, E) be a cycle in the event-graph Gt
c such

that it has no common edge with any other cycle in the graph. Let

n)(VC be a node common with another cycle in graph Gt
c (if

cycle C has not even one node common with any other cycle within
the graph; Gt

c will be disconnected); Since no edge in cycle C
participates in another cycle, for any node v in C(V) - n, and for any
node u in Vt

c – V, there exist just one path from v to u via node n.
Hence in graph Gt

c, node n is an articulation point, violating Def.
3.1.2 of SCP event-graph. Therefore, there must exist another path
from v to u. Hence, there exist a cycle vunv  . Hence any

edge e)(EC in path nv  participates in another cycle, i.e., e is

a pivot edge. Therefore, for each Shortest-cycle C (V, E) in an

event-graph,)(ECe that is a pivot edge. □

Corollary of Lemma 1: Either a node itself or one of its neighbors
is the pivot node in the event-graphs that possesses SCP. Due to
this corollary, we can create a pivot edge cover (PECover), as
described below.

Def. 5.1.3 PECover: For Gt
c (Vt

c, Et
c), a PECover is a subset of

pivot edges o
pE  Et

c such that, t
cVv , o

p
t
c VvEvue  |),(.

Hence, a PECover (corresponding PNCover) o
pE (o

pV) is a subset

of pivot edges (corresponding pivot nodes) in the event-graph Gt
c

(Vt
c, Et

c) such that)(o
p

t
c VVv  , node v is adjacent to a node in

o
pV .

Let Uv be the user list for node v Vt
c and C be a collection of all

the user lists in Gt
c (Vt

c, Et
c). Let Cp be a collection of user lists

associated with pivot nodes o
pV in graph Gt

c (Cp  C).

Lemma 2: For collection Cp |; pjpi CUCCU  ,

ji UU  .

Proof: For two nodes vi and vj and their associated user lists Ui and
Uj in an event-graph Gt

c(Vt
c, Et

c), if edge (vi, vj) Et
c,

   ||,0|;|.|| },{ jiljiji UUUUU  . Therefore, for any

edge e Et
c there exists at least one userid which occurs in the user

lists of both the nodes. Since, each node in Gt
c is adjacent to a node

in the PECover of Gt
c, therefore, for collection Cp,

 jipjpi UUCUCCU |; . □

Hence, we first identify a set of pivot edges, called PECover. A
valid userCover can be identified only from the user lists associated
with pivot edges (cf. Lemma 2). Thus, pivot edges help us avoid
processing a large number of messages associated with peripheral
nodes and yet ensure that the event summary is complete.

Further motivation to use the pivot edges is explained below:

5.1.1 Informative
A message containing more keywords from the event graph is
considered more informative. Naturally, a keyword with higher

k5

k2
k3

k4

k1

k4

k3

k2

1 3 4 6 9 10

1 2 4 5

2 3 5 6 7 8

7 8 9 10 9 10

2 3 5 6 7 8

7 8

1 3 4 6

1 2 4 5

k1

172

number of neighbors in the event graph is likely to contain such
messages. We capture this notion of informative-ness as follows:

Def. 5.1.4 Informative-ness: Informative-ness of a node v is
defined as N(v), the set of nodes adjacent to v in event graph Gt

c.

Let edge e (u, v) be a pivot edge. Let s be a neighbor of u such that
e (u, s) be a non-pivot edge (s is a peripheral node). N(v) represents
the set of nodes adjacent to v in Gt (Vt, Et).

Lemma 3: |N(u)| > |N(s)|.

Proof: Omitted (cf. Lemma 5). □

Lemma 3 shows that the messages from the users associated with
the pivot nodes contain more keywords from the event-topic.
Identification of summary from these messages leads to a more
informative and compact summary.

5.1.2 Stable
Since a pivot edge participates in multiple cycles, it is more stable
than the other edges in a dynamic event-graph. Even if one or more
edges/nodes, among edges and nodes adjacent to a pivot edge get
deleted in the underlying event-graph, the message set identified as
the event summary continues to be a valid event summary (cf.
Section 6.2). Hence, identification of event summary based on
pivot edges, leads to more stable event summary.

5.1.3 Complete
An event summary containing messages that cover all the keywords
in an event-graph is considered a complete event summary.
However, we identify the users only from the user lists associated
with pivot nodes, i.e., from the collection Cp.

Lemma 4: A user cover identified only from the pivot nodes of an
event-graph, possessing short cycle property, is a valid userCover.

Proof: The corollary of Lemma 1 along with Lemma 2 completes
the proof. □

Lemma 4 shows that the userCover identified from the user lists in
collection Cp results in a valid userCover. With the help of pivot

edges, we identify a subset of user lists Cp (from the entire user list
collection C for event c) and a valid userCover can be identified
only from these sets. Thus, the event-graph structure helps us
identify a small number of more relevant user lists for discovering
a valid userCover. However, discovering optimal set of pivot nodes
in an event-graph remains an NP-hard problem (cf. Theorem 3).

5.1.4 Optimal Summary Size
We next show that the summary size discovered with the aid of
optimal PECover leads to the optimal size summary.

As shown in Lemma 2, once a pivot edge e(u, v) is identified, all the
nodes adjacent to the pivot nodes {u, v} can be covered using only
the user lists associated with these nodes. We now show that there
cannot be any smaller collection of user ids than optimal size
PECover that results in a valid userCover.

Let T* represent the optimal collection of user ids that provide a
valid userCover for a given event-graph Gt and let PECover* be
the optimal PECover.

Theorem 2: |PECover*| ≤ |T*|.

Proof: For a given event-graph Gt (Vt, Et), a dominating set D is
subset of nodes in Vt such that each node in (Vt – D) is adjacent to

a node in D [25]. Let D* tV be the optimal size dominating set.

Therefore, D* is the smallest set of nodes such that each node in Vt

– D* is adjacent to a node in D*.

Step 1: Each node in Vt, is adjacent to a pivot edge (corollary of
Lemma 1). Therefore, for each node v in D* we get a corresponding

pivot edge as follows: either edge e(v, u) is a pivot edge;)(vNu

or edge e (u, N(u)) is a pivot edge.

In this manner, we get a pivot edge cover peCover from D* which
is a valid PECover since D* is a dominating set for graph Gt;
|peCover| = |D*|. Let PECover* is the optimal PECover. Hence,
|PECover*| ≤|peCover| ≤ |D*|.

Step 2: Any two nodes that share an edge, have at least one userid
common (Lemma 2). Let T* be the optimal set of user ids,
providing the valid userCover. Since D* is the optimal dominating
set, therefore, |T*| ≥ |D*| because for each node in D*, at least one
userid has to be selected in T* (since the user lists of only the
neighbors of a node in the event-graph are considered while
constructing userCover)

From Step 1 and Step 2, |PECover*| ≤ |T*| □

Thus, optimal pivot edge cover leads to optimal summary size.

On event graph Gt
c we induce a graph G’(V’, E’) such that each

edge in G’ is a pivot edge in Gt
c (with the aid of Lemma 5, Section

5.2). We identify a smallest subset VPN V’ of nodes in G’ such
that every node in V’ – VPN is adjacent to at least one node in VPN.
We call the set VPN Pivot nodes cover or PNCover.

Theorem 3: Discovering optimal PNCover for a given event-graph
Gt

c(Vt
c, Et

c) is NP-hard.

Proof Sketch: Dominating set is a NP-complete problem [25]. It

can be shown that PNCoveratingSetDo Pmin . □

Figure 5: Dominating set Vs. Pivot nodes over event-graph

An alternative to pivot edges is to identify the dominating set of
nodes [25] itself in an event-graph. Our primary reason to choose
the pivot edges over dominating set is, nodes in dominating set
divides a graph into stars whereas the pivot edges divide it into
cycles (i.e., quasi-cliques). The userCover discovered from nodes
that are part of same quasi-clique leads to more informative event
summary. For instance, black nodes in Figure 5 (a) and Figure 5 (b)
both represent the dominating sets. However, Figure 5 (b)
represents the dominating set induced due to the pivot edge.
Therefore, pivot edges ensure that a message summary discovered
based on pivot edges is more informative, stable, complete, and
compact.

Pivot nodes are ‘central nodes’ in an event graph. There are other
notions of central nodes in a graph, for example, HITS [17] and
PageRank [21] identify central nodes (authorities). However, there
are basic differences in the settings of our two problems as:

a) [17][21] techniques are iterative in nature, therefore not
amenable to rapidly changing dynamic graphs;

b) The notion of ‘completeness’ (Section 5.1.3) is not applicable
for these methods. Due to the same reason, the notion of between-
ness centrality [22] is not applicable;

(b) Black nodes
depicting optimal
pivot nodes (c=2)

(a) Black nodes
depicting optimal
dominating set

 (d=3)

173

c) These techniques exploit the link structure to identify the
authorities, whereas we exploit the graph structure to identify the
pivot nodes (since the objectives of two problems are different).

5.2 Approximate User Cover
Next, we present our algorithm to identify approximate userCover.
On an event-graph Gt

c(Vt
c, Et

c), we induce a graph G’(V’, E’),
t

cVV ' and)(''' VVEE t
c   such that 'Vv ; v is a pivot

node in graph Gt
c. The induced graph G’ is called the core event-

graph. The event summary discovered from G’(V’, E’) follows the
same notion of event-summary (Def. 4.1) except that it is
discovered on induced graph G’.

Instead of identifying the userCover for graph Gt
c, we identify the

userCover on G’. The core event-graph G’ does not contain the
peripheral nodes in Gt

c. However, presence of peripheral nodes in
the event-graph Gt

c defines the pivot nodes. Therefore, peripheral
nodes impact the event summary only indirectly.

Lemma 5: A node v with degree Δ(v) > 2 in graph Gt
c(Vt

c, Et
c) is a

pivot node.

Proof: 2)(,  vVv t
c (node v is part of a cycle). Let v t

cV |Δ

(v) > 2 be a node in graph Gt
c such that v is not a pivot node. Since

Δ(v) > 2, node v is part of more than one cycles. Let C1 and C2 be
two cycles node v is part of. Let edge e (v, n’) belong to C1 and edge
e (v, n”) belong to C2. Hence, there exists one path from node n’ to
node n” via node v. However, if this is the only path between the
two nodes, node v becomes an articulation point violating the short
cycle property. Hence there exists one more path p from node n’ to

n” inducing a cycle C (v→n’ 
p n”→v). Length of cycle |C|≤4

(SCP). Therefore, edge e(v, n’) participates in two cycles C1 and C.
Hence e(v, n’) is a pivot edge and v is a pivot node. □

With the aid of this lemma, it is easy to induce graph G’ on Gt
c.

Note, G’ may not follow the short cycle property.

Figure 6: Discovering core graph from an event-graph

Each node v in G’ is assigned a score p(v); p(v) ← dv(Gt
c); dv(Gt

c)
is the degree of node v in graph Gt

c. This score is used to identify
userids in the userCover. In Lemma 2, it is shown that if two nodes
are adjacent, they have one or more userids common. Therefore, by
selecting the nodes with higher score, event summary is likely to
contain more keywords in event-graph Gt

c. We describe our
algorithm to find userCover for graph G’ below.

Algorithm approxUserCover (nodeList nL)
1. Let Gt

c(Vt
c, Et

c) be an event-graph.
a. let cId be its clusterId;

2. G’ is the core event-graph induced on graph Gt
c.

a.)();,(''' t
cvv GdpEVGv 

b. Uv ← list of userids associated with node v
3. S ← Φ

4. for)('VGv {if nLv { vSS  }}

5. cId.nL ← V’; /*we record the pivot node to efficiently update
 the event summary when cluster evolves later*/

6. uC ← Φ /*userCover is set to null*/

7. while (S)

a. v←)((arg '
' GdpMax vvVv




 /*return node with

 highest pv dv(G’) score*/
b. U ← Uv ;
c. Let Un be userids set associated with a node n, such that n is

neighbor of node v in G’.
i. T ←)(arg tkmessageRanMax

nUUt 

ii. uC ←uC  {T};

iii. U = U – U  Un /*We do not select any more userids
covering same keyword*/

d. For each remaining neighbor, check if userid T exists in their
userid list

i. A← v.adjList (G’) /*adjacency list of v in G’*/

ii. nAuu  | , if T Uu, S ←S-u;

8. return uC;

Each edge in graph G’ is a pivot edge in Gt

c. The degree of a node
v in G’, dv(G’) is a measure of the number of cycles it participates
in graph Gt

c. messageRank (.) returns the userid of the message with
highest rank. Since, a user is added in the user list of a node one at
a time, it is kept sorted in the message score efficiently. In the above
algorithm, each node in the event-graph is visited exactly once.
Thus, the complexity of identifying userCover is O(|Vt

c|).
Algorithm approxUserCover is greedy and achieves the same
complexity as Dominating set [25], i.e., (1+ log (Δ)) OPT; OPT is
optimal userCover size and Δ is the maximal degree in graph G’.
Dominating set problem is LOG-APX-COMPLETE and no better
bound is possible.

5.3 Ranking the Messages
Since our objective is to summarize a highly dynamic data stream
in real time, the methodology to rank each arriving message must
be i) fast and efficient; ii) rank more meaningful messages higher;
and iii) does not re-rank the already ranked messages with fresh
updates in the data stream. There are many studies related to
ranking the microblogs [18][19][6]. A common conclusion across
these studies is that the rank of a tweet depends on the authority of
its author and the authority of the message. We exploit these
features to establish the rank of a tweet.

Let di, djSt be two messages in the data stream S. Let R(.) be a
monotonically increasing function such that if di is deemed more
important than dj, R(di) > R(dj). To efficiently rank the messages,
R(.) is applied on both these messages independently.

A tweet is considered more meaningful i) if it is retweeted more
(retweet count RT captures the authority of the tweet [18]); and ii)
if it is tweeted by a person with many followers (follower count f
captures the authority of the user [19]). Therefore, the tweet score
R(d) of a tweet d is computed as:

R(d) = αRT.log f

Since the dynamics of an event vary at much finer time scale
compared to a user’s follower’s count, f is a logarithmic factor.

The ranking function scores each arriving message efficiently, as
soon as it arrives such that the more important messages are likely
to be ranked higher. Please note the first criterion to choose a
message is the underlying event-graph structure. The highest
ranked messages associated with the pivot nodes in the event-graph
are identified as summary (Section 5.2). Therefore a message from
a user with lesser following and/or retweets would be picked in the
event summary, if it is more relevant in the context of an event.

In summary, we translate our goal to provide an event’s summary
into one of discovering a set of users, collectively using all the
keywords in the event-topic. We show, this set of users can be

9 10

k5

k2

k3

k4

k1

1 3 4 6 9 10

1 2 4 5

2 3 5 6 7 8

7 8 9 10 9 10

k5

k2

k3

k4

k1

1 3 4 6 9 10

1 2 4 5

2 3 5 6 7 8

7 8 9 10

174

discovered only from pivot nodes in the event-graph. We also show
that pivot nodes enable us to discover informative, stable and
compact summary.

6. DISCOVERING EVENT THREADS
In this section, we present our technique to discover the contextual
event summary threads capturing the evolution of live events. The
evolution of an event is tracked by tracking changes in its
underlying event-graph Gt

c(Vt
c, Et

c).

A possible approach for constructing the event threads is to
maintain the snapshots of each event-graph in each time window
[24], but it is not practical to construct summary threads in real time
from these snapshots, as 1) instead of incrementally processing the
graph, the complete event-graph needs to be processed for each
event for each snapshot, thus making it impractical for processing
a fast moving data stream in real time; 2) it is shown in [31], that a
highly efficient mechanism is needed to keep the indexes updated
for the event threads. Thus, it is not practical to create the index
again for each snapshot.

Hence, we maintain contextual event threads for each event by
keeping a corresponding eventTree. EventTree captures the
evaluation of the event-graph. We assign a unique event-id (called
clusterId) to each event-graph. When an event-graph evolves, the
summary is updated and the change is recorded in its eventTree.
With changes in event-graph, eventTree is maintained as follows:

Incremental changes in the event-graph: There are incremental
changes in the event-graph due to addition and deletion of nodes
and edges. Due to these changes, the summary may or may not
change but the clusterId of the event-graph remains the same.

Disruptive changes in the event-graph: If the structure of an event-
graph changes so much that we need to assign it a new clusterId,
such a change is called disruptive change. For example, when two
independent event-graphs with clusterId c1 and c2 merge into a
single event-graph c due to emergence of new nodes/edges. The
mapping c←c1, c2 is recorded in the eventTree. When two event-
graphs merge, their corresponding threads also merge in a single
thread. Similarly, due to deletion of nodes/edges, if an event-graph
c breaks into say two sub-graphs, c1, c2, we record c1← c and c2←
c in the eventTree. Thus, a eventTree captures the evolution in the
corresponding event-graph.

Whenever a disruptive change occurs, we record the parent
clusterId (cp)and child clusterId (c)relationship as an
‘evolutionEdge’ (c← cp is an ‘evolutionEdge’). Each
‘evolutionEdge’ that emerges in the current time window w, is
processed at the end of the window, and the event summary is
updated (cf. Section 6.3). We exploit the graph structure so that
only the necessary ‘evolutionEdges’ are recorded. Note that
‘evolutionEdges’ track the evolution of event-graphs and they are
not the edges in the graph Gt (Vt, Et). Instead of maintaining
complete snapshots, we just maintain ‘evolutionEdges’ to capture
the differences between Gt and Gt+1.

We next illustrate how the event summary changes due to addition
and deletion of nodes. Similar process is applicable on graph edges.

6.1 Effect of Node Addition
Gt

c(Vt
c, Et

c) is an event-graph and G’(V’, E’) is the graph induced
on Gt

c such that E’  Et
c be the set of pivot edges for graph Gt

c.
When a new node (keyword) n joins the event-graph, it may induce
a new pivot edge in graph Gt+1

c. A node n can join the event-graph
Gt

c in two possible ways:

Case 1: Due to the addition of node n, an edge e Et+1
c – E’

becomes a new pivot edge.

For example, as shown in Figure 7, when a new node n joins the
cluster {A, B, C, D}, a new short cycle n→A→B→n is induced
such that edge AB becomes a new pivot edge.

In this case, the induced graph G’ includes an extra node (node A)
and the corresponding edge(s). The existing userCover is extended
to cover ‘A’. Please note, it is possible that the event summary does
not change as the existing userCover could be sufficient due to
pivot edge e(B, C). This check is done in O (1).

Figure 7: Change in event summary with node addition

Case 2: A node n joins the cluster such that it induces a new cycle
on an existing pivot edges epE’.

In Figure 7, n’ induces a new short cycle on edge BC (B→n’→C)
which was already a pivot edge. Therefore, node n’ is a peripheral
node and no change is made in the event summary.

The cases underline the way event-graph is exploited to update the
summary; due to the concept of pivot edges, summary does not
change rapidly because of minor changes in the event-graph.

6.2 Effect of Node Deletion
A departing node breaks at least one short cycle. Departing node is
either a pivot node or a non-pivot node.

Case 1: The departing node n is a non-pivot node (e.g., node n in
Figure 7); nV’. With the departure of node n, a pivot edge may
no longer remain the pivot edge. Since n is not a pivot node it can
impact only one pivot edge as it induces only one cycle. However,
the userCover continues to remain a valid user cover as the edge
e(n’, u), erstwhile pivot edge, remains part of the event-graph Gt+1

c.

Case 2: The departing node n is a pivot node for edge e (n, v). For
example, consider node B in Figure 7. Departure of a pivot node
has a significant impact on the event-graph Gt

c and the graph may
break into multiple sub-graphs or it may get dissolved if it no longer
possesses the short-cycle property (in that case, the event ceases to
exist as a live event). Each surviving sub-graph must possess SCP.
Each of the surviving sub-graphs is assigned a new clusterId. The
updateEvolutionEdge () records the relationship between the old
and each new clusterId. For each ‘evolutionEdge’ ci← c, we extract
the event-graph Gt+1

ci, update its summary and its event thread.

Algorithm: UpdatePECover (node n)

 'n N (n) /*N(n) returns neighbors of n in Gt
c*/

 If n’  V’ /* V’ is a set of pivot nodes in induced graph G’*/

 u N (n’)

 if e(n’, u) E’

 if ep is no longer a pivot edge

 E’ ← E’ – e(n’, u);

 else /*edge is a pivot edge*/

 childId ← getNewClusterId();

 updateEvolutionEdge (childId, clusterId);

0.4

0.67

0.4

0.6
E

2, 5

D

C

B

A

1 2 3 4 5

1 2 5

3 4

1 2 3 4
0.8

0.5

n’
n

175

The merging and splitting of event-graphs, results in an eventTree
which is a Directed Acyclic Graph (DAG), representing the
contextual event summary thread similar to shown in Figure 1.

6.3 Temporal Evolution of Event Thread

Figure 8: Processing ‘evolutionEdges’ to update event threads

For all the ‘evolutionEdges’ (childId←parentId), the
corresponding event threads are updated. Figure 8 depicts how the
event threads evolve with time. Each eventTree is identified by a
unique id, called tId. For each childId←parentId ‘edge’, if the
parent cluster’s tId is null, it is a new event. We initialize its
eventTree and identify event summary (using approxUserCover).
Otherwise, we merge the eventTree of the parent cluster with the
tId of the child cluster and update the event summary. The evolving
event summary is recorded in the event thread. Similarly, event
threads are updated in case of event-graph split. For two clusterIds
c1 and c2 in an eventTree, if c1 is ancestor of c2, c1 has occurred
before c2 in real world time. Each path in an event thread, from each
of its roots to each of its leaves, exposes a different facet of the
event. The event thread in Figure 1 has 6 facets.

7. PERFORMANCE EVALUATION
The goals of our experiments are to study our system’s ability a) to
construct informative, complete, meaningful, stable and compact
event summaries in real time (Section 7.2); b) to discover the
contextual event summary threads in real time (similar to Figure 1)
and to study the impact of the changes in the granularity of the
event-graph on the event summary and event threads (Section 7.3);
c) to discover event threads efficiently and in a scalable manner
(Section 7.4). The experiments use the prototype built by us [31]
and run on a quad-core 2.61 GHz, 4GB RAM machine running
Windows 8 and Java as programming language.

In Table 2, we describe the Twitter traces used in experiments. We
use two types of traces: a) general timeline based (ALL) which
contains all the tweets generated within US geography within a
time window, provided by Twitter API and b) event specific (ES)
traces. The event specific traces were created as follows: For each
event, we specify a set of rules. Each rule contains one or more
relevant keywords and/or hashtags associated with the event. Any
tweet, containing the keywords from a rule is included in the event
trace. We have carefully selected the traces to cover the entire
spectrum of event change density -- from very low (22) to very high
(775). Events change density specifies total number of times all
the underlying event-graphs in a trace evolve every 100k tweets.
Traces are read in their chronological order to mimic the real-time
arrival of the tweets.

Table 2: Details of Datasets

Event #of Tweets Events change density

Big Data 200k 775 changes/100k tweets

Nairobi–complete 720k 274 changes/100k tweets

Syria 1.7million 182 changes/100k tweets

Twitter Time Line (ALL) 3.2million 22 changes/100k tweets

7.1 Discovering Base Events
To the best of our knowledge, no previous system exists that
summarizes a complete live data stream in the absence of any user
query. Therefore, we construct the ground truth as follows: Live
events unraveling in the data stream are the base events and form
the ground truth for our system. The objective of our experiments
is to study the performance of our summarization technique and its
ability to construct meaningful contextual summary threads for the
events given to it as ground truth. Any algorithm discovering dense
graphs as event-topics in a highly dynamic graph can be used to
provide the base events. For our experiments, we use the algorithm
in [15] – it efficiently discovers the events in a live data stream with
high precision and recall. It is shown in [15] that the events
discovered by this system correlates highly with real world events
reported in Google news headlines. Additionally, it discovers many
other real world events that do not occur in Google news headlines.

The number of event-topics as well as the number of keywords in
an event-topic in a data stream depends on the dynamic event-graph
Gt (Vt, Et) at time t. The set of nodes Vt in the graph Gt depends on
burstiness threshold γ and the set of edges Et depends on the edge
similarity threshold λ. The default values are: γ=5 and λ=0.2, unless
specified otherwise. The message block size m is set to 1000 and w
(cf. Table 1) is set to be 75 for all the experiments.

7.2 Quality of Event Summarization
Informative-ness: We identify the userCover only for the pivot
nodes in an event-graph (Section 5). The premise is that the
important keywords in the event-graph are likely to be pivot nodes.
The peripheral nodes in the event-graph may or may not be covered
in the event summary. We quantify the informative-ness of the
summary as follows: If there is a keyword in an event-topic that is
a proper noun and is not present in the event summary, we count it
towards loss of precision. Precision is computed as the fraction of
proper noun keywords present in the event summary among all the
proper noun keywords in the event-topic. Let there be N events in
a given trace. Let Ri be the set of proper noun words in the summary
of the ith event discovered by our algorithm; 1≤ i ≤ N. Let Bi be the
set of all the proper noun keywords present in the event-topic of
event i. The precision of informative-ness, PI, is defined as:

PI = Ni
B

R

i

i 



1;

||

||

Figure 9: Summary Informative-ness and Completeness

Complete-ness: We compute the fraction of total keywords in the
event-topic covered in the event summary to compute the complete-
ness score PC. As shown in Figure 9, PC for various traces varies
from 79% to 99%. PC is marginally lower than PI, as typically noun
keywords are more central in the event-graphs. For the ALL trace,

if (tId=null)
 updateThread(tId1)

if (tId!=null)
 mergeThread(tId1, tId2)

Merged graph

Node/edge
addition

Process
 edge 2

Process
 edge 1

tId1 tId2

tId=null

tId= tId1

tId
1

tId= tId
1

tId
1
 tId

2

edge 2edge 1

tId
2

176

since almost all the keywords are covered in the event summary,
there is no difference in the two scores. We see, that our system
achieves very high informative-ness and complete-ness score.

Stability: We study the stability of the event summaries by our
algorithm for live events. The results are shown in Table 3. Since
different traces have different sizes, we report the results in terms
of event change density/100k tweets.

Table 3: Rate of changes in event-graphs for different traces

Total event-
graph
changes/
100k tweets

Changes
(addition
in event-
graph)

Changes
(event-
graph
break)

No change
in
summary
(additions)

No change
in
summary
(deletions)

Big data-775 114 33 411 217

Nairobi-274 43 5 173 53

Syria-182 30 3 114 35

ALL- 22 1.5 0 13.5 7

We see that across the traces, more than 80% of the changes in the
event-graphs do not result in any change in the summary. For
example, for Big-Data trace, for every 775 changes in the event-
graphs; event summary remains the same for 411 changes when
nodes/edges or messages get added to the event-graph and for 217
changes when a node/edge gets deleted from the event-graph, i.e.,
no summary change for 81% of event-graph changes. Thus, the
event summary remains stable for a large fraction of changes.

Summary-size: Next, we compare the message pool size of an
event with the number of messages in its summary (summary-size).
The average message pool size varies from 74 tweets (for ALL
trace) to 1394 tweets (for Syria trace) as shown in Figure 11,
denoting that for an emerging event in the Twitter data stream, a
large number of related messages are posted. The number of
messages is per event-graph and not per event thread (an event
thread captures the evolution of associated event-graph(s)). We
divide the events based on the number of keywords in the event-
topic, as shown in Figure 10 and Figure 11. For ALL trace, no
event-topic contained more than 16 keywords.

Figure 10: Average number of tweets in ‘event summary’ for

different event-topics sizes

As expected, summary-size increases with increasing event-topic
size (Figure 10). Similarly, number of messages pertaining to an
event increases with event cluster size (Figure 11). The key insights
are:

1) Summary-size is independent of the message pool size (i.e.,
tweets associated with an event-graph). It depends only on the
underlying information. For example, for Syria trace, average
message pool size increase from 128 to 1394 for different size

event-topics but the summary-size remains almost stable. The event
summaries were highly meaningful.

2) Average summary-size varies from 2.61 to 7.71 tweets for
different traces for event-topics comprising up to a few hundred
tweets. Thus, our system discovers highly compact summaries.

Figure 11: Average number of tweets in the event ‘message
pool’ for different sizes of event-topics

We construct alternative summary for a discovered as follows: For
an event-graph, we randomly select a message from the message
pool covering an event keyword. We keep on selecting messages
till each keyword in the event graph is covered by at least one
message. This ‘naïve method’ serves as a baseline to compare the
performance of our system.

Since we select the messages randomly in ‘naïve method’,
qualitatively, the summary by naïve method was markedly inferior
for almost all the events. The other issues with this naïve method
were; 1) A significant number of redundant messages occur in the
event summary. For many events, the summary size was more than
twice the summary discovered by our system.; 2) the naïve method
will not discover the event threads, exposing different event facets.

To further compare the quality of event summary we compared the
summary discovered based on our approach with Google News
headlines (for the events which also appear in Google headlines).
In Table 4, we present the comparisons between a few of the
Google headlines with our summary tweets.

 Table 4: Google News Headlines Vs. Event Summary
discovered by our approach

Google Headline Summary based on our approach

India vs New Zealand, 3rd Test:
Ashwin 6/81 hands India huge
first innings lead

India vs New Zealand, 3rd Test: Ashwin 6/81
hands India huge first innings lead
https://t.co/ih5oTkOlIY

NASA Mission Tests Thrusters
On Journey To Asteroid

NASA probe tests thrusters on journey to
asteroid Bennu - Zee News: NASA probe tests
thrusters on jou... https://t.co/2Tv0XC71cJ

Pampore attack: Militants holed
up inside govt building; combing
operations intensify

RT @kashmirglobal: Smoke and dust
engulf a government building where
suspected militants have fighting with
Indian forced in Pampore…

NASA resupply mission to space
station postponed

Atlantic Storm System Delays NASA
Resupply Launch to Space Station via
NASA https://t.co/wdWmqwhz7k

Obama pushes NASA to send
humans to Mars by 2030s

Can the U.S. Really Get Astronauts to Mars by
2030?: President Obama renewed his call to
send Americans to th...
https://t.co/ZeSADfvDNZ

1000 asteroids heading towards
Earth; conspiracy theorists claim
end of the world is near!

RT @Ufo_area: Asteroid mission: 1000
space rocks heading towards Earth – Daily Star
https://t.co/ExDVSJOzly #Asteroid

177

Microsoft Office for Android will
be supported on Chrome OS

Microsoft Office for Android will be
supported on Chrome OS +AC0- The
Indian Express https://t.co/7xLBJJpSKW

We see that the summary tweets represent the Google headlines
very accurately. For a few headlines, Google headline matches
completely with the tweet selected by our approach. However, the
timestamp of tweets in our summary is ahead by few minutes to
few hours, for different event, compared to their corresponding
appearance in Google headlines. Details are omitted due to lack of
space.

In our next experiment, we study the performance of our system to
expose context event summary threads.

7.3 Contextual Event Summary Threads
How do Real-time Events Evolve with Time? – Next, we study
what fraction of the real-time events evolve into event threads. We
divide the events into; 1) standalone events, i.e., events which do
not result in threads and 2) event threads. We plot the density of
events per 100k tweets for each trace. The results are shown in
Table 5. The event density is highest for Big-data trace. We see; 1)
a significant number of events result in event threads; and 2) the
density of events is much higher for event specific traces as
opposed to ALL trace. ALL trace has a density of 1.1 standalone
events and 1 event thread/100k tweets respectively. Since the
average tweets/event is highest for Syria trace (Figure 11), the
density of events for it is relatively smaller.

We show the average number of times an event-graph changes
during its life cycle in Table 5. An interesting insight is that even
though the density of events is lowest for ALL trace, the average
number of times its event-graphs changes during their life span is
significantly higher compared to ES traces. The reason is, density
of tweets related to a single event in ALL trace is very low.
Therefore, the changes in the existing event-graphs are only
marginal and the event-graphs absorb such changes, resulting in a
longer life span. In summary, a large fraction of events result in
threads. Further event threads evolve only when there are
significant changes in the event.

Table 5: Event density and Average number of times an
event-topic changes during its life span

Density/100K Tweets Nairobi Big Data Syria All

Density of Standalone Events 19.44 94.38 16.25 1.1

Density of Event Threads 39.9 59.9 15.6 1

of Changes in an event-
topic during its life span

6.22 5.88 6.46 10.88

How Complete are the Event Threads? - In this experiment, we
study how the real-time events evolve. An event thread is a DAG.
The depth of a DAG is the length of the path from its root to its
deepest leaf (depth of DAG in Figure 1 is 9). To count the number
of facets in the DAG, we sum the total number of unique paths from
the root(s) to each of the leaf nodes of an event thread. We study
the temporal evolution of the events by computing the average
depth and average number of facets of the event threads. The facets

are counted as: 
 



Ll Rr

r
lpfacets where r

lp is total number of

paths to reach from root node r to leaf node l and L (R) is the set of
leaf (root) nodes in the event-graph. Depth of an event thread and
its facets capture the complexity of the events. The results for
different datasets are shown in Table 6. Only the event threads, not
the stand-alone events, are considered for this experiment.

Table 6: Average depth and average facets for an event

Event Thread
Complexity

Nairobi Big Data Syria All

Average event depth 5.98 4.97 5.42 2.77

Average event facets 2.63 2.25 2.27 1.21

Average depth/facets of the event threads are highest for Nairobi
trace at 5.98/2.63 and lowest for ALL trace at 2.77/1.21. Hence,
event complexity is highest for Nairobi trace. The result signifies
that our algorithm can handle changes in a fast- moving data stream
gracefully. For the default values of λ and γ, the maximum depth of
an event was 30 (for Nairobi trace) with 9 facets, exposing the
complex way the live events evolve.

How does Granularity of Event-Graph impact the summary?
To vary the granularity of the dynamic graph Gt (Vt, Et), we vary
the burstiness threshold (Bt) γ and edge correlation threshold (Ec)
λ. If γ and/or λ are reduced, there will be more nodes and/or edges
in the graph Gt (Vt, Et), leading to more events being discovered and
vice versa. In Figure 12, we show how the number of event threads
(every 100k tweets) varies -- by varying γ and λ for different traces.

We find two distinct trends: 1) for Big-Data and Syria traces, with
more nodes/edges in the dynamic graph Gt (lower γ and/or λ), the
number of event threads increase but the depth and the facets are
not significantly impacted; 2) for Nairobi and ALL traces, with
more nodes/edges in Gt, the number of events is not impacted much
but the event depth/facets increase, exposing the same events at
finer granularity. In summary, when the messages related to an
event tend to come in bursts, we observe trend (1). If the messages
related to an event are distributed more evenly in the data stream,
we observe trend (2).

Figure 12. Event Density (blue), event thread depth (red) and

event thread facets (green) with varying γ (Bt), λ (Ec)

7.4 Efficiency and Scalability
In this experiment, we analyze the overhead of our method to
summarize the events and arrange them into contextual summary
threads. We also analyze the scalability of our approach, i.e., how
many tweets are processed/second (TPS). We discover the event-
topics in a twitter trace without contextual summarization system
and with it. In Table 7, we show the overhead of our system. We
see that the summarization algorithm imposes only a marginal
overhead over base event discovery system in [15]. Overhead of
our method is highest for Nairobi trace at 12.36% and smallest for
ALL trace at 3.17%. The tweet processing rate is highest for ALL
trace at 6631 TPS and lowest for Big-Data trace at 1044 TPS, with
summarization system on. For Nairobi trace, the rate is 4473 TPS
with summarization and 5026 without summarization.

178

Table 7: Tweet processing rate per second (TPS)

TPS Nairobi Big Data Syria All

With Summarization 4473 1044 2505 6631

Without Summarization 5026 1129 2614 6841

Without the summarization, the TPS for ALL trace is 6841 for the
algorithm presented in [15]. ALL trace is closest to the general
Twitter data stream. The average rate for global Twitter data stream
is reported to be 5700 TPS in August 2013 (peak rate is ~144k TPS)
[26]. Therefore, our technique is highly scalable for real time
processing and does not impose a big overhead to identify event
summary and event threads over event discovery algorithm.

In summary, we present a novel system that constructs meaningful,
stable, and compact event summaries for the events present in an
unfiltered data stream. We also discover contextual event threads
in real time over live data streams efficiently.

8. CONCLUSION
In this paper, we present a novel unsupervised technique that builds
the summaries for emerging events in real time in a complete fast
moving data streams in absence of any user query. The summaries
are complete and meaningful and contain the informative messages
for the underlying events. Our technique also discovers the
contextual event summary threads in a scalable manner. It is not
necessary that the most recent messages are also the most
informative for a live event. However, the most informative
messages about the event are present in its summaries. We plan to
extend our technique to enable improved real time search over data
streams.

9. ACKNOWLEDGMENTS
Pranjal Khare (student, Department of CSE, IIT-Bombay) used our
system to produce results presented in Table 4.

10. REFERENCES
[1] Ramesh Nallapati, Ao Feng, Fuchun Peng, and James Allan,

“Event threading within news topics”, in CIKM, 2004.

[2] Ao Feng, and James Allan, “Finding and linking incidents in
news”, CIKM 2007, page 821-830.

[3] W. Gao, P. Li, K. Darwish, “Joint Topic Modeling for Event
Summarization across News and Social Media Streams”, in
CIKM 2013.

[4] Chen Lin et al., “Generating Event Stroylines from
Microblogs”, in CIKM 2012, page 175-184.

[5] L. Shou, Z. Wang, K. Chen, G. Chen, “Sumblr: Continuous
Summarization of Evolving Tweet Streams”, in SIGIR 2013.

[6] Yajuan Duan et al., "An Empirical Study on Learning to Rank
of Tweets", in COLING 2010.

[7] J. Vosecky, D. Jiang, K. W. Leung, W. Ng, “Dynamic Multi-
Faceted Topic Discovery in Twitter”, in CIKM 2013.

[8] X. Yang, A. Ghoting, Y. Ruan, S. Parthsarthy, “A Framework
for Summarizing and Analyzing Twitter Feed”, in SIGKDD
2012.

[9] K. Kutzkov, R. Pagh, "Triangle counting in dynamic graph
streams", in SWAT 2014.

[10] B. Sharifi, M. Hutton, J. Kalita,. “Summarizing Microblogs
Automatically”, in NAACL-HLT, 2010.

[11] D. Chakrabarti, K. Punera, “Event Summarization using
Tweets”, in ICSWM 2011.

[12] Z. Yang, K. Cai, J. Tang, L. Zhang, Z. Su, J. Li, “Social
Context Summarization”, in SIGIR 2011, pages 255-264.

[13] F. T. Chua, S. Asur, “Automatic Summarization of Events
from Social Media”, ICWSM 2013.

[14] M. Mathioudakis, N. Koudas, “TwitterMonitor: Trend
Detection over the Twitter Stream”, SIGMOD 2010.

[15] M. K Agarwal, K. Ramamritham, M. Bhide "Real Time
Discovery of Dense Clusters in Highly Dynamic Graphs:
Identifying Real World Events in Highly Dynamic
Environments", in VLDB 2012.

[16] Bansal N., Chiang F., Koudas N., Tompa F. “Seeking Stable
Clusters in the Blogosphere”, in VLDB 2007.

[17] J. M. Kleinberg, "Authoritative sources in a hyperlinked
environment", in Journal of the ACM (JACM), Vol. 46, 1999.

[18] H. Kwak, C. Lee, H. Park, S. Moon, “What is Twitter, a Social
Network or a News Media?”, in WWW 2010.

[19] C. Chen, F. Li, B. C. Ooi, S. Wu, “T1: An Efficient Indexing
Mechanism for Real-Time Search on Tweets”, in SIGMOD
2011.

[20] X. Hu, Y. Tao, C.-W. Chung, “Massive Graph Triangulation”,
in SIGMOD 2013.

[21] S. Brin, L. Page, "The Anatomy of a Large-Scale Hyper
textual Web Search Engine", J. of Computer Networks, Vol.
30, 1998.

[22] U. Brandes, "A Faster Algorithm for Betweenness Centrality",
J. of Mathematical Sociology, 25(2), 163-177, 2001.

[23] J. Xu, D. Kalashnikov, S. Mehrotra, “Efficient Summarization
Framework for Multi-Attribute Uncertain Data”, in SIGMOD
2014.

[24] P. Lee, L. Lakshmanan, E. Milios, “Incremental Cluster
Evaluation Tracking from Highly Dynamic Network Data”, in
ICDE 2014.

[25] http://www.nada.kth.se/~viggo/wwwcompendium/

[26] https://blog.twitter.com/2013/new-tweets-per-second-record-
and-how

[27] A. Pavan, et al., “Counting and Sampling Triangles from a
Graph Stream”, in VLDB 2014.

[28] N. Wang et al., "On Triangulation-based Dense Neighborhood
Graphs Discovery", in PVLDB, 4(2):58–68, 2010.

[29] http://en.wikipedia.org/wiki/Chordal_graph

[30] https://en.wikipedia.org/wiki/Westgate_shopping_mall_attac
k

[31] M. K. Agarwal, D. Bansal, M. Garg, K. Ramamritham,
“Keyword Search on Microblog Data Streams: Finding
contextual Messages in Real Time”, in EDBT 2016.

179

	Real Time Contextual Summarization of Highly Dynamic Data StreamsManoj Agarwal, Krithi Ramamritham

