
COP: Planning Conflicts for Faster
Parallel Transactional Machine Learning

Faisal Nawab1 Divyakant Agrawal1 Amr El Abbadi1 Sanjay Chawla2,3

1Department of Computer Science
University of California, Santa Barbara

Santa Barbara, CA 93106
{nawab,agrawal,amr}@cs.ucsb.edu

2Qatar Computing Research Institute, HBKU
schawla@qf.org.qa

3University of Sydney, Sydney, NSW, Australia
sanjay.chawla@sydney.edu.au

ABSTRACT
Machine learning techniques are essential to extracting knowl-
edge from data. The volume of data encourages the use of
parallelization techniques to extract knowledge faster. How-
ever, schemes to parallelize machine learning tasks face the
trade-off between obeying strict consistency constraints and
performance. Existing consistency schemes require expen-
sive coordination between worker threads to detect conflicts,
leading to poor performance. In this work, we consider the
problem of improving the performance of multi-core machine
learning while preserving strong consistency guarantees.

We propose Conflict Order Planning (COP), a consistency
scheme that exploits special properties of machine learning
workloads to reduce the overhead of coordination. What is
special about machine learning workloads is that the dataset
is often known prior to the execution of the machine learning
algorithm and is reused multiple times with different settings.
We exploit this prior knowledge of the dataset to plan a
partial order for concurrent execution. This planning reduces
the cost of consistency significantly because it allows the use
of a light-weight conflict detection operation that we call
ReadWait. We demonstrate the use of COP on a Stochastic
Gradient Descent algorithm for Support Vector Machines
and observe better scalability and a speedup factor between
2-6x when compared to other consistency schemes.

1. INTRODUCTION
The increasingly larger sizes of machine learning datasets

have motivated the study of scalable parallel and distributed
machine learning algorithms [7, 16, 20–22, 24, 25, 27]. The
key to a scalable computation is the efficient management
of coordination between processing workers, or workers for
short. Some machine learning algorithms require only a small
amount of coordination between workers making them easily
scalable. However, the vast majority of machine learning
algorithms are studied and developed in the serial setting,
which makes it arduous to distribute these serial-based al-

c©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

gorithms while maintaining the algorithm’s behavior and
goals.

Distributing serial-based algorithms may be performed
by encapsulating the algorithm within existing parallel and
distributed computation frameworks. These frameworks are
oblivious to the actual computation. Thus, the machine learn-
ing algorithms may be incorporated as-is without redesign.
In this paper, we consider a framework of transactions [3, 10]
for parallel multi-core execution of machine learning algo-
rithms. A transaction may represent the processing of an
iteration of the machine learning algorithm where workers
run transactions in parallel. Serializability is the correctness
criterion for transactions that ensures that the outcome of a
parallel computation is equivalent to some serial execution.
To guarantee serializability, transactions need to coordinate
via consistency schemes such as locking [8] and optimistic
concurrency control (OCC) [15].

Recently, coordination-free approaches to parallelizing ma-
chine learning algorithms have been proposed [7, 24, 25].
In these approaches, workers do not coordinate with each
other thus improving performance significantly compared to
methods like locking and OCC. Although these techniques
were very successful for many machine learning problems,
there is a concern that the coordination-free approach leads
to “requiring potentially complex analysis to prove [paral-
lel] algorithm correctness” [21]. When a machine learning
algorithm, A, is developed, it is accompanied by mathe-
matical proofs to verify its theoretical properties, such as
convergence. These proofs are typically on the serial-based
algorithm. A coordination-free parallelization of a proven
serial algorithm, denoted ϕcf (A), is not guaranteed to have
the same theoretical properties as the serial algorithm A.
This is due to overwrites and inconsistency that makes the
outcome of ϕcf (A) different from A. Thus, guaranteeing
the theoretical properties requires a separate mathematical
analysis of ϕcf (A), that although possible [6, 25], can be com-
plex. Additionally, the theoretical analysis might reveal the
need for changes to the algorithm to preserve its theoretical
guarantees in the parallel setting [25].

Running parallel machine learning algorithms in a seri-
alizable, transactional framework bypasses the need for an
additional theoretical analysis of the correctness of paral-
lelization. This is because a serializable parallel execution,
denoted ϕSR(A), is equivalent to some serial execution of
A, and thus preserves its theoretical properties. We will
call parallelizing with serializability, the universal approach
because serial machine learning algorithms are applied to it

Series ISSN: 2367-2005 132 10.5441/002/edbt.2017.13

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.13

without the need of additional theoretical analysis or changes
to the original algorithm.

In this work, we focus on the universal approach of paral-
lelizing machine learning algorithms with serializable trans-
actions. Consistency schemes like locking [8, 11], OCC [25],
and others [2] incur a significant performance overhead. Tra-
ditional serializability schemes were designed mainly for
database workloads. Database workloads are typically arbi-
trary, unrepeatable units of work that are unknown to the
database engine prior to execution. This is not the case for
machine learning workloads. Machine learning tasks are well
defined. Most machine learning algorithms apply a single
iterative task repeatedly to the dataset. Also, the dataset
(i.e., the machine learning workload) is typically processed
multiple times within the same run of the algorithm, and
is potentially used for different runs with different machine
learning algorithms. Generally, machine learning datasets
are also known, in offline settings, prior to the experiments.
These properties of machine learning workloads make it fea-
sible to plan execution. We call these the dataset knowledge
properties.

We propose Conflict Order Planning (COP) for parallel
machine learning algorithms. COP ensures a serializable
execution that preserves the theoretical guarantees of the
serial machine learning algorithm. It leverages the dataset
knowledge properties of machine learning workloads to plan
a partial order for concurrent execution that is serializable.
It annotates each transaction (i.e., a machine learning itera-
tion) with information about its dependencies according to
the planned partial order. At execution time, these planned
dependencies must be enforced. Enforcing a planned de-
pendency is done by validating that an operation reads or
overwrites the correct version according to the plan. This
validation is done using a light-weight operation that we
call ReadWait. This operation is essentially an arithmetic
operation that compares version numbers, which is a much
lighter operation compared to locking and other traditional
consistency schemes.

We present background about the problem, the system and
transactional machine learning model in Section 2. Then, we
propose COP in Section 3 followed by correctness proofs in
Section 4. We present our evaluation in Section 5. The paper
concludes with a discussion of related work and a conclusion
in Sections 6 and 7.

2. BACKGROUND
In this section, we provide the necessary background for

the rest of this paper. We introduce use cases of planning
within machine learning systems in Section 2.1. Section 2.2
presents the transactional model we will use for machine
learning algorithms.

2.1 Use Cases
We now demonstrate the opportunity and rewards of plan-

ning machine learning execution in three common models of
machine learning systems. We revisit these use cases in the
paper when appropriate to show how COP planning applies
to them.

2.1.1 Machine Learning Framework
Machine learning and data scientists do not process a

dataset only once in their process of analyzing it. Rather,
the scientist works on a dataset continuously, experimenting

ML algorithm 1

ML algorithm 2

ML algorithm i

Model 1

Model n

Dataset

Figure 1: A flow diagram of a typical machine learning frame-
work that employs a number of machine learning algorithms
to learn models from a dataset

Data collection

Data collection

Data collection

Data collection

Centralized

machine learning

Figure 2: The current practice of machine learning of data
collected across the world is to batch data at geo-distributed
datacenters and send batches to a centralized location that
performs the machine learning algorithm

with different methods and machine learning algorithms to
discover what method works best with a dataset. Thus, the
same dataset is being processed by many machine learning al-
gorithms repeatedly. Figure 1 shows a typical flow diagram of
a machine learning framework [12, 14, 27]. Multiple machine
learning algorithms are applied to an input dataset to pro-
duce models of the dataset. Each machine learning algorithm
may be applied multiple times with different configuration
and parameters, such as the learning rate.

In this model of a machine learning framework, the dataset
is being processed many times, once for each generated model.
This is an opportunity for COP to perform a planning stage
that is then applied to all runs.

2.1.2 Global-Scale Machine Learning
Online machine learning is the practice of learning from

data or events in real time. An example is a web application
that collects user interactions with the website and gener-
ates a user behavior model using machine learning. Another
example is applying machine learning to data collected by
Internet of Things (IoT) and mobility devices. Typically,
data is born around the world, collected at different data-
centers, and then sent to a single datacenter that contains
a centralized machine learning system. This case is shown
in Figure 2 where there is a central datacenter for machine
learning in North America and four other collection data-
centers that collect and send data. This model has been
reported to be the current standard practice of global-scale
machine learning [4].

As data is being collected and batched at collection dat-
acenters, there is an opportunity to generate a COP plan.
This plan is then applied at the central datacenter for faster

133

Worker 1

Read(p0)

Iteration 1

Write(p1)

(a) Coordination-free execution (b) Locking-based consistency (c) Con ict Order Planning (COP)

Worker 2

Read(q0)

Iteration 2

Write(q2)

Worker 3

Read(p0)

Iteration 3

Write(p3)

Worker 1

Read(p0)

Iteration 1

Write(p1)

Worker 2

Read(q0)

Iteration 2

Write(q2)

Worker 3

Read(p1)

Iteration 3

Write(p3)

Lock(p)

Lock(q)

Lock(p)

Unlock(p)

Unlock(q)

Unlock(p)

Worker 1

ReadWait(p0)

Iteration 1

Write(p1)

Worker 2

ReadWait(q0)

Iteration 2

Write(q2)

Worker 3

ReadWait(p1)

Iteration 3

Write(p3)

Iteration 1 Iteration 2 Iteration 3Plan:

Execution

Dependency

Figure 3: Execution of a machine learning algorithm by three workers with different consistency schemes. Each worker processes
an iteration of the machine learning algorithm, where the first and third iterations read and update the same model parameter.

execution. A challenge in this model is that data is generated
at different locations simultaneously and continuously. In
such cases, COP plans for each batch individually at col-
lection datacenters, and then batches are processed at the
centralized datacenter in tandem.

2.1.3 Dataset Loading, Preprocessing and Execution
In addition to the opportunities for planning shown in use

cases of machine learning systems, there is an opportunity
for planning even in a single execution of a machine learning
algorithm on a single dataset. This is because, typically, two
tasks are performed prior to a machine learning algorithm
execution: (1) Loading the dataset to main memory. Before
execution, the dataset is stored in persistent storage, such
as a disk. While loading the dataset from persistent storage,
there is an opportunity to perform additional work to plan the
execution. Our experiments demonstrate that planning while
loading the dataset introduces a small overhead between 3%
and 5% (Section 5.3).

Datasets are also typically preprocessed for various pur-
poses such as formatting, data cleaning, and normaliza-
tion [12]. Preprocessing is normally performed on the whole
dataset, thus introducing an opportunity to plan execution
while preprocessing is performed.

Even in the case of a dataset that is already preprocessed,
loaded and ready to be learned, there is another opportunity
to plan execution. A machine learning algorithm processes a
dataset in multiple rounds on the dataset that we call epochs.
Thus, planning during the first epoch will be rewarding for
the execution of the remaining epochs.

In Section 3 we introduce COP planning algorithms and
discuss their application to the various use cases we have
presented.

2.2 Transactional Model of Machine Learn-
ing

A machine learning algorithm creates a mathematical
model of a problem by iteratively learning from a dataset.
The mathematical model of a machine learning algorithm is
represented by model parameters, P , or parameters for short.
For example, the mathematical model of linear regression
takes the form y =

∑n
i=1 βixi + ε. The model parameters

consist of the variables of the model, namely the vector of

coefficients, β, and ε. The machine learning algorithm uses
the dataset to estimate the parameter values that will result
in the best fit to predict the dependent variable, y.

A dataset, D, contains a number of samples, where the
ith sample is denoted Di. Each sample contains information
about a subset of the parameters and the dependent variable
corresponding to them. To distinguish between model param-
eters and parameter values in samples, we call the parameter
values in samples features. For example, a dataset may con-
tain information about movies. Each sample contains a list
of the actors in a movie and whether the movie has a high
rating. A mathematical model can be constructed to predict
whether a movie has a high rating given the list of actors in
it. Each parameter in the model corresponds to an actor. A
sample contains a vector of feature values, where a feature
has a value of 1 if the actor corresponding to it is part of the
movie and 0 otherwise. A sample in the dataset also contains
whether the movie has a high rating. Using the dataset, the
mathematical model is constructed by estimating parameter
values. These parameter values can then be utilized in the
mathematical model to predict whether a new movie will
have a high rating based on the actors in it.

Estimating model parameters is performed by iteratively
learning from the dataset. Each iteration processes a single
sample or a group of samples to have a better estimate of
model parameters. An epoch is a collection of iterations
that collectively process the whole dataset once. Machine
learning algorithms run for many epochs until convergence.
For example, Stochastic Gradient Descent (SGD) processes
a single sample in each iteration. In an iteration, gradients
are computed using a cost function to minimize the error
in estimation. The gradients are then used to update the
model parameters.

Machine learning algorithms are typically studied and de-
signed for a serial execution where iterations are processed
one iteration at a time. A straightforward approach to paral-
lelizing a machine learning computation is to make workers
process iterations concurrently, where each worker is respon-
sible for the execution of a different iteration. Executing
iterations concurrently may lead to conflicts among some of
the updates from different workers, e.g., updates from dif-
ferent workers to the same model parameters may overwrite
each other. This means that the behavior of the algorithm no

134

Algorithm 1 Processing an iteration as a transaction

1: procedure Process transaction Ti

2: µ← P.read(Ti.read-set)
3: δ ←ML computation(µ, Ti.sample, Ti.write-set)
4: P ← δ

Algorithm 2 Parallel machine learning algorithm with Op-
timistic Concurrency Control

1: procedure Process transaction Ti

2: µ← P.readversioned(Ti.read-set)
3: δ ←ML computation(µ, Ti.sample, Ti.write-set)
4: ATOMIC{
5: P.validate(µ.versions)
6: if not validated: abort or restart
7: P ← δ
8: }

longer resembles the intended serial execution of the machine
learning algorithm.

Figure 3(a) illustrates the possibility of data corruption.
Three workers are depicted processing three iterations of
a machine learning algorithm concurrently. Each iteration
reads a subset of the model parameters, computes new esti-
mates of a subset of the model parameters, and finally writes
them. In the figure, iterations 1 and 3 read and update the
model parameter p and iteration 2 reads and updates the
model parameter q. Iterations 1 and 3 read the same version
of the parameter p, denoted p0, and use it to calculate the
new parameter value of p. Worker 1 writes the new state
of p denoted p1 and then worker 3 writes the new state
of p denoted p3. In this scenario, the work of worker 1 is
overwritten by worker 3. Meanwhile, iteration 2 reads and
updates parameter q, which does not corrupt the work of
other iterations because it is not reading or writing parameter
p.

Serializability can be the correctness criterion for paral-
lel machine learning algorithms [21]. Serializability theory
abstracts access to shared data by using the concept of a
transaction [10] where a transaction is a collection of read
and write operations on data objects. A data object is a
subset of the shared state. The computation of an iteration
i of a machine learning algorithm may be abstracted as a
transaction, Ti, by considering reads of the model parameters
as reads of data objects and writes to the model parameters
as writes to data objects. We will denote the collection of
model parameters by P , where P [x] is the value of model
parameter x. The parameters that are read by a transaction
are denoted as Ti.read-set. Similarly, we will denote the pa-
rameters that are written by the transaction as Ti.write-set.
The sample’s data that is processed by iteration i is denoted
by Ti.sample, where i is the id of the transaction. In the
rest of the paper, we will use the terminology of transactions
when appropriate, where a transaction is an iteration, and a
data object is a model parameter.

The processing of a transaction follows the template in
Algorithm 1 which is a transaction processing template that
does not perform any coordination and is only serializable if
run sequentially. The transaction template algorithm first
reads the model parameters declared in the read-set and
cache them locally as µ (line 2). Then, the read parameter
values µ and the data sample information, Ti.sample, are

used to compute new values of the parameters declared in the
write-set (line 3). The new values are computed according to
the used machine learning algorithms, and they are buffered
locally as δ. Finally, the new parameter values, δ, are applied
to the shared model parameters, P (line 4).

Serializability guarantees the illusion of a serial execution
while being oblivious of the semantic computation performed
within the transaction. Thus, it may be applied to machine
learning algorithms. Serializability is achieved by ensuring
that if some transactions conflict with each other, then they
will not be executed concurrently. Detecting conflicts be-
tween concurrent transactions requires coordination among
workers via different methods. These methods are diverse
with different performance characteristics. We now present
common transaction execution protocols that have been used
in the context of machine learning algorithms, and we gen-
eralize them as transactional patterns that are oblivious
to the machine learning algorithm. Readers familiar with
transaction processing may skip to Section 2.3.

2.2.1 Locking
One of the most common methods for transaction manage-

ment is mutual exclusion also known as lock-based protocols
or pessimistic concurrency control [8]. In the rest of the pa-
per, we will call it Locking. Locking is used in many parallel
machine learning frameworks to support serializability [9, 19].
In this method, all read or written model parameters are
locked during the processing of the transaction. These locks
prevent any two transactions from executing concurrently if
they access any common objects. Locking may be applied
to the transactional pattern of Algorithm 1 by locking all
data objects in the read-set and write-set at the beginning.
These locks are released only after the transaction updates
are applied to the shared model parameters.

Locking prevents conflicts such as the overwrite of worker
3 to worker 1’s work in the scenario in Figure 3(a). The
scenario with Locking is shown in Figure 3(b). Workers
attempt to acquire a lock on the parameters they read or
write before beginning the iteration. Worker 1 acquires the
lock for p first and proceeds to compute and update the value
of p before releasing the lock. Thus, it prevents worker 3
from overwriting its work because worker 3 will wait until it
acquires the lock. Meanwhile, worker 2 acquires the lock for
q and process iteration 2 because no other iteration is reading
or updating q. This is a serializable execution because it
resembles the serial execution of iteration 1, iteration 2, and
then iteration 3. However, locking is an expensive operation
that leads to a significant performance overhead even for
iterations that do not need coordination, such as iteration 2.

2.2.2 Optimistic Concurrency Control
Optimistic concurrency control (OCC) [15] is an alterna-

tive to Locking. It performs better for scenarios with low
contention, which made it more suitable for machine learning
algorithms [21]. However, existing OCC methods for machine
learning applications have been only proposed as specialized
algorithms for domain-specific machine learning problems.
Pan et. al. [21], for example, propose optimistic concurrency
control patterns for DP-Means, BP-Means, and online facil-
ity location. Unlike these specialized OCC algorithms we
present a generalized OCC pattern that can be applied to
arbitrary machine learning algorithms.

A general OCC protocol [15] proceeds in three phases

135

shown in Algorithm 2 :

• Phase I (Execution): in the execution phase, the trans-
action’s read-set is read from the shared model param-
eters (line 2). Model parameters in OCC are versioned,
where the version number of a parameter is the id of the
transaction that wrote it. The read parameter values
and the sample information are then used in the ma-
chine learning computation (denoted ML computation)
to generate the updates to model parameters, δ (line 3).
Note that during this phase no coordination or syn-
chronization is performed.

• Phase II (Validation): in this phase we ensure that
the read data objects were not overwritten by other
transactions during the execution phase (lines 5-6).
This is performed by reading the model parameters
again after the computation and comparing the read
versions to the current versions.

• Phase III (Commit): if the validation is successful, the
updates, δ, are applied to the global model parameters
(line 7).

One requirement for OCC to be serializable is to perform
the validation and commit phases atomically (lines 4-8) [3].
To perform these two steps atomically, there are two typical
approaches: (1) Execute these steps serially at a coordinator
node. This, however, limits scalability, because it means
that there is a dedicated worker that is doing the validation
and commit for all iterations. Such a method can only be
made efficient with domain knowledge about the machine
learning problem, which means that the algorithm no longer
becomes a general OCC scheme but rather a specialized OCC
algorithm [21]. (2) The general approach for validation is
to lock the write-set. This is different from Locking in two
ways: locks are only held after the computation has been
performed and only the data objects in the write-set are
locked (data objects in the read-set are not locked). Thus,
OCC outperforms Locking for cases when the contention is
lower, and the write-set is significantly smaller than the read-
set. This approach is adopted by recent state-of-the-art OCC
transaction protocols in the systems and database systems
community [29] and is the method we use in our evaluations.

2.3 Performance and Overheads of Consis-
tency Schemes

Consistency schemes, such as Locking and OCC, incur
overheads to ensure a serializable execution. These overheads
are: (1) Conflict detection overhead : this is the overhead
due to additional operations needed to detect conflicts, such
as locks, atomic sections, and comparing versions. These
overheads are incurred even in the absence of a conflict.
(2) Backoff overhead : this is the wasted time that is incurred
due to a detected conflict, such as waiting for a lock to be
released, aborting due to deadlock, and failed validation.

For Locking, the conflict detection overhead is due to
the operations to acquire and release locks. Even in the
absence of conflict, these operations incur an overhead. The
backoff overhead for Locking is the time spent waiting for
acquired locks to be released. Deadlocks do not occur in
our Locking algorithm. This is because locks are acquired
in ascending order—locks with lower keys are acquired first.
This is possible because the read and written data objects
are declared at the beginning of the execution.

For OCC, the conflict detection overhead is due to the
operations to acquire and release locks for the atomic section,
and the overhead to validate the read-set. Unlike Locking,
OCC locks are only for the data objects in the write-set. The
backoff overhead for OCC is due to wasted processing time
in the case of an abort and restart when validation fails.

3. CONFLICT ORDER PLANNING
In this section, we propose Conflict Order Planning (COP)

for parallel machine learning that ensures a serializable execu-
tion while reducing the overhead of conflict detection. COP
entails no use of locks or atomic blocks, which are expensive
operations necessary for existing consistency schemes such
as Locking and OCC.

3.1 Overview
COP leverages the dataset knowledge property of machine

learning workloads: a machine learning algorithm processes
a dataset of samples that is known prior to the experiment
and is typically processed multiple times. This creates the
opportunity to plan a partial order of execution to minimize
the cost of conflict detection. Dataset knowledge is not
manifested in traditional database systems. Thus, existing
consistency schemes, such as Locking and OCC are designed
with the assumption that they are oblivious of the dataset.
The use of traditional database transactional methods leads
to a lost opportunity as they do not exploit dataset knowledge.
In this section, we propose COP algorithms that exploit
dataset knowledge.

The intuition behind COP is to have a planned partial
order of transactions prior to execution and then ensure
that the partial order is followed during execution. We
derive the planned partial order from an arbitrary starting
serial order of transactions. For example, a dataset with
n samples will be transformed to n transactions in some
planned order T1, T2, . . . Tn. We will represent this ordering
by the relation Ti <o Tj , where Ti is ordered before Tj .
However, during execution, the order is not enforced between
every pair of transactions. Rather, the order is only enforced
for transactions that depend on each other. Thus, if T2 does
not depend on T1 then a worker may start processing T2

even if T1 did not finish. Otherwise, processing T2 must
begin only after T1 finishes. Thus, the enforced partial order
is based on an initial serial order and the conflict relations
between transactions.

Definition 1. (Planned partial order) There is a
planned dependency—or dependency for short—from a trans-
action Ti to a transaction Tj if the planned order entails
Tj reading or overwriting a write made by Ti. We denote
this dependency by Ti x Tj and it exists if all the following
conditions are met:

• Ti writes the model parameter x (x ∈ Ti.write-set).

• Tj reads or writes the model parameter x (x ∈ Tj .read-
set ∪ Tj .write-set).

• Ti is ordered before Tj (Ti <o Tj).

• There exists no transaction Tk that is both ordered
between Ti and Tj and writes x (@Tk|x ∈ Tk.write-
set ∧ Ti <o Tk <o Tj).

Enforcing the order between transactions that depend on
each other is a sufficient condition to guarantee a serializable
execution (see Section 4.1 for a correctness proof).

136

Algorithm 3 The COP partial order planning algorithm
that is performed prior to the experiment.

1: Planned version list := A list to assign read and write
versions initially all zeros

2: version readers := A list to count the number of trans-
actions that read a version

3: for Ti ∈ Dataset transactions do
4: for r ∈ Ti.read-set do
5: r.planned version =
Planned version list[r.param]

6: version readers[r.param]++

7: for w ∈ Ti.write-set do
8: w.p writer = Planned version list[w.param]
9: Planned version list[w.param] = i

10: w.p readers = version readers[w.param]
11: version readers[w.param] = 0

12: Delete Planned version list and version readers

COP enforces dependencies by versioning model param-
eters with the ids of the transactions that wrote them. A
transaction only starts execution if the versions it depends on
has been written. Consider applying COP to the scenario in
Figure 3(a). The resulting execution is shown in Figure 3(c).
Assume that the planned order is to execute samples 1, 2,
and 3, in this order. The partial order consists of a single
dependency from iteration 1 to iteration 3, because they
both read and write p. Iterations use a special read opera-
tion called ReadWait that waits until the version it reads is
written by the transaction that it depends on. Iteration 1 is
planned to read the initial version of p, denoted p0, because
it is the first ordered iteration to read p. Likewise, iteration 2
is planned to read the initial version of q. Iteration 3 depends
on Iteration 1, because they both read and write p. Thus,
iteration 3 is planned to read the version of p that is written
by iteration 1, denoted p1. With this plan, workers 1 and 2
process iterations 1 and 2 concurrently after verifying that
they have read their planned versions. Worker 3, however,
waits until the version p1 is written by worker 1 and then pro-
ceeds to process iteration 3. With COP, workers coordinate
without the need of expensive locking primitives. Rather,
workers only utilize simple arithmetic operations on the read
or written parameter’s version number to enforce the plan.

In the remainder of this section, we propose the COP
planning algorithm that is used to find and annotate depen-
dency relations between transactions (Section 3.2). Then
we propose the COP transaction execution algorithm that
enforces dependency relations (Section 3.3). We discuss the
performance benefits of COP in Section 3.4.

3.2 COP Planning Algorithm
In this section, we present the COP planning algorithm

in its basic form—planning prior to execution. Then, we
discuss how it can be used to plan in conjunction with the
first epoch and how it can be used in cases where there are
multiple sources of data.

3.2.1 Basic COP Planning
We begin by presenting the basic COP planning strategy.

Here, we assume that planning is performed before execution,
either in offline settings or while loading the dataset. The
objective of the planning algorithm is to annotate the dataset

with the planned partial order information. This annotation
includes the following:

Definition 2. (COP planning and annotation)
COP planning performs the following two annota-
tions: (1) Read annotation: each read operation is annotated
with the version number it should read, and (2) Write an-
notation: each write operation, w, is annotated with the id
of the version it should overwrites, w’, and the number of
transactions that are planned to read the version w’.

The read annotation’s goal is to enforce the order during
execution. The write annotation’s goal is to ensure that
a version is not overwritten until it is read from all the
transactions that are planned to read it.

Algorithm 3 shows the steps to annotate transactions with
the partial order information. The algorithm processes trans-
actions one transaction at a time ordered by some arbitrary
order—beginning with T1 and ending with Tn.

In COP, each read operation in the read-set, r, contains
both the read parameter to be read (r.param), and the
planned read version number (r.planned version), i.e., the
read annotation. A planned version number k means that the
transaction must read the value written by transaction Tk.
Also, each write in the write-set, w, contains the parameter
to be written (w.param), the number of transactions that
read the previous version (w.p readers), and the transaction
id of the transaction that it is overwriting (w.p writer), i.e.,
the write annotation.

The planning algorithm tracks the planned version num-
bers in a list named Planned version list as dependencies
are being processed. Planned version list[x] contains the
unique transaction id of the most recently planned transac-
tion that writes x. All entries in the list are initialized to
0. Also, the number of version readers are maintained in a
list named version readers. At any point in the planning
process, version readers[x] contains the number of planned
transactions that read the most recently planned written
version of x. Both lists are only used within the planning
algorithm and are deleted before the execution phase.

The planning of a transaction Ti proceeds by processing
the read-set and then the write-set. Each read operation r
in the read-set is annotated with a planned version from the
Planned version list (lines 4-5). For example, consider the
case where Ti reads model parameter x. Then, there is a read,
r, with r.param equals to x. At the time r is being planned,
the corresponding value in the list, Planned version list[x]
contains the unique transaction id, k, of the last transaction,
Tk, that wrote x. Thus, assigning the planned version of r to
k is a way of encoding that the plan is for Ti to read the value
of x that was written by Tk. Then, the corresponding number
of version readers is incremented (line 6). After processing
the read-set, the planning algorithm processes each write w
in the write-set (lines 7-11). Each write is annotated with
the previous writer’s version number (line 8). Then, the
corresponding entry in P lanned version list is updated with
the transaction id value i (line 9). Thus, reads of transactions
ordered after Ti can observe that they are planned to read
Ti’s writes. Then, the write is annotated with the number
of readers of the previous version (line 10). Finally, the
corresponding entry in version readers is reset. After all
the operations are processed, the lists Planned version list
and version readers are deleted.

The outcome of the algorithm is read and write annotations

137

Algorithm 4 Parallel execution with COP

1: Global num reads := initially all zeros
2: procedure Process transaction Ti

3: for r ∈ Ti.read-set do
4: µ← P.ReadWait(r)
5: num reads[r.param]++

6: δ ← ML computation (µ, Ti.sample, Ti.write-set)
7: for w ∈ δ do
8: w.version = i
9: while w.p readers 6= num reads[w.param] OR
w.p writer 6= P [w.param].version do

10: Wait
11: num reads[w.param] = 0

12: P ← δ

of the whole dataset. The algorithm only requires a single
pass on the dataset. In the evaluation section, we perform
experiments to quantify the overhead of planning.

3.2.2 Alternative Planning Strategies
The basic COP planning algorithm, presented in the pre-

vious section, assumes that planning is performed prior to
execution in offline settings or during dataset loading. We
now show how to adapt the algorithm to plan in alternative
planning scenarios. The first alternative is to plan during
the first epoch of the machine learning algorithm’s execution.
The plan’s objective is to annotate transactions with a partial
order of a serializable execution. It is possible to execute the
first epoch of the machine learning algorithm via a traditional
consistency scheme (e.g., Locking) and then annotate the
dataset with the partial order of that epoch. Specifically, dur-
ing the first epoch using Locking, the planning Algorithm 3
is performed for each transaction while all the locks of that
transaction are held. Thus, each read is annotated with the
read version and each write is annotated with the version it
overwrites and the number of readers. After the first epoch,
that has passed through the whole dataset, the remaining
epochs are processed using COP with the annotated plan.
The planning only adds a small overhead to the first epoch,
as we discuss in the evaluation section.

Another alternative is to plan when the dataset is being
generated online from multiple sources, in cases such as
the global analytics scenario in Section 2.1.2. In such a
scenario, planning can be done at each source for batches
of samples using Algorithm 3. Then, at the centralized
location, the machines learning algorithms process batches
in tandem. The dependencies of a batch are transposed to
previous batches. For example, consider two batches b1 and
b2, where b1 is processed in the centralized location prior to
b2. The transactions in b2 that have dependencies on the
initial version, according to Algorithm 3, are transposed to
the most recent version written by b1. For example, the
first transaction that accesses x in b2 will be annotated as
reading the version 0. However, the centralized location will
translate this as an annotation to wait for the last version
written by b1.

3.3 Planned Execution Algorithm
We present the COP execution algorithm (shown in Algo-

rithm 4) that processes transactions in parallel according to
a planned partial order. We associate each model parameter

with a version number that corresponds to the transaction
that wrote it, e.g., P [x].version is the current version number
of model parameter x. A list of the number of version readers
for model parameters, num reads, is maintained and acces-
sible by all workers. For example, a value for num reads[x]
of 3 means that so far, three transactions read the current
version of x.

Dependencies between transactions are enforced by ensur-
ing that read operations read the planned versions. Ti’s read-
set is read from the shared model parameters, P (lines 3-5).
The ReadWait operation blocks until the annotated planned
version is available. The implementation of ReadWait simply
reads both the data object and its version number. Then, it
compares the version number to the annotated read version
number. If they match, the read data object is returned;
otherwise, the read is retried until the planned version is
read.

After reading the planned version, the number of version
readers is incremented (line 5). Then, the transaction execu-
tion proceeds by performing the machine learning computa-
tion using the read model parameters and the data sample’s
information (line 6). Writes to the model parameters com-
puted by the machine learning computation, δ, are buffered
before they are applied to the model parameters (lines 7-11).
First, each write, w, is tagged with a version number equal to
the transaction’s id (line 8). Thus, future transactions that
read the state can infer that Ti is the transaction that wrote
these updates. Then, the algorithm waits until the previous
version has been read by all planned readers by making sure
that the number of version readers is equal to the planned
number of readers of that version and by making sure that
the current version is identical to w.p writer (lines 9-10).
Since we are writing a new version, the corresponding entry
in num reads is reset to 0. The writes are then incorporated
in the shared state (line 12).

3.4 Performance and Overheads
In Section 2.3 we discussed two overheads of consistency

schemes: conflict detection overhead and backoff overhead.
The backoff overhead incurred in COP is similar to Locking
and OCC, i.e., transactions wait until conflicting transac-
tions complete. COP’s goal is to minimize the other source
of overhead: conflict detection overhead that is incurred
whether a conflict is detected or not. In COP, the conflict
detection overhead is due to: (1) The validation using the
ReadWait operation, and (2) Validation that each write opera-
tion’s previous readers have already read the previous version.
These two tasks are performed via arithmetic operations and
comparisons only, without the need for expensive synchro-
nization operations like acquiring and releasing locks. This
is the main contributor to COP’s performance advantage.

4. CORRECTNESS PROOFS
In this section, we present two proofs. The first proves that

COP is serializable and the second proves that deadlocks do
not occur in COP.

4.1 COP Serializability
We prove the correctness of COP and that it ensures a

serializable execution that is equivalent to a serial execu-
tion. We use a serializability graph (SG) to prove COP’s
serializability [3]. A protocol is proven serializable if the
SGs that represent its possible executions do not have cycles.

138

A SG consists of nodes and edges. Each node represents a
committed transaction. A directed edge from one node to
another represents a conflict relation. There are three types
of conflict relations (edges) in SGs:

• Write-read (wr) relation: This relation is denoted as
Ti →wr Tj , which means that there is a wr edge from
Ti to Tj . This relation exists if Ti writes a version of a
data object x and Tj reads that version.

• Write-write (ww) relation: This relation is denoted as
Ti →ww Tj , which means that there is a ww edge from
Ti to Tj . This relation exists if Ti writes a version of
a data object x and Tj overwrites that version with a
new one.

• Read-write (rw) relation: This relation is denoted as
Ti →rw Tj , which means that there is a rw edge from
Ti to Tj . This relation exists if Ti reads a version of
a data object x and Tj overwrites that version with a
new one. If this edge exists between two transactions
(Ti →rw Tj) then it must be the case that there exists a
transaction Tk that writes x with the following conflict
relations: (1) A write-write conflict relation from Tk to
Tj (Tk →ww Tj), and (2) a write-read conflict relation
from Tk to Ti (Tk →wr Ti).

Lemma 1. For any conflict relation Ti→Tj in SG of a
COP execution, the following is true: Ti <o Tj , where <o is
the ordering relation of the initial planned order.

Proof. Assume that the data object that causes the con-
flict relation is data object x. We prove this lemma for the
three conflict relations:

• Write-read (wr) conflict relations (Ti→wrTj): accord-
ing to Definition 1 a transaction Tj is planned to read
from a transaction Ti if there is an ordering depen-
dency Ti x Tj . One of the conditions of this ordering
dependency is that Ti is ordered before Tj (Ti <o Tj).
In the implementation algorithm, this is enforced by
the ReadWait operation (see Algorithm 4 lines 3-4).

• Write-write (ww) conflict relations (Ti→wwTj)): ac-
cording to Definition 1 a transaction Tj is planned to
overwrite a value written by transaction Ti if there is an
ordering dependency Ti x Tj . One of the conditions
of this ordering dependency is that Ti is ordered before
Tj (Ti <o Tj). In the implementation algorithm, this is
enforced by the check of w.p writer (see Algorithm 4
lines 9-10).

• Read-write (rw) conflict relations (Ti→rwTj): this re-
lation implies the existence of a transaction Tk with
the relations Tk→wrTi and Tk→wwTj . According to
our analysis in the previous two points, the following
is true:

Tk <o Ti and Tk <o Tj (1)

Thus, the following ordering dependencies exist:

Tk x Ti and Tk x Tj (2)

We now show by contradiction that the following is
true: Ti <o Tj . Assume to the contrary that Tj <o Ti

is true. If Tj <o Ti then according to Equation 1 the
following is true:

Tk <o Tj <o Ti (3)

However, this equation violates one of the definitions
in Definition 1 that states that the ordering relation
Tk x Ti that exists according to Equation 2 implies
that there exists no transaction that is ordered between
them and writes x. However, according to Equation 3,
Tj is ordered between Tk and Ti and it writes x. This
violation leads to a contradiction to Tj <o Ti thus
proving that Ti <o Tj . In the implementation algo-
rithm, this is enforced by the check of w.p readers (see
Algorithm 4 lines 9-10).

The condition of the lemma is proven for all three conflict
relations.

Theorem 1. Conflict Order Planning (COP) algorithms
guarantee serializability.

Proof. According to Lemma 1, a conflict relation Ti → Tj

in SG means that Ti <o Tj . We need to show that a cycle
Ti → . . . → Ti cannot exist. Assume to the contrary that
such a cycle exists. This means according to Lemma 1 that
Ti <o . . . <o Ti. Since the ordering relation <o is transitive
this leads to Ti <o Ti, which is a contradiction, thus proving
that no cycles exist in the SG of COP executions. The
absence of cycles in SG is a sufficient condition to prove
serializability [3].

4.2 COP Deadlock Freedom
The COP execution algorithm 4 can block in two locations:

(1) a read waits for its planned version to be available, and
(2) a write waits until all reads of the previous versions and
the write of the previous version are complete. In this section
we prove that these waits do not cause a deadlock scenario
where a group of transactions are waiting for each other. We
prove this by constructing a deadlock graph (DG). Nodes in
DG are transactions. A directed edge from one transaction
to another, Ti →d Tj , denotes that Tj may block waiting for
a read or a write of Ti.

Lemma 2. For any edge in DG, Ti →d Tj, the following
is true: Ti <o Tj, where <o is the ordering relation of the
planned order.

Proof. An edge Ti →d Tj exists in three cases: (1) Tj

reads a version written by Ti, (2) Tj overwrites a version
written by Ti, or (3) Tj overwrites a version to be read by Ti.
All cases are true in the COP algorithms only if the ordering
dependency Ti Tj exists. According to Definition 1, an
ordering dependency Ti Tj is only true if Ti <o Tj .

Theorem 2. Conflict Order Planning (COP) algorithms
guarantee deadlock freedom.

Proof. According to Lemma 2, a dependency relation
Ti →d Tj in DG means that Ti <o Tj . We need to show
that a cycle Ti →d . . . →d Ti cannot exist. Assume to the
contrary that such a cycle exists. This means according
to Lemma 2 that Ti <o . . . <o Ti. Since the ordering
relation <o is transitive this leads to Ti <o Ti, which is a
contradiction, thus proving that no cycles exist in the DG of
COP executions. The absence of cycles in DG is a sufficient
condition to prove deadlock freedom.

139

Properties Performance (M transactions/s)
Dataset # features training set size test set size avg. transaction size Ideal COP Locking OCC

KDDA [26] 20,216,830 8,407,752 510,302 36.3 7.2 4.1 0.75 0.82
KDDB [26] 29,890,095 19,264,097 748,401 29.4 8.0 5.8 0.95 1.0

IMDB 685,569 167,773 14.6 15.2 11.0 6.7 4.9

Table 1: Performance comparison across of COP, Locking, OCC, and Ideal (without conflict detection) for three datasets

5. EVALUATION
In this section, we evaluate COP in comparison to Lock-

ing and OCC. We also compare with an upper-bound of
performance, which is the performance without any conflict
detection. We will call this upper-bound the ideal baseline,
or Ideal for short. Ideal does not guarantee a serializable
execution, unlike COP, Locking, and OCC. Thus, Ideal does
not guarantee preserving the theoretical properties of the
machine learning algorithm.

The transactional framework of machine learning can be
applied to a wide-range of machine learning algorithms. For
this evaluation, we run our experiments with a Stochastic
Gradient Descent (SGD) algorithm to learn a Support Vector
Machine (SVM) model. The goal of the machine learning al-
gorithm is to minimize a cost function f . We use a separable
cost function for SVM [25]. Each iteration in SGD processes
a single sample from the dataset. Gradients are computed
according to the cost function. The gradients are then used
to compute the new values of the model that are relevant to
the sample. We apply this machine learning algorithm to the
transactional template we presented in Algorithm 1. Each
transaction corresponds to an iteration of SGD. The itera-
tion computation (i.e., ML computation() in the algorithm)
represents the gradient computation using the cost function.
For this machine learning algorithm, the read and write-sets
of a transaction are the features in the corresponding sample,
i.e., the features with a non-zero value. In all experiments,
we initialize the SGD step size value to 0.1. The step size
value diminishes by a factor 0.9 at the end of each epoch over
the training dataset. All experiments are run for 20 epochs,
where an epoch is a complete pass on the whole dataset.

We implemented COP, Locking, and OCC as a layer on top
of the parallel machine learning framework of Hogwild! [25]
that is available publicly1. The source code is written in C++.
We use an Amazon AWS EC2 virtual machine to run our
experiments. The virtual machine type is c4.4xlarge with 30
GB memory and 16 vCPUs that are equivalent to 8 physical
cores (Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz) and 16
hyper threads. Unless mentioned otherwise, the number of
worker threads used in the experiments is 8. Our experiments
with more than 8 threads show no significant performance
difference.

We use three datasets to conduct our experiments, sum-
marized in Table 1. The first two datasets are KDDA
and KDDB datasets, which were part of the 2010 KDD
Cup [26]. KDDA (labeled algebra 2008 2009) has 20,216,830
features and contains 8,407,752 samples in the training
set and 510,302 samples in the test set. KDDB (labeled
bridge to algebra 2008 2009) has 29,890,095 features and
contains 19,264,097 samples in the training set and 748,401
samples in the test set. The third dataset is the IMDB

1http://i.stanford.edu/hazy/victor/Hogwild/

 0.5

 1

 2

 4

 8

 1 2 3 4 5 6 7 8

T
h

ro
u
g

h
p

u
t

(M
 t
x
n

s
/s

)

Number of worker threads

Ideal
COP

Mutual exclusion
OCC

(a) Throughput with the KDDA dataset

 0.5

 1

 2

 4

 8

 16

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h

p
u

t
(M

 t
x
n

s
/s

)

Number of worker threads

(b) Throughput with the KDDB dataset

 1

 2

 4

 8

 16

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h

p
u

t
(M

 t
x
n
s
/s

)

Number of worker threads

(c) Throughput with the IMDB dataset

Figure 4: The throughput of Ideal, COP, Locking, and OCC
while varying the number of threads for three datasets (log
scale is used)

dataset2 that has 685,569 features and contains 167,773 sam-
ples. The IMDB dataset is not divided into training and test
sets. The average sample (transaction) size of each dataset,
which is the number of model parameters represented in
each sample, is 36.3 for KDDA, 29.4 for KDDB, and 14.6 for
IMDB. In addition to these three datasets, we use synthetic
datasets for experiments that require controlling the dataset
properties, such as contention.

5.1 Throughput
The metric that we are interested in the most is throughput.

We measure throughput as the number of processed samples

2http://komarix.org/ac/ds/

140

(i.e., transactions) per second. Table 1 shows a summary of
throughput numbers for the different evaluated methods on
the three datasets. COP outperforms Locking and OCC by
a factor of 5-6x for KDDA and KDDB. For IMDB, COP’s
throughput is 64% higher than Locking and 124% higher
than OCC. The magnitude of performance improvement
of COP compared to Locking and OCC is influenced by
the level of contention in the dataset, i.e., the likelihood of
conflict between transactions. Our inspection of the datasets
revealed that there is more opportunity for conflict in the
KDDA and KDDB datasets than the IMDB dataset. We do
not present the statistical properties of the datasets to show
this due to the lack of space. However, we perform more
experiments in Section 5.2 to study the effect of contention on
performance. The comparison with Ideal shows that COP’s
throughput is 27-44% lower than Ideal. This percentage
represents COP’s overhead to preserve consistency. Although
conflicts are planned in COP, there is still an overhead for
conflict detection and backoff.

The throughputs of Locking and OCC are relatively close
to each other. For KDDA and KDDB, the throughputs
of Locking and OCC are within 10% of each other. For
IMDB, Locking outperforms OCC by 36.7%. In the case of
KDDA and KDDB, the locking contention for both Lock-
ing and OCC (to implement atomic validation) dominates
performance. In general, OCC benefits in cases where the
read-set is larger than the write-set. Because our machine
learning workload has a read and write-sets of equal sizes,
the advantage of OCC is not manifested (see Section 2.3).
In IMDB, which is the workload with less contention, Lock-
ing outperforms OCC. This is due to the additional work
needed to validate transactions by OCC. For the conflict
detection overhead, OCC experiences both the overheads of
locking and validation, while Locking only experiences the
overhead of locking. The overhead of validation is exposed
with workloads with less contention because in these cases,
locking contention does not dominate performance, i.e., in
the case of the KDDA and KDDB datasets, the overhead
due to locking contention dominates the validation overhead.
We revisit the effect of contention in Section 5.2.

In Figure 4, we show the performance of the different
schemes while varying the number of threads. Increasing the
number of threads increases contention. Also, using more
cores in the experiment exposes the effect of the underlying
cache and cache coherence on the performance of the different
schemes. Figure 4(a) shows the performance for the KDDA
dataset. Consider the throughput of all schemes with a
single worker thread. In this case, there is no conflict or
cache coherence overhead. What is observed is the conflict
detection overhead in isolation (Section 2.3). Ideal is only
21% higher than COP in the case of a single worker thread.
This shows that the overhead of conflict detection is small
compared to Locking and OCC; the throughput of Ideal is
163% higher than Locking and 186% higher than OCC.

For scenarios with more than one worker thread in Fig-
ure 4(a), the backoff and cache coherence overheads are
experienced in addition to the conflict detection overhead.
Ideal does not suffer from the backoff overhead because con-
flicts are not prevented. Also, Ideal has an advantage with
the cache coherence overhead compared to the consistent
schemes. Unlike COP, Locking, and OCC, Ideal does not
maintain additional locking or versioning data that may be
invalidated by cache coherence protocols. These factors cause

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

1K 10K 100K

T
h

ro
u

g
h
p
u
t

(M
 t

x
n
s
/s

)

Size of hotspot (features)

Ideal
COP

Locking
OCC

Figure 5: Quantifying the effect of contention on performance
by experiments on synthetic datasets with varying contention
levels

the performance gap between Ideal and the other schemes to
grow as the number of threads is increased. COP’s through-
put, for example, is 17% lower than Ideal with one worker
thread, but it is lower by 43% in the case of 8 threads. The
contention between cores due to cache coherence limits scala-
bility. Ideal with 8 threads achieves 4 times the performance
of the case with a single thread—rather than 8 times the
performance in the case of linear scalability. COP with 8
threads achieves 3 times the performance of the case with
a single thread. For Locking and OCC, the contention is so
severe that performance slightly decreases beyond 4 threads.

We show the same set of experiments for KDDB and IMDB
in Figures 4(b) and 4(c). The experiments with the KDDB
dataset show similar behavior to the experiments with the
KDDA dataset. One difference is that COP scales better, as
the KDDB dataset is sparser than KDDA; for KDDB, COP’s
throughput with 8 threads is 4 times the throughput with a
single thread, rather than a 3x factor with the KDDA dataset.
For the IMDB dataset, there is less contention compared
to KDDA and KDDB. All schemes—including Locking and
OCC—scale with a factor around 4x when increasing the
number of threads from 1 to 8. Also, the smaller transaction
sizes with the IMDB dataset makes the absolute throughput
numbers higher than those with the KDDA and KDDB
datasets.

5.2 Contention Effect
Contention affects performance because it increases the

rate of conflict. A conflict between two transactions causes
at least one of them to either wait or restart, thus wasting
resources. Here, we quantify the effect of contention on
the performance of our consistency schemes. We generate
synthetic datasets to give us more flexibility in controlling
the contention. The synthetic datasets we generate contain
one million samples each. We fix the size of each sample
to 100 features, which means that each transaction contains
100 data objects in the read and write-sets. To control the
contention, we restrict transactions to a hot spot in the
parameter space. Each data object is sampled uniformly
from the hot spot. We control contention by varying the size
of the hot spot.

Figure 5 shows the performance with hot spot sizes of 1K,
10K, and 100K features. Contention leads to a higher conflict
overhead and lower performance. This is why consistency
schemes perform lower in the highest contention case (1K
features) when compared to cases with less contention. The
performance improvement factor of the case with 100K fea-

141

 0

 50

 100

 150

KDDA KDDB IMDB

T
h
ro

u
g
h
p
u
t
(K

 s
a
m

p
le

s
/s

)

Dataset

No planning With planning

Figure 6: A comparison of the loading time of the dataset
to main memory with and without order planning.

tures compared to the case with 1K features is 4x for COP,
8.8x for Locking, and 7.3x for OCC. Ideal also performs
lower as contention increases, although it does not face an
overhead due to conflicts. The performance of Ideal with
100K features is 131% higher than the performance with 1K
features. The reason is that more contention also means
more contention on cache lines, leading to a larger overhead
for cache coherence.

As contention decreases, the performance gap between the
consistency schemes and Ideal decreases. Part of the perfor-
mance benefit of Ideal compared to the consistency schemes
is that Ideal does not block or restart transactions due to
conflicts. As contention decreases, this performance benefit
diminishes, and the performance of the consistency schemes
becomes closer to Ideal. For example, in the high contention
case (1K features) Ideal’s throughput is 4x the throughput
of COP. For the low contention case (100K features), this
gap decreases with Ideal’s throughput only 34% higher than
COP. This is also true for Locking and OCC, where Ideal’s
throughput is higher than them by a factor of 20-23x in the
high contention case, but this factor decreases to around 5x
for the low contention case.

Like the performance difference between Ideal and the
other consistency schemes, the performance gap between
COP and the other consistency schemes (Locking and OCC)
also decreases as contention decreases. COP’s light-weight
conflict detection makes it less prone to conflicts than Lock-
ing and OCC because the latency of the transaction is lower.
Thus, Locking and OCC suffer from contention more than
COP. In the low contention case, COP’s throughput is 3.7x
higher than Locking and 3.1x higher than OCC. This perfor-
mance gap decreases in the low contention case where COP
outperforms Locking by 46% and OCC by 51%.

5.3 Planning Overhead
COP’s performance advantage is due to having conflicts

planned ahead of time. We have outlined in Section 2.1
examples of machine learning environments. In these envi-
ronments, planning can be done in advance, and thus the
planning overhead is not observed when the machine learning
algorithm is processed using COP. This includes the case of
the machine learning framework where a dataset is reused
in different experiments and is possibly stored with the an-
notated plan for future sessions. However, there are cases
where machine learning algorithms are used for fresh and
raw datasets. In these cases, the planning overhead becomes
important.

We performed several experiments to quantify the over-
head of planning. We propose two alternatives to plan for a
dataset. The first planning strategy is to plan while loading
the dataset. A dataset is typically stored in a persistent

storage such as a disk. Planning can be done in conjunc-
tion with reading the raw dataset from persistent storage
and loading it into the appropriate data structures in main
memory. Figure 6 shows the loading throughput with and
without planning for three datasets. Planning only adds a
small overhead to loading that we measure to be between
3% and 5%.

The second planning strategy is to plan during the first
epoch and then use the plan for later epochs (Section 3.2.2).
In the first epoch, a consistency scheme must be used. We run
the first epoch using Locking and the rest of the epochs using
COP. The throughput of the first epoch is within 1% of the
throughput of Locking for all our datasets. The throughput
of the remaining epoch is also within 1% of the performance
of COP with offline planning.

6. RELATED WORK
The use of transactional and consistency concepts have

been explored recently for parallel and distribute machine
learning by Pan et.al [20–24]. Some of these works build con-
sistent algorithms that follow the OCC pattern for distributed
unsupervised learning [21], correlation clustering [20, 24],
and submodular maximization [22]. These proposals show
that domain-specific implementations of OCC—rather than
general OCC that we presented in this work—achieve per-
formance close to their coordination-free counterparts while
guaranteeing serializability [22, 24].

The study of consistent machine learning algorithms has
been motivated by the complexity of developing mathemati-
cal guarantees and coordination-free algorithms that are par-
allel [20–24]. However, many coordination-free machine learn-
ing algorithms were developed [1, 6, 18, 25]. Hogwild! [25],
for example, is an asynchronous parallel SGD algorithm with
proven convergence guarantees for several classes of machine
learning algorithms.

Bounded staleness has been proposed as an alternative
to both serializability and coordination-free execution for
parallel machine learning. Bounded staleness is a correctness
guarantee of the freshness of read data objects. It has been
demonstrated for distributed machine learning tasks [13, 17].
Bounded staleness, however, may still lead to data corruption
which requires a careful design of machine learning algorithms
that leverage bounded staleness.

The concept of planning execution to improve the perfor-
mance of distributed and parallel transaction processing has
been explored in different contexts. Calvin [28] is a deter-
ministic transaction execution protocol. Sequencing workers
intercept transactions and put them in a global order that is
enforced by scheduling workers. Calvin is built for typical
database transactional workload and thus does not leverage
the dataset knowledge property of machine learning work-
loads. This makes its design incur unnecessary overheads
compared to COP for machine learning workloads, such as
always having the sequencing and scheduling workers in the
path of execution. Schism [5] is a workload-driven replication
and partitioning approach. The access patterns are learned
from the coming workload to create partitioning strategies
that minimize conflict between partitions and thus improve
performance. Cyclades [23] adopts a similar approach to
Schism for parallel machine learning workloads. Cyclades
improves the performance of both conflict-free and consis-
tent machine learning algorithms by partitioning access for
batches of the dataset to minimize conflict between parti-

142

tions. Each partition is then processed by a dedicated thread,
leading to better performance. Partitioning for performance
complements COP’s objective. Whereas partitioning aims
to minimize conflict between workers, COP ensures that
conflicts are handled more efficiently.

7. CONCLUSION
In this paper, we propose Conflict Order Planning (COP)

for consistent parallel machine learning. COP leverages
dataset knowledge to plan a partial order of concurrent exe-
cution. Planning enables COP to execute with light-weight
synchronization operations and outperform existing consis-
tency schemes such as Locking and OCC while maintaining
serializability for machine learning workloads. Our evalua-
tions validate the efficiency of COP on a SGD algorithm for
SVMs.

8. ACKNOWLEDGMENT
This work is partially funded by a gift grant from Oracle

and a gift grant from NEC Labs America. We would also
like to thank Amazon for access to Amazon EC2.

References
[1] H. Avron et al. Revisiting asynchronous linear solvers:

Provable convergence rate through randomization. Jour-
nal of the ACM (JACM), 62(6):51, 2015.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Con-
currency control and recovery in database systems. 1987.

[3] P. A. Bernstein and E. Newcomer. Principles of trans-
action processing. Morgan Kaufmann, 2009.

[4] I. Cano et al. Towards geo-distributed machine learning.
In Workshop on ML Systems at NIPS, 2015.

[5] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism:
a workload-driven approach to database replication and
partitioning. VLDB, 3(1-2):48–57, 2010.

[6] C. M. De Sa, C. Zhang, K. Olukotun, and C. Ré. Taming
the wild: A unified analysis of hogwild-style algorithms.
In NIPS, pages 2674–2682, 2015.

[7] J. Dean et al. Large scale distributed deep networks. In
NIPS, pages 1223–1231. 2012.

[8] K. P. Eswaran et al. The notions of consistency and
predicate locks in a database system. Communications
of the ACM, 19(11):624–633, 1976.

[9] J. E. Gonzalez et al. Powergraph: Distributed graph-
parallel computation on natural graphs. In OSDI, pages
17–30, 2012.

[10] J. Gray et al. The transaction concept: Virtues and
limitations. In VLDB, volume 81, pages 144–154, 1981.

[11] J. Gray and A. Reuter. Transaction processing: concepts
and techniques. Elsevier, 1992.

[12] M. Hall et al. The weka data mining software: an up-
date. ACM SIGKDD explorations newsletter, 11(1):10–
18, 2009.

[13] Q. Ho et al. More effective distributed ml via a stale
synchronous parallel parameter server. In NIPS, pages
1223–1231. 2013.

[14] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J.
Franklin, and M. I. Jordan. Mlbase: A distributed
machine-learning system. In CIDR, volume 1, pages
2–1, 2013.

[15] H.-T. Kung and J. T. Robinson. On optimistic methods
for concurrency control. ACM TODS, 6(2):213–226,
1981.

[16] H. Li, A. Kadav, E. Kruus, and C. Ungureanu. Malt:
distributed data-parallelism for existing ml applications.
In EuroSys, 2015.

[17] M. Li et al. Scaling distributed machine learning with
the parameter server. In OSDI, pages 583–598, 2014.

[18] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Srid-
har. An asynchronous parallel stochastic coordinate
descent algorithm. Journal of Machine Learning Re-
search, 16(285-322):1–5, 2015.

[19] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E.
Guestrin, and J. Hellerstein. Graphlab: A new frame-
work for parallel machine learning. arXiv preprint
arXiv:1408.2041, 2014.

[20] X. Pan et al. Scaling up correlation clustering through
parallelism and concurrency control. In DISCML work-
shop at NIPS, 2014.

[21] X. Pan, J. E. Gonzalez, S. Jegelka, T. Broderick, and
M. I. Jordan. Optimistic concurrency control for dis-
tributed unsupervised learning. In NIPS, pages 1403–
1411. 2013.

[22] X. Pan, S. Jegelka, J. E. Gonzalez, J. K. Bradley, and
M. I. Jordan. Parallel double greedy submodular maxi-
mization. In NIPS, pages 118–126, 2014.

[23] X. Pan, M. Lam, S. Tu, D. Papailiopoulos, C. Zhang,
M. I. Jordan, K. Ramchandran, C. Re, and B. Recht.
Cyclades: Conflict-free asynchronous machine learning.
In NIPS. 2016.

[24] X. Pan, D. Papailiopoulos, S. Oymak, B. Recht, K. Ram-
chandran, and M. I. Jordan. Parallel correlation clus-
tering on big graphs. In NIPS, pages 82–90. 2015.

[25] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In NIPS, pages 693–701. 2011.

[26] J. Stamper, A. Niculescu-Mizil, S. Ritter, G. Gor-
don, and K. Koedinger. Challenge data set from
kdd cup 2010 educational data mining challenge, 2010.
[https://pslcdatashop.web.cmu.edu/KDDCup/].

[27] A. Talwalkar, T. Kraska, R. Griffith, J. Duchi, J. Gonza-
lez, D. Britz, X. Pan, V. Smith, E. Sparks, A. Wibisono,
et al. Mlbase: A distributed machine learning wrapper.
Big Learning Workshop at NIPS, 2012.

[28] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,
and D. J. Abadi. Calvin: fast distributed transactions
for partitioned database systems. In SIGMOD, 2012.

[29] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In SOSP, pages 18–32, 2013.

143

	COP: Planning Conflicts for Faster Parallel Transactional Machine LearningFaisal Nawab, Divy Agrawal, Amr El Abbadi, Sanjay Chawla

