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ABSTRACT

This research presents an advanced MapReduce-based parallel so-
lution to efficiently address spatial skyline queries on large datasets.
In particular, given a set of data points and a set of query points, we
first generate the convex hull of the query points in the first MapRe-
duce phase. Then, we propose a novel concept called independent
regions, for parallelizing the process of spatial skyline evaluation.
Spatial skyline candidates in an independent region do not depend
on any data point in other independent regions. Thus, we calcu-
late the independent regions based on the input data points and the
convex hull of the query points in the second phase. With the in-
dependent regions, spatial skylines are evaluated in parallel in the
third phase, in which data points are partitioned by their associated
independent regions in the map functions, and spatial skyline can-
didates are calculated by reduce functions. The results of the spatial
skyline queries are the union of outputs from the reduce functions.
Due to high cost of the spatial dominance test, which requires com-
paring the distance from data points to all convex points, we pro-
pose a concept of pruning regions in independent regions. All data
points in pruning regions can be discarded without the dominance
test. Our experimental results show the efficiency and effectiveness
of the proposed parallel spatial skyline solution utilizing MapRe-
duce on large-scale real-world and synthetic datasets.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Application—spatial

databases

Keywords
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1. INTRODUCTION
Since the skyline operator was introduced into database research

[4], a number of efficient algorithms have been proposed for the
skyline evaluation. Bitmap [25], Index [25], NN (Nearest Neigh-
bor) [16] and BBS (Branch-and-Bound Skyline) [19] rely on in-
dices constructed before query processing; while BNL (Block Nested
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Loop) [4], D&C (Divide and Conquer) [4], SFS (Sort Filter Sky-
line) [7], and OSPS (Object-based Space Partitioning Skyline) [32]
use non-index techniques. Moreover, several studies primarily fo-
cus on the skyline query in a variety of problem settings (data re-
siding in a data stream [22] or on mobile devices [14]).

As a novel type of skyline queries, Spatial Skyline Query (SSQ)
was proposed to consider the preference of both static and dy-
namic object attributes in multi-criteria decision-making applica-
tions [23]. Unlike skyline queries that only take static object at-
tributes (e.g., rating and price of restaurants) into account, the dis-
tance between objects is also calculated as dynamic attributes in
the spatial skyline queries. In particular, given a set of data points
P and a set of query points Q in a d-dimensional space, spatial
skyline queries return a subset of P , in which data points are not
spatially dominated by other data points in P . The spatial domi-
nance is defined by using the distance from data points to all query
points.

Spatial skyline query is applicable to many applications. Take
crisis management applications as an example, we assume that a
number of waterborne infectious disease cases were confirmed at
different locations, people who live at spatial skyline places with
respect to those locations should be alerted and examined first, be-
cause there might be higher possibility that these people may have
been exposed to contagious water. Travel planning applications
are another type of example. People may prefer the spatial skyline
hotels with respect to fixed locations of beaches and museums for
their vacation. In this case, people would not like to choose a hotel,
which is farther from all interesting attractions than other hotels.
One more example of spatial skyline query is that people may plan
to have dinner with their friends at weekends. They may consider
the distance from their homes to the restaurant for the restaurant se-
lection. The restaurants far from all of their homes would not be in
the candidate list, because they may want to save time on the road.
Thus, giving a list of spatial skyline restaurants is the first step of
the restaurant selection.

Two index-based algorithms were proposed to efficiently address
the spatial skyline queries [23]. Branch and Bound Spatial Skyline
B2S2 algorithm searches spatial skyline candidates by visiting an
R-tree from top to bottom. Once a spatial skyline is found, B2S2

expands the R-tree to access the node which has minimum mindist
value, and compares it with all spatial skyline candidates found so
far in spatial dominance test. The other method, Voronoi-based
Spatial Skyline V S2 algorithm relies on a Voronoi diagram created
over input data points. V S2 starts with the closest data points to
query points, searches in the space by visiting the neighbors of vis-
ited data points over the Voronoi diagram. Due to high cost of the
spatial dominance test, V S2 was improved by reducing the num-
ber of spatial dominance tests in [24]. In the method, seed skyline
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points (a subset of spatial skyline points) can be identified with spa-
tial dominance test.

However, the following problems motivate us to propose a novel
parallel solution for spatial skyline evaluation. Firstly, as data grows
rapidly, addressing skyline queries on large-scale datasets in a single-
node environment becomes impractical. There are increasing num-
ber of approaches proposed for processing skyline queries in dis-
tributed and/or parallel environments [13]. But none of parallel
spatial skyline solutions were observed in literature. Secondly, the
distance between moving objects may keep changing. If indices
are created at a preprocessing stage, the cost of index maintenance
would be unacceptably high. Thirdly, MapReduce framework has
been incorporated into parallel solutions for skyline computation
[17] [20] [31] and other database applications [30] [26] [18].

Therefore, we propose a novel three-phase MapReduce-based
solution, which is able to efficiently address spatial skyline queries
on large-scale datasets in this paper. In particular, given a set of
data points and a set of query points, we calculate the convex hull
of the query points in the first phase. Initially, the query points are
evenly partitioned. Each map function accepts a subset of query
points, and outputs a local convex hull. Then, the reduce function
produces the global convex hull by merging the intermediate results
from the map functions. A filtering method can be applied to filter
out unqualified data points before the convex hull computation. For
example, CG_Hadoop uses skyline algorithms as a filtering method
in convex hull evaluation [11]. Moreover, to parallelize the spatial
skyline computation, we propose a novel concept, independent re-
gions, in each of which spatial skylines do not depend on any data
point outside the independent region. If data points do not fall in
any independent region, they can be discarded because they must
be spatially dominated by other data points. Thus, our solution
produces the independent regions at the second phase. Each map
function receives a subset of data points and the convex hull of
query points, and generates locally optimized independent regions.
Then, the reduce functions output globally optimized independent
regions.

With the independent regions in the third phase, map functions
associate data points with their independent regions. By using the
unique identifiers of independent regions as keys, all data points in
an independent region are sent to a reducer after the shuffle phase,
and reduce functions find the spatial skylines in independent re-
gions in parallel. Due to high cost of the spatial dominance test,
which requires comparing the distance from data points to all con-
vex points, we propose a novel concept, pruning regions, in inde-
pendent regions. The pruning regions are the areas in which all data
points are dominated by other data points. Thus, since a pruning
region is defined by a data point, a convex point, and its adjacent
convex points, if a data point is in a pruning region, the data point
can be discarded without accessing all convex points and calcu-
lating the distance from the data point to them. In addition, a data
point may fall in more than one independent regions, and there may
exist duplicates in spatial skyline candidates. We employ an elimi-
nation method in our solution to remove the duplicates with subtle
overhead.

In short, the contributions of this study are summarized below:

1. We propose a parallel scheme to efficiently evaluate spatial
skyline queries on large datasets using MapReduce.

2. We introduce a concept of independent regions in our solu-
tion. The spatial skyline candidates in an independent region
do not depend on any data points in other independent re-
gions. With the feature of the independence, spatial skyline
queries can be addressed in parallel.

3. We present a concept of pruning regions in independent re-
gions, in order to minimize the cost of the dominance test by
avoiding the computation of distance from data points to all
convex points.

4. We evaluate the performance of the proposed solution through
extensive experiments with large-scale real-world and syn-
thetic datasets.

The rest of this paper is organized as follows. Section 2 surveys
related works. The spatial skyline queries and relevant techniques
utilized in our solutions are formally defined in Section 3. In Sec-
tion 4, our advanced solution is presented. The experimental val-
idation of our design is presented in Section 5. We conclude the
paper in Section 6.

2. RELATED WORK
In this section, we review previous works related to spatial sky-

line queries and parallel solutions for general skyline queries.

2.1 Spatial Skyline Queries
As a special case of dynamic skyline queries, Spatial Skyline

Queries (SSQ) can be addressed by Block Nested Loop (BNL) [4]
and Branch-and-Bound Skyline algorithms (BBS) [19]. In a dy-
namic skyline query, each object is mapped to another search space
by using pre-defined functions. All the objects that are not dom-
inated by other objects in the search space after the mapping are
returned from the dynamic skyline queries. BNL algorithm can ad-
dress the dynamic skyline queries, because it compares every pair
of objects in the input dataset, and eliminates the ones that are dom-
inated by any other objects. BNL does not need indices and is ef-
ficient over small datasets. But it suffers from I/O access when the
input datasets become large. If the size of skyline candidates ex-
ceeds the size of available memory space, all the candidates have
to be written to a temporary data stream, and read back when they
are needed in the next iteration of object comparison. BBS relies
on an R-tree to evaluate the general skyline queries; it calculates
the mindist of intermediate entries in the R-tree, and searches the
space by expanding the entry with the smallest mindist. However,
BBS does not consider the relation between the input query points
and data points.

Motivated by the inefficiency of BNL and BBS, a Branch-and-
Bound Spatial Skyline (B2S2) algorithm and a Voronoi-based Spa-
tial Skyline (V S2) algorithm were proposed for spatial skyline eval-
uation [23]. In addition to considering the properties of the convex
hull generated by input query points, B2S2 searches the space by
visiting an R-tree from top to bottom. Once the first spatial sky-
line is found, B2S2 expands the R-tree with the node which has
the minimum mindist value, and checks the dominance between
the visited node and all spatial skyline candidates found so far. The
process continues until all intermediate nodes potentially contain-
ing spatial skylines have been visited. On the other hand, V S2

builds a Voronoi diagram over input data points. The input data
points are organized by their Hilbert values in pages in order to
preserve their locality. After completion of convex hull calcula-
tion, V S2 starts with the closest data points to the query points, and
searches the space by visiting the neighbors of visited data points
over the Voronoi diagram. For every visited data point, V S2 com-
pares it with all spatial skylines found so far for spatial dominance
test. The process continues until all Voronoi cells (or data points)
that potentially contain spatial skylines have been visited. Inspired
by high cost of the spatial dominance test, V S2 was improved by
reducing the number of spatial dominance tests [24]. In addition
to applying sorting techniques, the method is able to identify seed
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skyline points (a subset of spatial skyline points) without domi-
nance test. Given a set of query points Q and a set of data points P ,
let V (pi) be the Voronoi cell of data point pi ∈ P , the seed skyline
points are the points pi that V (pi) intersect with the boundary of
the convex hull of Q or is inside the convex hull. However, none of
the aforementioned methods can address the spatial skyline query
in parallel. B2S2 requires a pre-structured R-tree and V S2 needs
to build a Voronoi diagram over input data points. Extending their
methods to a distributed and/or parallel environment is non-trivial.

2.2 Parallel Skyline Solution
Due to high cost of skyline evaluation, a number of advanced so-

lutions have been proposed to evaluate the general skyline queries
in a distributed and/or parallel environment. Balke et al. developed
a parallel skyline solution over distributed environments [3]. Their
method first vertically partitions input datasets in such a manner
that each partition keeps object attributes in one dimension. Then,
the skyline objects are calculated in parallel, and reported to a cen-
tral point for a final dominance check. Wu et al. designed a parallel
skyline method that leverages content-based data partitioning [28].
Their method can avoid unnecessary data access and can progres-
sively produce skylines by using recursive region partitioning and
dynamic region encoding mechanisms. Moreover, the incremen-
tal scalability is also provided in such a manner that workload can
be automatically balanced by distributing objects to new nodes. In
addition to random data partitioning methods that can generate sim-
ilar data distribution in each partition [8] and grid-based data par-
titioning methods that consider object proximity [2] [21], Vlachou
et al. proposed an angle-based data partitioning method that parti-
tions objects by their angular coordinates [27]. The average prun-
ing power of objects within a partition can be increased and the
number of skyline objects in local skyline calculation can be mini-
mized by applying the angle-based partitioning method. Köhler et

al. designed a hyperplane-based data partitioning method in order
to minimize the local skylines in a partition and achieve efficient
local skyline merging [15]. Moreover, a variety of MapReduce-
based parallel solutions have been proposed for skyline queries and
other database applications. Han et al. proposed an advanced sky-
line algorithm that utilizes Sorted Positional Index Lists (SSPL) to
reduce I/O cost [12]. Zhang et al. implemented BNL, SFS, and
Bitmap algorithms using MapReduce framework [29]. Chen et al.

applied an angular data partition in their MapReduce-based solu-
tion for skyline query evaluation [6]. Eldawy et al. developed
CG_Hadoop, a suite of MapReduce algorithms, to solve funda-
mental computational geometry problems, which include convex
hull computation [11]. Mullesgaard et al. investigated the gen-
eral skyline queries by using the MapReduce framework. Their
method uses bit strings to represent the dominance relation of at-
tributes, and generates independent partition groups for calculating
local skyline objects in parallel [17]. Zhang et al. proposed an effi-
cient parallel skyline solution using MapReduce, in which a Partial-
presort Grid-based Partition Skyline (PGPS) algorithm was devel-
oped to significantly improve the merging skyline computation on
large datasets [31]. More importantly, PGPS can be easily incorpo-
rated in the shuffle phase of the MapReduce framework with minor
overhead. However, our proposed solution targets on spatial sky-
line queries, which are different from the general skyline queries.
None of the partition schemes or computation algorithms above
could address the spatial skyline problem. Therefore, we propose
a novel partition method and a parallel algorithm which includes
independent regions to parallelize the spatial skyline computation
and pruning regions to reduce the cost of spatial dominance test.

Table 1 Symbolic notations.

Symbol Meaning

P , Q a set of data points and a set of query points
p, q a data point and a query point

p.xi the value of data point p in the ith dimension

Rd a d-dimensional space
h a hyper-place
S a half-space
F a facet of a convex hull

A
△
q a set of adjacent convex points of q

p ≺Q p′ p spatially dominates p′ with respect to Q
SSKY (P,Q) spatial skylines of P with respect to Q

CH(Q) the convex hull of Q
DR(p,Q) the dominator region of p with respect to Q
PR(p, q) the pruning region generated by p and q
IR(p, q) the independent region generated by p and q
IRP Independent Regions Pivot, the independent regions

are generated by IRP
lssky a set of local spatial skyline candidates
chsky a set of spatial skyline candidates in a convex hull

3. PRELIMINARIES

3.1 Problem Statement
Given a dataset P in a d-dimensional space Rd, an object p ∈ P

can be represented as p = {x1, x2, ..., xd} where p.xi is the value
of the object on the ith dimension. D(., .) denotes a distance met-
ric that obeys the triangle inequality in Rd. The spatial dominat-
nce relationship and the spatial skyline operator are defined as fol-
lows [23]. All notations used in this paper are summarized in Ta-
ble 1.

Definition (Spatial Domination) Given a set of query points Q,
and two data points p and p′ in Rd, p spatially dominates p′ with
respect to Q, denoted by p ≺Q p′, if ∀ q ∈ Q, D(p, q) ≤ D(p′, q)
and ∃ q′ ∈ Q, D(p, q′) < D(p′, q′).

Definition (Spatial Skyline) Spatial skylines of a set of data points
P with respect to a set of query points Q in Rd, denoted by SSKY (P ,
Q), are a set of data points in P , which are not spatially dominated
by any other data point in P with respect to Q.

SSKY (P,Q) = {p ∈ P | ∄ p′ ∈ P, p 6= p′, p′ ≺Q p} (1)

PROPERTY 1. If any data point p ∈ P is a spatial skyline point

with respect to a subset of query points Q′ ⊂ Q, then p is also a

spatial skyline point with respect to Q [23].

PROPERTY 2. The set of spatial skyline points of data points

P does not depend on any non-convex query points q ∈ Q, q /∈
CH(Q), where CH(Q) indicates the convex hull of Q [23]. In

other words,

SSKY (P,Q) = SSKY (P,CH(Q)) (2)

Definition (Dominator Region) Given a data point p ∈ P , a set
of query points Q, and hyper-spheres that center at qi with ra-
dius D(p, qi), qi ∈ Q, any data point inside the intersection of
the hyper-spheres spatially dominates p with respect to Q. The in-
tersection area that potentially contains data points spatially domi-
nating p with respect to Q is referred to as the dominator region of
p, denoted by DR(p,Q).

Dominator Region enables our solution to efficiently eliminate
data points by reducing the search space of data points. For ex-
ample, Figure 1 displays dominator region of a data point p and
a set of query points Q. Q has three query points q1, q2, and q3,
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Figure 1: An example of

DR(p, {q1, q2, q3}) in a 2-

dimensional space.
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Figure 2: An example of In-

dependent Regions in a 2-

dimensional space.

which represent a convex hull in a 2-dimensional space. Three cir-
cles centered at qi ∈ Q with radius D(qi, p) are created in order to
highlight the dominance areas of p with respect to the query points.
Any data point p′ in the intersection of the three circles spatially
dominates p with respect to Q.

3.2 Convex Hull and Spatial Skyline Queries
Given a set of query points Q in a d-dimensional space Rd, the

convex hull of Q, denoted by CH(Q), is the smallest convex poly-
tope that contains all query points in Q. Theoretically, a convex hull
can be represented as either a set of convex points or the intersec-
tion of a set of half-spaces. Each half-space contains all the query
points in Q. Moreover, a convex hull can also be abstracted by a set
of facets and their adjacency relationships. Each facet can be de-
fined by a number of convex points. For example, a facet (line) can
be determined by two adjacent convex points in a 2-dimensional
space. The facets become planes that can be represented by a con-
vex point and its two adjacent convex points in a 3-dimensional
space. Because the facets of CH(Q) separate the query points in
Q from any point outside the convex hull, connecting a data point v
outside CH(Q) with any data point in CH(Q) must intersect with
at least one facet of the convex hull. Thus, the facet is referred to
as a visible facet from v.

The properties of convex hull provide opportunities to optimize
the process of spatial skyline evaluation by reducing the search
space of both data points and query points. Given a set of data
points P and the convex hull of a set of query points Q, all data
points inside CH(Q) are spatial skylines of P with respect to
Q [23]. Given two data points, if they are in the convex hull, the
bisector hyper-plane of these two points partitions the space into
two half-spaces, and there must exist convex points in either half-
space. Thus, neither of the two data points can spatially dominate
the other, and both of them are spatial skylines. If one point p1 is
in the convex hull and the other p2 is not, then, the bisector line of
p1 and p2 partitions the space into two half-spaces, and there must
exist a convex point in the same half-space with p1. If the convex
point does not exist, the convex hull cannot contain p1, which con-
tradicts with our assumption. Thus, p1 is not spatially dominated
by p2. These two cases are summarized in Property 3.

PROPERTY 3. Given a set of data points P and a set of query

points Q, if any point p ∈ P is inside the convex hull of Q, then p
is a spatial skyline of P with respect to Q (p ∈ SSKY (P,Q)).

3.3 MapReduce Overview
MapReduce was proposed as a generic programming model for

data-intensive applications in distributed environments [10]. The
framework provides two simple primitives, map and reduce func-
tions, and allows developers to mainly focus on their functionality.
The task scheduling, load balancing, and other issues are encapsu-

lated in the MapReduce framework, which significantly reduces the
difficulty of the development of parallel applications. Driven by the
MapReduce framework, map functions receive data in key/value
pairs from input streams and output intermediate results in another
type of key/value pairs. Then, reduce functions retrieve the inter-
mediate results and write final results to an output stream. In the
shuffle phase, the intermediate results are automatically grouped
and sorted by the MapReduce framework, The two primitives can
be represented as: map(K1, V1) → list(K2, V2) and reduce(K2,
list(V2)) → list(K3, V3).

4. DESIGN
In this section, we propose our advanced parallel spatial sky-

line solution using MapReduce. First of all, we briefly present the
framework of the solution. Then, our spatial skyline algorithm is
illustrated in detail in Section 4.2. The concepts of independent re-
gions and pruning regions are introduced to optimize the process of
spatial skyline evaluation. Finally, we discuss three critical imple-
mentation issues in our solution.

4.1 Framework Overview
Our solution consists of three MapReduce phases, which receive

a set of data points P and a set of query points Q as inputs, and out-
put spatial skyline points of P with respect to Q. As illustrated in
Figure 3, we calculate the convex hull of Q in the first MapReduce
phase. Q is initially partitioned into subsets of equal size, and each
map function finds the local convex hull of query points in a subset.
Then, a reduce function generates the global convex hull of Q by
merging the local convex hulls. Convex hull algorithm like Graham
scan could be employed in each map and reduce function [5]. Due
to high complexity of convex hull computation, a filtering method
can be used to filter out unqualified points with lower cost. For ex-
ample, Eldawy et al. observed that the convex points must be at
least one of four types of skyline points of Q (max-max, min-max,
max-min, and min-min) in a 2-dimensional space, and applied sky-
line algorithms as a filtering step in their CG_Hadoop system [11].

An intuitive spatial skyline method requires to examine the spa-
tial dominance between every pair of data points. Sharifzadeh and
Shahabi utilized the R-tree and Voronoi diagram as indices in their
B2S2 and V S2 algorithms [23]. Son et al. enhanced V S2 by re-
ducing the number of dominance tests [24]. However, extending
these methods to a parallel solution is non-trivial. Efficiently main-
taining indices over data in a distributed and/or parallel environ-
ment requires expertise and extensive experience. To address this
issue, we propose a novel concept, independent regions, in each of
which spatial skyline points do not depend on any data points out-
side the independent region. With the independence, the input data
points can be partitioned by their independent regions, and spatial
skyline points can be calculated in parallel. Therefore, after the
completion of convex hull computation, we calculate the indepen-
dent regions based on the convex hull and the input data points P
in the second phase. Each map function takes a subset of P and the
convex hull of Q as inputs, and outputs a locally optimal Indepen-

dent Region Pivot (See Figure 2, the independent regions are de-
termined by the independent region pivot and convex points). Then
a reduce function produces a globally optimal independent region
pivot by merging the intermediate results. More details of indepen-
dent region pivot selection will be discussed in Section 4.3.1. In the
third phase, P is initially partitioned, and each map function finds
the independent regions of data points in a split. The output of the
map functions can be represented as < IR.id, p >, where IR.id
denotes the unique identifier of the independent region associated
with a data point p. There are three possible cases: (1) data points
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First Map-Reduce Phase Third Map-Reduce Phase
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...
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Locally Optimized 
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Locally Optimized 

Independent Region

...
Globally Optimized 

Independent Regions

Second Map-Reduce Phase

Map Reduce

Figure 3: An overview of the parallel spatial skyline processing using MapReduce.

are eliminated if they are outside all independent regions; (2) data
points are marked and output as spatial skylines by mappers and
reducers if they are inside the convex hull of Q. These data points
are needed in reduce functions, because they may spatially dom-
inate data points in category 3; (3) data points are produced with
their associated independent regions if they fall in at least one in-
dependent region. These data points will be processed by reducers
to find spatial skylines in the independent regions. If a data point
is inside two or more independent regions, the map function will
produce a pair of < IR.id, p > for every associated independent
region. After the shuffle phase, data points in P are grouped by in-
dependent regions, and sent to reduce functions for spatial skyline
calculation in parallel. Finally, the global spatial skyline points are
the union of the output of reduce functions. A data point could be
associated with two or more independent regions, which may intro-
duce duplicates in the results. We design an elimination method to
remove duplicates in our solution. The method will be presented in
Section 4.3.3.

Figure 2 shows an example of spatial skyline query over three
query points and eight data points (Q={q1, q2, q3, q4}, P={p1,
..., p8}). First of all, the convex hull of query points (CH(Q)) is
generated in the first MapReduce phase. Then, the globally op-
timal independent region pivot is found by using P and CH(Q)
in the second MapReduce phase. Each mapper takes a split of P
and CH(Q) (a constant global variable), and selects a local opti-
mal independent region pivot, and a reducer outputs the globally
optimal pivot. In the third MapReduce phase, each mapper re-
ceives a split of P , and the pivot and CH(Q) (as two constant
global variables), and produces object points with their associated
independent regions. In the example, there are three independent
regions ({IR(p1, q1), IR(p1, q2), IR(p1, q3)}). All the indepen-
dent regions can be calculated from the pivot and CH(Q) in map-
pers. Moreover, object points are associated with the independent
regions where they locate in. If we use ir1, ir2, and ir3 to de-
note IR(p1, q1), IR(p1, q2), and IR(p1, q3), then p1 is associated
with ir1, p5 is associated with ir2 and etc. After the shuffle phase,
< ir1, p1 >, < ir1, p2 >, < ir1, p3 >, and < ir1, p8 > are
grouped and sent to the first reducer, < ir2, p1 >, < ir2, p5 >,
and < ir2, p6 > are passed to the second reducer, and < ir3, p1 >
< ir3, p4 > < ir3, p5 > are processed in the third reducer. In
this case, p1 is a special object point, which is in all three inde-
pendent regions. As we will discuss our elimination method in
Section 4.3.3, p1 will be only output by the first reducer. Thus, the
first reducer outputs p1, p2 and p8 as spatial skylines and discards
p3 because it is dominated by p8. The second reducer produces
p5, p6. The third reducer does not output any object because p4 is
eliminated in the spatial dominance test and p5 has been produced
in the second reducer. Finally, the result of the spatial skyline query
is the union of the results of reducers, which are {p1, p2, p5, p6,
p8}.

4.2 Spatial Skyline Calculation
In the second and third MapReduce phases, we generate inde-

pendent regions based on the convex hull of Q and a set of data
points P for spatial skyline computation in parallel. In this subsec-
tion, we first provide a formal definition of an independent region.
Due to high cost of the spatial dominance test that requires compar-
ing the distance from data points to all convex points, we introduce
pruning regions in independent regions. A pruning region can be
defined by a data point inside CH(Q), a convex point, and its adja-
cent convex points. If a data point is in a pruning region, the point
can be discarded without the dominance test.

Definition (Independent Region) Given a data point p and a set of
query points Q in a d-dimensional space, we define an Independent

Region of p and qi, qi ∈ Q as a sphere centered at qi with radius
D(p, qi). An Independent Region Group (IRG) of p with respect
to Q is the union of the independent regions, as shown in Figure 2.

IRG(p,Q) =
⋃

qi∈Q

IR(p, qi), where

IR(p, qi) = {l| D(l, qi) ≤ D(p, qi)}

(3)

We define data point p as the Independent Region Pivot of IRG(p,Q)
as shown in Figure 2.

With the definition of the independent region, we provide the
independence of spatial skylines as follows.

THEOREM 4.1. Given a data point p and its independent re-

gions {IR(p, qj) | qj ∈ CH(Q)}, where CH(Q) is the convex

hull of query points Q, ∀ qj ∈ CH(Q), any data point p′ ∈
IR(p, qj) is not dominated by any data point p′′ /∈ IR(p, qj).

PROOF. The proof is by contradiction. Assume that ∃ p′ ∈
IR(p, qj), p

′′ /∈ IR(p, qj), p
′′ ≺Q p′. By the definition of spatial

skyline, p′′ is spatially closer to any query point qi (qi ∈ Q) than
p. Since qj ∈ CH(Q), so qj ∈ Q as well. But according to the
definition of independent regions, D(p′′, qj) ≥ D(p′, qj) since p′′

is outside of IR(p, qj), which leads to a contradiction. Thus, this
concludes the proof.

The independent regions are determined by the independent re-
gion pivot and the convex hull of Q. The convex hull is uniquely
determined by input query points Q; however, theoretically, the
pivot can be arbitrarily selected. Since the independent regions
specify the search region that contains spatial skyline candidates,
an intuitive strategy of the data point selection is to select the data
point that minimizes the total volume of its independent regions.

Figure 2 displays an example that utilizes independent regions in
the spatial skyline evaluation in R2. The datasets P and Q consist
of 8 data points and 4 query points, respectively. q1, q2, and q3
are the convex points of the convex hull of Q. The three dashed
circles indicate three independent regions generated by p1 and the
convex points. In this example, P is partitioned into three sub-
sets, which are P1 = {p1, p2, p3, p8}, P2 = {p1, p4, p5} , and
P3 = {p1, p5, p6}. p1 and p8 are spatial skylines, because they are
in the convex hull [23]. p7 is outside all independent regions and
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can be discarded by mappers in the third phase. p5 is in IR(p1, q2)
and IR(p1, q3), thus p5 is associated with both independent re-
gions. Then, the spatial skylines in independent regions are cal-
culated independently. Figure 4 shows an example of the pruning
region in IR(p1, q1) (the formal definition of pruning regions will
be presented in Section 4.2.1). p8 is a data point that is closer to q1
than p1. Thus, we create a pruning region PR(p8, q1) (highlighted
in gray) in IR(p1, q1) to filter out data points dominated by p8. In
the example, p3 falls in PR(p8, q1), and can be discarded without
being compared with p2. Thus, p2 is the only data point requiring
spatial dominance test, comparing its distance to all convex points
with the one of p8. Our spatial skyline algorithm will be presented
in Section 4.2.2.

4.2.1 Pruning Regions in Independent Regions

In the third MapReduce phase, a reduce function calculates spa-
tial skylines of a set of data points in an independent region. In
particular, the data points are comparing their distances to all con-
vex points of CH(Q) with all other data points (spatial skylines do
not depend on non-convex points [23]), and the ones are discarded
if they are spatially dominated in the same independent region. The
data point comparison would be expensive when the number of
convex points of CH(Q) becomes large. Thus, to minimize the
cost of the dominance test, we propose a pruning method that is
able to efficiently filter out unqualified data points without access-
ing all convex points of CH(Q). This method defines a pruning
region in each independent region; if data points fall in the pruning
region, they can be discarded because there must exist a data point
dominating these data points. We will first illustrate the pruning
regions in a 2-dimensional space, and then provide a formal defini-
tion and proof of the pruning regions in high-dimensional spaces.

Figures 6 and 7 show an example of a pruning region in R2.
Given a query point q, two data points p and v, let Lqx be a line
connecting q to any point x ∈ R2, and Lvq be the line of q and v.
We build a 2-dimensional Cartesian coordinate system, in which q
is the origin and Lqx is x axis. Lqx and Lvq partition R2 into two
half-spaces, denoted by S−

qx and S+
qx, and S−

vq and S+
vq , respec-

tively.

THEOREM 4.2. If p and v satisfy

(1) v ∈ S+
qx and p ∈ S−

qx

(2) v.x ≤ p.x

(3) D(v, q) > D(p, q)

(4)

then p spatially dominates v with respect to any point q∗, q∗ ∈
S−
qx

⋂

S+
vq .

PROOF. As a case of p.x ≥ 0 shown in Figure 6, the three con-
ditions indicate that (1) Lqx partitions v and p into two half-spaces,
v.y > 0, p.y < 0; (2) if we create a line Lpc perpendicular to Lqx,
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q3
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IR(p1, q2)
IR(p1, q1)

IR(p1, q3)

p5
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PR(p8, q1)

Figure 4: An example of Pruning

Regions in R2.
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Figure 7: An example of

PR(p, qi).

then v is at the left side of Lpc; (3) v is outside of the circle cen-
tered at q with radius D(p, q). The circle intersects with Lpc at p
and b.

Given any data point q∗ or q∗∗ in S−
qx

⋂

S+
vq (highlighted in

gray), Lvq∗ must intersect with either an arc from a to b (arcab)
or a line from b to c (Lbc). If Lvq∗ intersects with arcab at e, then
we can get D(p, q) = D(e, q) and p.x > e.x. Given a query point
qx = {q∗.x, 0} on Lqx, then

D(e, qx) =
√

(e.x− q∗.x)2 + (e.y)2

=
√

D(e, q)2 − 2 · (e.x) · (q∗.x) + (q∗.x)2

>
√

D(p, q)2 − 2 · (p.x) · (q∗.x) + (q∗.x)2

=
√

(p.x− q∗.x)2 + (p.y)2

= D(p, qx)

(5)

thus, D(p, qx) < D(v, qx). If qx is moved to q∗ (q∗.y < 0), then
D(p, q∗) < D(v, q∗) is also held. On the other hand, if Lvq∗∗

intersects with Lbc at e′, then D(p, q∗∗) < D(e′, q∗∗), because
Lqx is the bisector line of p and b, and both p and q∗∗ are in S−

qx.
Thus, D(p, q∗∗)<D(e′, q∗∗)≤D(v, q∗∗). We can get the similar
result in the case of p.x < 0. Therefore, p spatially dominates v
with respect to any query point in S−

qx

⋂

S+
vq .

In a 2-dimensional space, a convex hull is a convex polygon,
in which each convex point has two adjacent convex points. Fig-
ure 7 shows three convex points qi−1, qi, and qi+1 of a convex
hull CH(Q). qi−1 and qi+1 are adjacent to qi. Line segments
Lqiqi−1

and Lqiqi+1
are two visible facets from a data point v out-

side CH(Q) [9].

THEOREM 4.3. In a 2-dimensional space, given a query point

qi ∈ CH(Q) and a data point v outside CH(Q), let A△
qi be a set

of adjacent convex points of qi, and p be an invisible data point

from v. Each of the lines from p perpendicular to Lqiqj (qj ∈ A△
qi )

partitions the space into two closed half-spaces. Let S−

qiqj⊥
be the

half space containing qi. Then, any data point v outside CH(Q)
satisfying

(1) v ∈ S−

qiqj⊥
, qj ∈ A△

qi

(2) D(v, qi) > D(p, qi)
(6)

is spatially dominated by p with respect to Q.

PROOF. In Figure 7, Lab and Lcd are two lines from p perpen-
dicular to Lqiqi−1

and Lqiqi+1
, respectively. Lab, Lcd, and arcbc

separate v from the convex hull CH(Q). Lvqi partitions CH(Q)
into two closed half regions, G− and G+; all convex points are in
either G− or G+. If a convex point q∗ is in G−, we can easily get
D(p, q∗)<D(v, q∗) by using Theorem 4.2. The similar result can
be obtained in the case that any convex point q∗∗ is in G+. Thus, v
is spatially dominated by p with respect to Q.
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After an illustration of pruning regions in R2, we extend the
concept of pruning regions to high-dimensional spaces. In a d-
dimensional space, a convex hull of query points Q can be repre-
sented by a set of half-spaces H, where CH(Q) =

⋂

h+∈H h+.
The bisector hyper-plane of each half space contains a (d-1)- di-
mensional facet of the convex hull, which can be determined by a
convex point and a subset of its adjacent convex points. The formal
definition of the pruning regions is provided as follows.

Definition (Pruning Regions) In a d-dimensional space, given a
convex hull of query points CH(Q), a data point v outside CH(Q),
a visible convex point q, and an invisible data point p from v, let
A△

q be a set of adjacent convex points of q in facets, h⊥
qqj be the

(d-1)-dimensional hyper-plane that contains p and is perpendicular
to Lqqj , qj ∈ A△

q . h⊥
qqj partitions the space into two closed half-

spaces; the one containing q is denoted by S−

h⊥
qqj

. Then any data

point v outside CH(Q) satisfying

(1) v ∈ S−

h⊥
qqj

, qj ∈ A△
q

(2) D(v, q) > D(p, q)
(7)

is spatially dominated by p with respect to Q. The region contain-
ing all possible v is called a Pruning Region of p and q, denoted by
PR(p, q).

PROOF. The proof is by induction. The pruning region in a 2-
dimensional space has been proven in Theorem 4.3. We assume
that the pruning region is held in an (i-1)-dimensional space (i≥ 3),
then, in an i-dimensional space, since v is outside CH(Q), the line
connecting v with any convex point q∗ must intersect with a visi-
ble closed (i-1)-dimensional facet F of CH(Q). The hyper-sphere
centered at q with radius D(p, q) and h⊥

qqj (qj ∈ A△
q ) separate v

from CH(Q). If a ray from v to q∗ intersects with the hyper-sphere
at e earlier than any h⊥

qqj (qj ∈ A△
q ), then given any convex point

qk ∈ A△
q , we can build an i-dimensional Cartesian coordinate sys-

tem, in which F is a hyper-plane (xi = 0), v.xi > 0, p.xi < 0,
and Lqqk (Lqqk ∈ F ) is x axis. Any query point on Lqqk can be
represented by {x1, 0, ..., 0}. Since D(e, q) = D(p, q) and e.x1 <
p.x1, given any query point qx on Lqqk , we can get

D(e, qx) =
√

(e.x1 − qx.x1)2 +D(e, Lqqk )
2

=
√

D(e, q)2 − 2 · (e.x1) · (qx.x1) + (qx.x1)2

>
√

D(p, q)2 − 2 · (p.x1) · (qx.x1) + (qx.x1)2

=
√

(p.x1 − qx.x1)2 +D(p, Lqqk )
2

= D(p, qx)

(8)

where D(e, Lqqk ) denotes the distance from e to the line Lqqk .
Thus, we can get that, given any query point q′ satisfying D(p, q′)
≤ D(e, q′), if q′ is moved to q′′ on any of the directions from q to its
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Figure 8: An example of visi-

ble facets of a convex hull in a 3-

dimensional space.
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Figure 9: An example of a visi-

ble facet after a coordinate trans-

formation.

adjacent convex points in F , D(p, q′′) < D(e, q′′) is also held. So, p
is closer to any query point in F than e. Since, v.xi > 0, p.xi < 0,
and q∗.xi < 0, so D(p, q∗) < D(v, q∗). On the other hand, if a
ray from v to q∗ first intersects with h⊥

qqk at e′, let q⊛ be the center

of the intersection of h⊥
qqk and the hyper-sphere centered at q with

radius D(p, q), h⊥
qqk is an (i-1)-dimensional hyper-plane, in which

D(e′, q⊛) > D(p, q⊛), and e′ ∈ S−
hqqt

, qt 6= qk, qt, qk ∈ A△
q ,

which satisfies the conditions in an (i-1)-dimensional space. Thus,
D(p, q⊛) < D(e′, q⊛); then D(p, q∗) < D(e′, q∗) ≤ D(v, q∗).
Therefore, this concludes the proof.

Figure 8 shows an example of the convex hull of query points
Q in a 3-dimensional space. v is a data point outside the convex
hull. The line Lvwe intersects with a visible facet F at e. F can be
determined by three convex points qi−1, qi, and qi+1. After a coor-
dinate transformation, F is transformed to be on plane Z (z = 0),
v.z > 0, and p.z < 0, as displayed in Figure 9. Lqiqi+1

is the x
axis in plane Z. The area invisible from v, including p, is high-
lighted in gray. Two hyper-planes h⊥

qiqi−1
and h⊥

qiqi+1
perpendic-

ular to Lqiqi−1
and Lqiqi+1

are highlighted in red. qi+1 and qi−1

are two elements of A△
qi . If a ray from v to q∗ first intersects with

the sphere centered at qi with radius D(p, qi) at e, then according
to Equation 8, we can get that given any point q′ on Lqiqi+1

, q′.x
≥ qi.x, D(p, q′) ≤ D(e, q′), and moving the point on the direc-
tion from qi to qi+1 with distance △d (△d > 0) makes the point
closer to p than e. The similar result can be obtained on the di-
rection from qi to qi−1. Thus, any query point in the facet F is
closer to p than e. Moreover, e.z > 0, q.z < 0, and q∗.z < 0,
we can get that D(p, q∗) < D(e, q∗) < D(v, q∗). On the other
hand, if a ray from v to q∗∗ first intersects with h⊥

qiqi+1
at e′, then

e′.x = p.x, and D(e′, qi) > D(p, qi). Let q′i be the intersection of
Lqiqi+1

and h⊥
qiqi+1

, D(e′, q′i)>D(p, q′i). h
⊥
qiqi−1

intersects with

h⊥
qiqi+1

at a line, which contains p and partitions h⊥
qiqi+1

into two

closed half-spaces. q′i and e′ are in the same half space. By Theo-
rem 4.3, D(e′, q′i) > D(p, q′i). Therefore, D(v, q∗∗) ≥ D(e, q∗∗)
> D(p, q∗∗), and v is spatially dominated by p with respect to Q.

4.2.2 Spatial Skyline Algorithm

With the concept of pruning regions, we present our spatial sky-
line algorithm used in reduce functions of the third phase. The
input data points are grouped by their independent regions through
the shuffle phase, and unqualified data points outside independent
regions have been discarded in map functions. The fundamental
idea of our method is to first eliminate data points by using prun-
ing regions. If they are not in any pruning region, they are needed
to compare with all other potential spatial skyline candidates for
spatial dominance test.

The details of our method are described in Algorithm 1. The al-
gorithm receives all data points in an independent region IR(p, qi),
denoted by Pi, and the convex hull of query points Q. We use
chsky and lssky to keep local spatial skylines inside and outside
CH(Q), respectively. PR abstracts pruning regions of the spatial
skyline candidates. The union of chsky and lssky are output as
spatial skylines in the independent region, which is a subset of the
global spatial skylines of the query.

In particular, the algorithm first finds all the data points in CH(Q).
These data points are kept in chsky, and used to build pruning re-
gions PR (from lines 4 to 11). lssky temporarily maintains all
data points outside CH(Q). Then, each data point in lssky is vis-
ited for the dominance test (from lines 12 to 20). If a data point
falls in any pruning region, the data point will be removed from
lssky. If the data point is outside the pruning regions, it needs to
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Algorithm 1 Spatial Skyline Algorithm

Input: Pi, CH(Q)
Output: lssky ∪ chsky
1: lssky = ∅;
2: chsky = ∅;
3: PR = ∅;
4: for ∀p ∈ Pi do

5: if p is inside CH(Q) then

6: chsky = chsky ∪ {p};
7: PR = PR ∪ PR(p, qi);
8: else

9: lssky = lssky ∪ {p};
10: end if

11: end for

12: for ∀p ∈ lssky do

13: if p is in PR then

14: lssky = lssky - {p};
15: Continue;
16: end if

17: if ∃ p′ ∈ (chsky ∪ lssky), p′ 6= p, p′ ≺Q p then

18: lssky = lssky - {p};
19: end if

20: end for

21: return lssky ∪ chsky;

Level 0

Level 1

Level 2

Level 3

P1

P2P3

P4

Figure 10: An example of

Grid(lssky ∪ chsky).

Level 0

Level 1

Level 2

Level 3

DR(P1)

DR(P2)DR(P3)

DR(P4)

Figure 11: An example of

Grid(DR(lssky ∪ chsky)).

compare with all other data points in chsky and lssky, and will be
eliminated if it is dominated.

To minimize the cost of the dominance test in line 17, we use two
multi-level grids, Grid(lssky ∪ chsky) and Grid(DR(lssky ∪
chsky)), to maintain spatial skyline candidates and their domi-
nator regions (defined in Section 3.1). The two grids are always
synchronized; once there is a data point inserted into or removed
from Grid(lssky ∪ chsky), Grid(DR(lssky ∪ chsky)) is up-
dated accordingly. Figures 10 and 11 display an example of the
two grids. The cells at the bottom level keep the references of
spatial skyline candidates and their dominator regions; parent cells
maintain the proximity information of their child cells. In the dom-
inance test of a new data point p, we first check if p is dominated
by other data points. We calculate the dominator region of p, and
visit Grid(lssky ∪ chsky) from top to bottom to see if there is a
data point falling in the dominator region. The iteration can stop
at any intermediate level when either of the two conditions is sat-
isfied: (1) all cells intersecting with the dominator region do not
contain any data point (p is not dominated by spatial skyline can-
didates in lssky ∪ chsky); (2) a cell inside the dominator region
contains a data point (p is dominated by the data point). If p is not
dominated, then we visit Grid(DR(lssky ∪ chsky)) in a simi-
lar manner to see if p dominates any data point in lssky ∪ chsky.
If p falls in the dominator region of p′, then p′ and its domina-
tor region will be removed from both Grid(lssky ∪ chsky) and
Grid(DR(lssky ∪ chsky)).

4.3 Implementation Issues

In this subsection, we discuss three implementation issues in our
solutions.

4.3.1 Independent Region Pivot Selection

In the second MapReduce phase, the search space is partitioned
into a number of independent regions. The spatial skylines are cal-
culated in parallel by reducers in the third MapReduce phase. The
execution time of a parallel program is determined by the slowest
process, and the spatial skyline algorithm takes longer on larger in-
puts. Thus, distributing the data points to reducers in a balanced
manner is critical to our approach.

If the data points are uniformly distributed in the search space,
the number of data points in an independent region is proportional
to the volume of the independent region, which depends on the dis-
tance between the independent region pivot and the convex point.
Theoretically, the point with equal distance to all convex points is
the optimal independent region pivot, which could split data points
in equal size. But the optimal pivot may not exist in irregular con-
vex hull. Moreover, the point that minimizes the total volume of
independent regions would be an alternative optimal pivot. How-
ever, the cost of finding the point is expensive. Thus, we turn to
an approximation method in our implementation. After the convex
hull is calculated, we choose the center of the Minimum Bound-
ing Rectangle (MBR) of the convex hull as the independent region
pivot. The experimental results of varying independent region piv-
ots can be found in Section 5.6.

4.3.2 Independent Region Merging

In the third phase of our solution, a reducer processes data points
in an independent region. The number of reducers needed in the
spatial skyline calculation depends on the number of independent
regions or the number of convex points in the convex hull of query
points Q. Since the size of the convex hull would be large, the task
maintenance and communication overhead in MapReduce frame-
work would be unacceptably high.

Thus, there are two merging strategies that can be applied to our
proposed solution if the number of independent regions is much
greater than the number of available computing resources. In the
strategies, we assume that objects are uniformly distributed in the
search space. The smaller the total volume of independent regions
is, the less the number of objects are processed in spatial skyline
computation.

Shortest distance merging. In this method, we merge the clos-
est pair of two neighboring independent regions. The distance of
two independent regions is evaluated by the distance between the
centers of the independent regions. We assume that there is higher
possibility that two independent regions overlap with each other if
they are close. Merging two overlapped independent regions may
reduce the cost of spatial skyline computation for the following two
reasons: (1) the objects in the overlapping region are fed to one re-
ducer instead of two, which minimizes the total number of objects
in the spatial dominance test; (2) the pruning regions of the inde-
pendent regions are also merged; more objects could be eliminated
without the dominance test. Take Figure 5 for example, q1 and
q2 are the closest pair of convex points in the figure. IR(p1, q1)
and IR(p1, q2) are merged, and the new independent region is de-
noted by IR(p1, {q1, q2}). So, p3 and p8 are only processed by
the reducer, which receives IR(p1, {q1, q2}). The pruning region
of IR(p1, {q1, q2}) is PR(p1, q1) ∪ PR(p1, q2).

In our implementation, we iterate the convex hull in counter
clockwise order, and calculate the distance between every pair of
two consecutive independent regions. Let n be the number of com-
puting resources available to the spatial skyline evaluation and m
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be the number of convex points, we will merge the top m − n
(m ≥ n) closest pairs of the independent regions (the number
of pairs of independent regions is equal to the number of convex
points).

Threshold-based merging. An alternative strategy merges in-
dependent regions by considering the volume of the overlapping
region of two independent regions. In this method, we visit the
independent regions in counter clockwise order. Given two con-
secutive independent regions, we calculate the ratio of volume of
the overlapping region of the two independent regions to the vol-
ume of the smaller independent region. If the ratio is higher than
a specific threshold, the two independent regions will be merged.
Another difference from the first method is that two or more inde-
pendent regions may be merged if they are close to each other. The
ratio can be defined as follows.

ratio(q1, q2) =
V old(IR(p1, q1)) ∩ V old(IR(p1, q2))

V old(IR(p1, q2))
(9)

where IR(p1, q1) and IR(p1, q2) are two consecutive independent
regions, V old(IR(p1, q2)) denotes the volume of IR(p1, q2) in a
d-dimensional space, and V old(IR(p1, q1))≥ V old(IR(p1, q2)).

Moreover, the volume of the overlapping region of two inde-
pendent regions (two spheres) can be calculated as follows (See
Figures 12 and 13).

V old(IR(p1, q1) ∩ IR(p1, q2)) =∫ r1

u0

V old−1(h)du+

∫ r2

t0

V old−1(h)dt
(10)

where V old−1(h) denotes the volume of the sphere with radius h in

a (d-1)-dimensional space, h = (r21−u2)1/2 = (r22−t2)1/2. u0 and

t0 are the lower bounds of the integrals, where u0 =
r21−r22+D(q1,q2)

2

2D(q1,q2)

and t0 =
r22−r21+D(q1,q2)

2

2D(q1,q2)
. D(q1, q2) denotes the distance between

q1 and q2.
Figure 12 shows an example of the independent region merging

in a 2-dimensional space. Line lpp′ decomposes the overlapping
region into two sub-regions. The length of lpp′ is denoted by V 1(h)
= 2h. If we move lpp′ towards q1 and q2, respectively, then, the

volume of the two sub-regions is the sum of integral of V d−1(h)
in the overlapping area. In a d-dimensional space, lpp′ becomes a
sphere in a (d-1)-dimensional hyper-plane, and h is the radius of
the sphere.

In a 2-dimensional space, ratio(q1, q2) can be calculated as fol-
lows,

ratio(q1, q2) =
V ol2(IR(p, q1)) ∩ V ol2(IR(p, q2))

V ol2(IR(p, q1))

=

∫ r1
u0

(h)du+
∫ r2
t0

(h)dt

V ol2(IR(p, q1))

=
r2cos−1(

d2+r21−r22
2dr2

) + r1cos−1(
d2+r22−r21

2dr1
)

πr12

(11)

4.3.3 Duplicate Elimination

The third issue is that our solution may produce duplicates since
a data point may locate in two or more independent regions. If
the data point is a spatial skyline, it will be written to the results
of the query by multiple reducers. To eliminate the duplicates, we
associate a unique independent region identifier to each data point,
which indicates that the data point will be output as a spatial sky-
line by the reducer which processes data points in the independent
region. Reducers processing data points in other independent re-
gions will not output the data point even if it is a spatial skyline.
Take Figure 4 as an example, p5 is a data point in IR(p1, q2) and
IR(p1, q3). If the identifier of IR(p1, q2) is associated with p5,
and p5 is a spatial skyline, p5 is output only by the reducer process-
ing data points in IR(p1, q2).

5. EXPERIMENTAL VALIDATION
In this section, we evaluate the performance of the proposed

MapReduce-based solution over synthetic and real-word datasets.
Our proposed algorithm is denoted by PSSKY -G-IR-PR, which
combines the concepts of independent regions, pruning regions,
and multi-level grid data structure for efficient query evaluation.
Since none of the existing solutions can be easily extended to ad-
dress spatial skyline queries in parallel, we developed two single-
phase MapReduce-based solutions as baselines, PSSKY and
PSSKY -G. PSSKY applies a random data partitioning method
to split data points. Each mapper uses BNL to produce local spa-
tial skylines by comparing every pair of data points, and a reducer
merges the local results and outputs the global spatial skylines.
PSSKY -G works similarly to PSSKY except that PSSKY -
G utilizes multi-level grid data structure for efficient spatial domi-
nance test. Since all three solutions use the same algorithm in con-
vex hull computation, we will focus primarily on the investigation
of the overall performance of solutions and the effect of indepen-
dent regions and pruning regions on spatial skyline computation in
the second and third MapReduce phases. All solutions were imple-
mented in Java on Hadoop 2.6, which is an open source implemen-
tation of the MapReduce framework [1].

In the experiments, the real-word datasets were downloaded from
Geonames 1. We retrieved 11 million objects (streams, schools,
etc.) in the United States, and used them as data points and query
points. The data points in our synthetic datasets are randomly gen-
erated under uniform distribution in a 2-dimensional space. Simi-
larly with [23], the query points were also generated in a specified
region at the center of the search space. By default, there are 10
convex points in the convex hull of query points. The area covered
by the Minimum Bounding Rectangle (MBR) of query points is
fixed at 1% of the search space. The experiments were conducted
on a 12-node shared-nothing cluster. Each node is equipped with
19 Intel Xeon 2.2 GHz processors and 128 GBytes of memory. All
nodes are connected by GigaBit Ethernet network. All results were
recorded after the system model reached a steady state.

1http://www.geonames.org/
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Figure 14: The overall execution time of the three solutions by varying

dataset cardinality.

5.1 Scalability with Cardinality
First of all, we evaluate the effect of data cardinality on all three

solutions. We vary the cardinality of both synthetic and real-world
datasets from 100 to 500 million and 2 to 10 million data points,
respectively. As Figure 14 displays, the execution time of all solu-
tions increase when the datasets grow. The growth rate of PSSKY -
G-IR-PR over synthetic datasets is lower than PSSKY and PS
SKY -G. In addition, on average, PSSKY -G-IR-PR executes
around 90% faster than PSSKY and 32% faster than PSSKY -
G, respectively. The reason is that PSSKY -G-IR-PR is able to
parallelize the spatial skyline evaluation by applying the concept of
independent regions and efficiently filter out unqualified data points
in pruning regions. Moreover, a performance improvement was ob-
served when comparing PSSKY -G with PSSKY , because the
multi-level grid data structure is employed to efficiently access the
proximity information of data points for the dominance test.

5.2 Effect of Independent Regions and Prun-
ing Regions on Spatial Skyline Algorithms

To evaluate the effectiveness of independent regions and pruning
regions on the query evaluation, we compare the execution time of
spatial skyline computation in PSSKY -G-IR-PR (the execution
time of reducers in the third MapReduce phase) with the ones in
PSSKY and PSSKY -G. The cardinality of synthetic and real-
world datasets varies from 100 to 500 million and 2 to 10 million
data points.As Figure 15 shows, the execution time of all solutions
increase when the datasets grow. The execution time of PSSKY
increases rapidly due to high complexity of spatial skyline com-
putation. The growth rate of PSSKY -G-IR-PR is the lowest,
because all data points can be processed in parallel and a signif-
icant portion of data points can be discarded without dominance
test. Moreover, the reducer that merges spatial skylines becomes a
bottleneck in PSSKY and PSSKY -G, which consumes 50% to
90% of the total execution time over large synthetic and real-world
datasets.

5.3 Effect of Number of Nodes
We evaluate the speedup of proposed solutions by scaling up the

size of our cluster. The real and uniform datasets are fixed at 10
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Figure 15: The execution time of spatial skyline algorithms by varying

dataset cardinality.
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Figure 16: The number of dominance test by varying dataset cardi-

nality.

million and 100 million objects. The cardinality of cluster nodes
varies from 2 to 12.

In Figure 17, the execution time of all solutions drops as the size
of the cluster increases. As expected, PSSKY always consumes
more execution time than PSSKY -G and PSSKY -G-IR-PR
while scaling up the cluster. On average, PSSKY -G-IR-PR en-
joys the highest dropping rate. Take experiments on real world
data for example, PSSKY -G-IR-PR drops 34.35% when scal-
ing up to 8 nodes, PSSKY-G only drops 27%; the dropping rate
of PSSKY is constantly lower than 20% in all experiments. The
reason is that more map or reduce tasks can be executed in parallel
with more computing resources. However, even all three meth-
ods will take advantage of mapper parallelism, only reducers of
PSSKY -G-IR-PR run in parallel, because the global region is
partitioned into independent regions; the skyline results in each in-
dependent region do not depend on the ones in other independent
regions.

For both synthetic and real data, PSSKY -G-IR-PR performs
approximately 50% better than PSSKY -G and 80% better than
PSSKY in terms of execution time.

5.4 Effect of Pruning Regions
We also evaluate the effect of pruning regions by comparing the

number of dominance tests among three solutions. The cardinality
of synthetic and real-world datasets varies from 100 to 500 million
and 2 to 10 million data points. Figure 16 displays the number
of dominance test in the three solutions over the datasets. As ex-
pected, PSSKY always suffers from more dominance tests than
PSSKY -G and PSSKY -G-IR-PR. Using multi-level grid data
structure can reduce the cost of the dominance test, because, in-
stead of access all data points, PSSKY -G only needs to visit data
points in the cells that intersect with dominator regions of other
data points. Moreover, the effect of pruning regions can be ob-
served by comparing the results of PSSKY -G and PSSKY -G-
IR-PR. Although data points locating at two or more independent
regions may introduce subtle overhead in data point comparison,
PSSKY -G-IR-PR can save more time in the dominance test by
utilizing the concept of pruning regions. According to our experi-
ments, there are a small number of duplicate data points generated
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Figure 17: The overall execution time of the three solutions by varying

nodes cardinality.
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Table 2: Effectiveness of pruning regions by varying dataset

cardinality.

Synthetic
DataSets

Number of Data Points (million)
100 200 300 400 500
27% 27% 27% 27% 27%

Real-world
DataSets

Number of Data Points (million)
2 4 6 8 10
10% 10% 9% 9% 8%

by PSSKY -G-IR-PR. Combining the experiments shown in
Figure 15, PSSKY -G-IR-PR only takes a few minutes longer
if there are additional 100 million dominance test are performed
by PSSKY -G-IR-PR. Note that these dominance tests may be
conducted in parallel in PSSKY -G-IR-PR.

Table 2 shows the power of pruning regions in terms of data point
reduction rate by varying cardinality of datasets. The reduction rate
is defined by the average percentage of data points eliminated by
pruning regions in independent regions. We find that around 27%
of data points in synthetic datasets fall in pruning regions, and can
be discarded by PSSKY -G-IR-PR while there are around 9%
of real-world data points that can be pruned without the dominance
test. Moreover, the object elimination rate is slightly changed for
large real-world datasets. The reason is that the number of data
points varies in the experiments, but the number of query points
and its convex hull are fixed. Theoretically, if data points are uni-
formed distributed, the effectiveness of the Pruning Region only
depends on the volume of Pruning Regions. Increasing the density
of data points over a large data point datasets does not help much
to generate larger pruning regions. Thus, the reduction rate over
synthetic datasets remains unchanged, and there is slight change in
the reduction rate over real-world datasets due to the non-uniform
distribution of data points.

Table 3 shows the power of pruning regions in terms of data point
reduction rate by varying the distribution of data points. We re-
place 5%, 10%, 15%, and 20% of uniform data points with anti-
correlated data points. For example, the experiments performed
over datasets with 20% anti-correlated and 80% uniform data points
are displayed in the first row of the results in Table 3. We find
that the reduction rate remains the same over datasets under the
same distribution of data points. Moreover, when 20% of anti-
correlated data points are generated in datasets, only 2% difference
is observed in the experiments, which tells us that the ratio of the
volume of independent regions and pruning regions to that of the
search space is small. In other words, if 20% data points are moved
to the central area of the search space, there are only 2% of data
points moved outside the pruning regions.

5.5 Effect of Query Points
We investigate the effect of the area covered by the convex hull

of query points on the solutions in this subsection. We fix the size
of data points at 100 million. The ratio of the area covered by the
MBR of query points to the search space ranges from 1% to 2.5%.
The number of Convex Hull query points selected for real-world

Table 3: Effectiveness of pruning regions by varying dataset

distribution.

DataSets
Number of Data Points (million)

100 200 300 400 500

20% anti-correlated 24% 24% 24% 24% 24%

15% anti-correlated 24.7% 24.7% 24.7% 24.7% 24.7%

10% anti-correlated 25.3% 25.3% 25.3% 25.3% 25.3%

5% anti-correlated 26% 26% 26% 26% 26%
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Figure 18: The overall execution time of the three solutions by varying

the MBR of the convex hull of query points.
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Figure 19: The execution time of spatial skyline algorithms by varying

the MBR of the convex hull of query points.

datasets are 10, 14, 17, and 23, and that for synthetic datasets are
10, 12, 14, and 16, respectively. Figure 18 displays the overall
execution time of solutions over synthetic and real-world datasets.
The ratios of the MBR of the convex hull of query points are indi-
cated by x axis. Intuitively, a larger convex hull may help to reduce
the cost of the dominance test because more data points would lo-
cate in the convex hull, and can be output as spatial skylines with-
out dominance test. However, our experimental results show that
the entire process of query evaluation takes longer. The reason is
that there are more data points in the search region, and the num-
ber of data points requiring dominance test becomes larger. Take
Figure 2 for example, a convex hull is represented by q1, q2, and
q3. p1 is used to generate three independent regions. If the convex
hull grows larger, the area covered by the three independent regions
will become larger accordingly. Thus, more data will be located in
the independent regions, and be processed by reducers in the third
MapReduce phase.

The evidence is also displayed in Figure 19 and 20. Figure 19
shows the execution time of spatial skyline computation and the
number of dominance tests grow rapidly when the MBRs of the
convex hull of query points cover larger areas. A similar results are
observed in terms of the number of dominance test in Figure 20.

5.6 Effect of Independent Region Pivot Selec-
tion

We investigate the effect of independent region pivot selection on
the query evaluation by varying the pivot on real world datasets. We
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Figure 20: The number of dominance test in the three solutions by

varying the MBR covered by query points.
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Figure 21: The execution time of PSSKY -G-IR-PR by varying in-

dependent region pivots.

randomly choose three query dataset in such a way that the convex
hull of the query points is in random shape. Figure 20 shows the
execution time of the query when the pivot locates at the query
points with minimum and maximum y-coordinate values (p5 and
p1), and the center of MBR(CH(Q)) (p3). Two additional pivots
are selected at the midpoint of the line of p1 and p3, and the line of
p3 and p5. The two pivots are denoted by p2 and p4, respectively.
In general, p3 is closer to the optimal pivot than other four pivots,
and PSSKY -G-IR-PR runs faster when p3 is selected as the
independent region pivot.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose an advanced parallel spatial skyline so-

lution utilizing MapReduce framework. Given a set of data points
and a set of query points, our approach first calculates the convex
hull of the query points. Then, we propose a novel concept of in-
dependent regions; the input data points are partitioned by their
associated independent regions. Unqualified data points outside in-
dependent regions can be eliminated without the dominance test.
Finally, all spatial skylines in independent regions are calculated
in parallel, and the global spatial skylines are the union of local
spatial skylines. Moreover, to avoid high cost of data point com-
parison, we propose a concept of pruning regions, in which objects
can be discarded without comparing their distance to all convex
hull query points. We demonstrate the efficiency and effectiveness
of the proposed solution through extensive experiments on large-
scale real-world, and synthetic datasets.

We plan to extend the proposed parallel solution to address spa-
tial skyline queries on road networks. Theoretically, the concepts
of independent regions and pruning regions can be applied in the
space of road networks. However, more investigation is needed to
evaluate the cost of calculating the independent regions and prun-
ing regions. Due to variety of data distribution, it is also interesting
to study the pruning power of pruning regions on road networks.
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