
Finding Socio-Textual Associations Among Locations

Paras Mehta
Freie Universität Berlin

Germany
paras.mehta@fu-

berlin.de

Dimitris Sacharidis
Technische Universität Wien

Austria
dimitris@ec.tuwien.ac.at

Dimitrios Skoutas
IMIS, Athena R.C.

Greece
dskoutas@imis.athena-

innovation.gr

Agnès Voisard
Freie Universität Berlin

Germany
agnes.voisard@fu-berlin.de

ABSTRACT

An increasing amount of user-generated content on the Web is

geotagged. This often results in the formation of user trails, e.g.,

sequences of photos, check-ins, or text messages, that users gener-

ate while visiting various locations. In this paper, we introduce and

study the problem of identifying sets of locations that are strongly

associated under social and textual criteria. We say that a loca-

tion set is associated with a set of keywords if there exists a user

with posts around these locations whose textual descriptions cover

all keywords. We measure the strength of this association by the

number of users with posts that support it. Although the prob-

lem reminisces frequent itemset mining, we show that our support

measure does not satisfy the necessary anti-monotonicity property,

which is used to effectively prune the search space. Nonetheless,

by studying the characteristics of the support measure, we are able

to devise an efficient approach. We present a basic and two opti-

mized algorithms, exploiting an inverted or a spatio-textual index

to increase efficiency. Finally, we conduct an experimental evalu-

ation using geotagged Flickr photos in three major cities. From a

qualitative perspective, the results indicate that the introduced type

of query returns meaningful and interesting location sets, which are

not discovered by other existing approaches. Furthermore, the pro-

posed optimizations and the use of appropriate indexes significantly

reduce computation time.

1. INTRODUCTION
With the increasingly widespread use of mobile GPS-enabled

devices and social networks, the amount of geotagged content on the

Web is constantly growing. A user moving around a city may upload

photos, post tweets, or check in at various locations, generating a

digital trail of activities, which can be represented as a sequence of

geotagged posts. Such publicly available trails enable the analysis

and extraction of location associations that are implicitly defined by

the activities of city dwellers or visitors. In turn, these associations

can be used to build smarter location-based services and better

understand how people experience their urban environment.

©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

In this work, we seek to find Socio-Textual Associations (STAs)

among locations that are strongly supported by a corpus of geo-

tagged social media content. Given a set of keywords, we say that a

group of locations are socio-textually associated if a user has posts

near each of these locations, and the combined keyword set of these

posts contains all query keywords. The more people make an asso-

ciation, i.e., the stronger its support in the corpus is, the likelier it is

that there exists a latent thematic connection among the locations.

Compared to previous works that search for connections among a

group of locations, our work has the distinguishing and novel aspect

that it considers social and textual criteria in unison to define asso-

ciations. In one line of work (e.g., [12, 10, 15, 3, 19, 23]), which we

term Location Patterns (LP), the objective is to determine groups,

patterns or sequences of locations (or regions) that are frequent in

terms of purely social criteria, i.e., how many people support them.

Since the process ignores the textual aspect, the identified locations

are not semantically characterized or distinguished, and thus there

is no mechanism to explore or exploit the resulting groups under

a thematic context. For instance, this limits queries to finding the

overall most frequent sequence of locations in a given area, or the

most frequent Point of Interest (POI) to visit next. Even though

one could easily enrich locations with textual information after the

mining process, say to support recommending the most frequent

restaurant to visit next, the locations remain only socially associ-

ated, and not thematically, because the computed frequencies still

ignore the textual aspect.

Another related line of work is the Collective Spatial Keyword

(CSK) query [21, 4], where locations are grouped according to tex-

tual criteria (i.e., they must collectively cover the given keywords)

and spatial criteria (i.e., they must be close to each other and/or

to the user’s location). Thus, the optimization objective is an ag-

gregate spatial distance, instead of some evidence-based frequency

metric. In other words, the strength of the association among a valid

group of locations (i.e., one that covers all keywords) is defined by

spatial proximity alone. Again, this proximity-based approach fails

to establish a thematic connection evidenced by users’ behavior.

For example, the fact that there is a restaurant next to an art exhibi-

tion venue, does not necessarily imply that art-loving people would

find this particular restaurant attractive, unless such a connection

is indeed supported by a large number of posts, from the same

users, containing, for example, both keywords “art” and “restau-

rant” around these locations. As a matter of fact, if a strong thematic

association among nearby locations exists, our problem formulation

will certainly capture it.

A rather straightforward way to associate locations with keywords

Series ISSN: 2367-2005 120 10.5441/002/edbt.2017.12

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2017.12

Table 1: Categorization of Existing Work and Ours

Line of Work Information Exploited Optimization

Spatial Textual Social Objective

Location Patterns (LP) [3, 10, 12, 15, 19, 23] × × frequency

Collective Spatial Keyword (CSK) [4, 21] × × proximity

Aggregate Popularity (AP) × × × popularity

Socio-Textual Associations (STA) × × × frequency

according to users’ behavior is based on rank aggregation [8]. For

each keyword, consider a ranking of locations according to the

keyword popularity, i.e., the number of posts that contain it. Then,

to derive a group of locations that is most associated with a set of

keywords, one can simply collect the most popular location for each

keyword. This approach, which we call Aggregate Popularity (AP),

has the advantage that individual locations are strongly associated

with their respective keywords, but the location set as a whole

may lack a strong socio-textual association. Indeed, each location

may be popular for a different type of users, hence there may be

no significantly sized population for which all these locations are

popular. Exactly as in the case of proximity-based associations, if

a strong thematic association among popular locations exists, our

socio-textual approach will discover it.

Another differentiating trait of our work is that we consider the

textual information that is included in the posts themselves, and do

not rely on an external categorization of locations or POIs. The

reason is that we seek to exploit the wisdom of the crowd to also

determine textual relevance, in addition to quantify the strength

of derived associations. Nonetheless, our methods can be readily

adapted to take into account external textual descriptions as well.

To better frame our contribution with respect to previous works,

Table 1 summarizes all approaches according to the type of infor-

mation they exploit, i.e., spatial, textual, or social (user id), as well

as the objective they optimize for. Mining location patterns does

not exploit textual information, and seeks for groups of locations

that maximize the frequency with which they co-appear among

users’ trails. On the other hand, collective spatial keyword queries

ignore the social aspect, and look for location sets that maximize

their proximity (to each other and/or a target location) subject to

the constraint that they cover given keywords. An approach based

on aggregating popularity considers all types of information avail-

able, and strives to include locations that are individually popular

for some keyword and collectively cover given keywords. Our

work also considers all types of information, but optimizes for a

frequency metric that counts co-appearances of locations under a

certain theme/topic/context, which is defined by the given keywords.

As an example, consider a search for locations in Berlin using

the keywords “wall”, “art” and “restaurant”. Figure 1 depicts

the results returned by different alternative approaches for combin-

ing locations to satisfy these keywords. Our socio-textual based

approach returns the following location set as the top result (star-

shaped markers): 〈 “East Side Gallery”, “Hackescher Markt” 〉.
The former is a portion of the Berlin wall covered with paintings,

hence hosting many posts with the keywords “wall” and “art”. The

latter is a popular square in the city center, hosting also a series of

restaurants frequently visited by tourists and travelers. As it turns

out, these locations are neither the most popular ones for each indi-

vidual keyword (see locations with circle-shaped markers, returned

by the AP approach) nor close to each other. Yet, they reveal an

interesting association, hinting to the fact that many travelers that

have visited or plan to visit the Wall, being interested in art, tend to

also prefer restaurants located at Hackescher Markt.

Furthermore, a search based on CSK identified around 350 sin-

gleton locations, for which there exists at least one user with posts

Figure 1: Example of location sets retrieved for keywords

“wall”, “art” and “restaurant” in Berlin.

containing all query keywords. One of these results is illustrated

in Figure 1 (square-shaped marker). It is not straightforward how

to select the best among these results; in fact, several of them may

even be due to outliers or noise, which are inherent to crowdsourced

content. Since a CSK query does not take frequency into account,

it is better suited for cases where the query terms refer to (curated)

POI categories, while being error prone and sensitive to outliers

when searching on raw tags. On the other hand, the top result based

on AP consists of Brandenburg Gate (for “wall”), a famous monu-

ment close to where the Berlin wall used to pass; the intersection of

Gneisenaustr. and Mehringdamm streets (for “restaurant”), a place

with many popular restaurants; and Stattbad Wedding (for “art”), a

former well-known art venue. Each of these locations is popular for

the respective query keyword, but they do not represent any strong

shared interest between the people visiting them.

Existing algorithms for related problems cannot be used to extract

socio-textual associations. Although our problem seems similar to

mining frequent location patterns, the requirement for the locations

to collectively cover certain keywords significantly complicates the

problem, as we discuss in Section 4. Specifically, our notion of

support (frequency) for a location set does not exhibit the anti-

monotonicity property necessary to apply an Apriori-like algorithm

[1]. Briefly, such a property would allow for early pruning of

location sets that cannot be extended to produce valid results. Prac-

tically, the implication is that a naïve algorithm for even a relatively

small-sized city-level dataset, with around 20,000 distinct locations,

would need to investigate more than 1013 sets of three locations.

Nevertheless, by studying the problem characteristics, we are

able to introduce a weaker notion of support that (1) exhibits anti-

monotonicity, and (2) is an upper bound on the actual support of

location sets. Armed with these two properties, we then intro-

duce a methodology to efficiently identify location sets with strong

socio-textual associations. Moreover, we study three different im-

plementations of this methodology, each having its own merits. In

the simplest, we assume that no pre-processing is allowed and that

no index structure is available. We then present a method based

on a simple off-the-shelf inverted index, and demonstrate how it

can significantly speed up processing. The only caveat is that the

association of locations with nearby posts is assumed to be known

beforehand. Finally, leveraging the recent advances in spatio-textual

indices, we devise an algorithm that exploits their general function-

ality. In particular, we consider the state-of-the-art I3 index [22],

which we also extend further to derive an even faster approach.

Compared to the inverted index approach, the spatio-textual index

methods allow to define the association of locations with nearby

121

posts dynamically, which causes an overhead in execution time but

provides higher flexibility.

In addition, we consider the problem of ranking socio-textually

associated location sets instead of relying on a user-specified min-

imum support threshold. Thus, we directly address the problem of

identifying the k most strongly associated location sets. We de-

scribe a general methodology, and propose algorithms that build

upon their threshold-based counterparts.

The main contributions of our work are summarized below:

• We introduce and formally define the problem of finding

socio-textually associated location sets.

• We study the problem characteristics and introduce a gen-

eral framework based on a weaker support measure, which

satisfies the desirable anti-monotonicity property.

• We present a basic algorithm, and two efficient algorithms

that exploit an inverted index and a spatio-textual index, re-

spectively, to significantly speed up computation.

• We consider the ranking variant of the problem, and discuss

the necessary adaptations to all proposed algorithms.

• We present results from an experimental evaluation using

real-world data from geolocated Flickr photo trails in three

major cities.

The rest of the paper is structured as follows. In the next section,

we present related work. Then, we formally define the problems in

Section 3, and study their characteristics in Section 4. Following

this analysis, we present our algorithms in Section 5, and extend

them to the top-k variant in Section 6. Finally, Section 7 presents

our experimental evaluation, and Section 8 concludes the paper.

2. RELATED WORK
Next, we review related work on the topics of mining frequent

locations from geotagged posts and spatial keyword search.

2.1 Mining Geotagged Posts
Several approaches analyze trails of geotagged posts, mainly pho-

tos, to extract interesting Location Patterns (LP), such as scenic

routes or frequently traveled paths. A typical methodology is to

use a clustering algorithm to extract landmark locations from the

original posts, and then apply sequence pattern mining.

In [12], clustering is first used to identify POIs; then, association

rule mining is applied to extract associative patterns among them.

In [10], each photo is first assigned to a nearby POI, whereas, for the

remaining ones, a density-based clustering algorithm is applied to

generate additional locations. Then, a travel sequence is constructed

for each user, and sequence patterns are mined from these individual

travel sequences. In [15], kernel vector quantization is used to

find clusters of photos; then, routes are defined as sequences of

photos from the same user, and patterns are revealed by applying

hierarchical clustering on routes using the Levenshtein distance. In

[3], a trajectory pattern mining algorithm is applied on geotagged

Flickr photos to identify frequent travel patterns and regions of

interest. In [16], a clustering method is applied on geotagged photos

to identify and rank popular travel landmarks.

Geotagged photos have been used to measure the attractiveness

of road segments in route recommendation. A tree-based hierar-

chical graph is used in [24] to infer users’ travel experiences and

interest of a location from individual sequences. Considering the

transition probability between locations, frequent travel sequences

are identified. Ranking trajectory patterns mined from sequences of

geotagged photos is investigated in [19]. The mean-shift algorithm

extracts locations from the original GPS coordinates of the photos;

then, the PrefixSpan algorithm identifies the frequent sequential

patterns, which are ranked based on user and location importance.

In [23], density-based clustering is used to identify regions of at-

tractions from trails of geotagged photos; then, the Markov chain

model is applied to mine transition patterns among them.

Other efforts have focused on automatic trip planning or per-

sonalized scenic route recommendations based on geotagged photo

trails, taking into account user preferences, current or previous lo-

cations, and/or time budget (e.g., [13, 17]). In [6], individual photo

streams are integrated into a POI graph, and itineraries are con-

structed based on POI popularity, available time, and destination.

In [14], users’ traveling preferences are learned from their travel his-

tories in one city, and then used to recommend travel destinations

and routes in a different city. In [11], a set of location sequences that

match the user’s preferences, present location, and time budget, are

computed from individual itineraries. From a different perspective,

a Bayesian approach is applied in [2] to test different hypotheses

about how photo trails are produced. Various assumptions are as-

sessed, e.g., that users tend to take photos close to the city center,

near POIs, close to their previous location, or a mixture of these.

Similar to the works presented above, we also select locations

that appear frequently in users’ posts. However, in our case these

locations should be strongly associated with a given set of keywords,

a requirement which complicates the search.

2.2 Spatial Keyword Search
Spatial keyword search involves queries that comprise a user

location and a set of keywords. Both the spatial and the textual parts

can be applied as boolean filters or as ranking criteria. For example,

the query may retrieve all relevant objects within a specified distance

from the given location, or rank them based on their proximity to it;

similarly, it may retrieve all objects containing one or more of the

query keywords, or rank them based on relevance. A comprehensive

survey of existing approaches is presented in [5].

These efforts focus on combining spatial and textual indices into

hybrid ones. Accordingly, they can be characterized as text-first or

space-first [7]. For example, the IF-R*-tree uses an inverted file

where the postings in each inverted list are indexed by an R-tree; on

the other hand, the R*-tree-IF employs an R*-tree where inverted

files are attached to each leaf node [25]. More recent methods have

focused on retrieving top-k objects, ranked by an aggregate score

combining both spatial proximity and textual relevance [22, 20].

More closely related to our work are Collective Spatial Keyword

(CSK) queries, such as themCK query [21]. Givenm keywords, it

retrieves a set of spatio-textual objects that are as close to each other

as possible and collectively contain all keywords. A similar variant

is defined in [4], where the retrieved objects need to be as close to

the user location as possible, and, optionally, in close proximity to

each other.

In our work, we search for a set of locations that cover all given

keywords. However, instead of optimizing for spatial proximity,

we seek to maximize their co-occurrence in user trails. Thus, the

approach for addressing the problem is fundamentally different.

3. PROBLEM DEFINITION
Assume a database of posts P made by users U . Each post p ∈ P

is a tuple p = 〈u, ℓ,Ψ〉, where p.u ∈ U is the user that made the

post, p.ℓ = (lon, lat) is the geotag (location) of the post, and p.Ψ is

a set of keywords that characterize it. We use Pu to denote all posts

of user u, i.e., Pu = {p ∈ P : p.u = u}. Furthermore, assume

a database of locations L. These may correspond to the posts’

locations, or, for generality, may also be defined independently of

P . For instance, one may use a POI database to populateL, or apply

a clustering algorithm on the posts’ geotags and then construct L
from the cluster centroids. Thus, we reserve the term location for

122

Table 2: Notation

Symbol Definition

p, P post, database of posts
u, Pu user, posts of user
ℓ, L, L location, set of locations, database of locations
ψ, Ψ keyword, set of keywords
ULΨ set of users supporting (L,Ψ)
U
LΨ̃

set of users weakly supporting (L,Ψ)
UΨ set of users relevant to Ψ

sup(L,Ψ) support of (L,Ψ)
w_sup(L,Ψ) weak support of (L,Ψ)
rw_sup(L,Ψ) relevant and weak support of (L,Ψ)

σ support threshold

a member of L, and refer to a post’s location as its geotag. Table 2

summarizes the most important notation.

Locations are the principle objects in our work. We seek to

identify sets of locations that are strongly associated with a set of

keywords. To define this association, we first introduce the concepts

of locality and (textual) relevance for a post.

Definition 1 (Local Post). A post p is local to location ℓ if

the post’s geotag is within distance ǫ to ℓ, i.e., if d(p.ℓ, ℓ) ≤ ǫ, where

d is a distance metric (e.g., Euclidean).

Definition 2 (Relevant Post). A post p is relevant to key-

word ψ if the post’s keyword set contains ψ, i.e., if ψ ∈ p.Ψ.

Posts associate locations with keywords. These associations are

bestowed by users themselves, as opposed, for example, to a spe-

cific POI categorization made by a particular source; thus, they

capture the wisdom of the crowd. To model the relationships be-

tween users’ posts, locations, and keywords, we introduce a bipartite

graph, where the two types of vertices correspond to keywords and

locations, while edges correspond to users’ posts.

Definition 3 (Association Graph). The Association Graph

is a bipartite graph G = (V, E), where V = Ψ∪L and E ⊆ Ψ×L,

such that an edge e = (ψ, ℓ) exists iff there exists at least one post

p which is local to ℓ and relevant to ψ; moreover, e is labeled with

the set of users that have made such posts.

Figure 2 shows a running example with the posts of five users

u1, . . . , u5 around three locations ℓ1, ℓ2, ℓ3, containing two key-

words ψ1, ψ2. Post pij denotes the j-th post of the i-th user. For in-

stance, post p12 = 〈u1, ℓ2, {ψ1, ψ2}〉 of user u1 is local to location

ℓ2 and relevant to keywords ψ1 and ψ2. The resulting Association

Graph is depicted in Figure 3.

The association between a keyword and a location is explicit, and

its strength can be quantified by the number of users making it. For

example, three users have associated keyword ψ1 with location ℓ3
in the running example. On the other hand, the association between

sets of keywords and sets of locations is not immediately apparent,

e.g., what the textual description of the location set {ℓ1, ℓ2} should

be. If it is simply the set of keywords that have an edge towards

the location set, then how do we quantify its strength if different

users have made different associations? The location set should be

strongly associated with a set of keywords not because there exist

edges with multiple users in the Association Graph, but because

there exists a large number of users that agree on this association.

Therefore, the key question to answer is when a user supports an

association between a location set and a keyword set.

Definition 4 (Supporting User). A user u supports the as-

sociation between a location set L and keyword set Ψ, denoted as

u ∈ ULΨ, if:

Locations
Users ℓ1 ℓ2 ℓ3

u1 p11 : {ψ1} p12 : {ψ1, ψ2} p13 : {ψ1}
u2 p21 : {ψ1} p22 : {ψ1}
u3 p31 : {ψ2} p32 : {ψ1} p33 : {ψ1}
u4 p42 : {ψ2} p43 : {ψ1}
u5 p51 : {ψ1, ψ2}

L = {ℓ1, ℓ2}, Ψ = {ψ1, ψ2}
ULΨ = {u1, u3}, U

LΨ̃
= {u1, u2, u3}

UΨ = {u1, u3, u4, u5}, U
L̃Ψ

= {u1, u3, u5}

sup(L,Ψ) = 2, w_sup(L,Ψ) = 3, rw_sup(L,Ψ) = 2

Figure 2: Running example.

• for each keyword ψ ∈ Ψ, the user has made a post relevant

to ψ and local to a location ℓ′ ∈ L, i.e., every ψ ∈ Ψ is

connected via a u-labeled edge to some ℓ′ ∈ L; and

• for each location ℓ ∈ L, the user has made a post local to

ℓ and relevant to a keyword ψ′ ∈ Ψ, i.e., every ℓ ∈ L is

connected via a u-labeled edge to some ψ′ ∈ Ψ.

Hence, a user supports association (L,Ψ) if her posts connect

each keyword in Ψ to some location in L, and, vice versa, each

location in L to some keyword in Ψ. This implies a tight coupling

between all keywords and all locations, according to the user.

An association extracted from a user’s posts between a keyword

set and a location set could be arbitrary. After all, the content of

a post is not always related to the location where it was made, and

crowdsourced content is known to be characterized by errors and

noise. Hence, an association acquires credence by the number of

users supporting it. Accordingly, we use this to measure the strength

of a keywords-locations association.

Definition 5 (Support). The support of an association be-

tween a location set L and keyword set Ψ is the number of users

supporting (L,Ψ), i.e., sup(L,Ψ) = |ULΨ|.

Returning to our example, user u1 supports the location set L =
{ℓ1, ℓ2} and keyword set Ψ = {ψ1, ψ2}. For instance, post p11
(resp. p12) is relevant to ψ1 (resp. ψ2) and local to some location

among L; hence the first condition is satisfied; similarly, the second

condition is also satisfied. It is not hard to see that the conditions

are also satisfied for user u3. Therefore, sup(L,Ψ) = 2.

We can now formally state the objective of this work. Given a

set of keywords, we formulate two variants, one that retrieves all

associations above a support threshold, and one that retrieves the k

most strongly supported associations.

Problem 1 (Frequent Socio-Textual Associations). Given

a keyword set Ψ and a support threshold σ, identify all the location

sets, up to cardinality m, that have support above σ.

Problem 2 (Top-k Socio-Textual Associations). Given a key-

word set Ψ, identify k location sets, up to cardinality m, that have

the highest support.

The restriction on the cardinality of the location set is because,

as explained in Section 4, adding more locations can increase the

support of the set.

4. OBSERVATIONS AND APPROACH
Our approach is based on some key observations regarding the

intrinsic characteristics of the studied problems. In fact, the stated

problems reminisce the frequent itemset problem; however, the key

123

ψ1

l1

{u1 ,u2 ,u5}
l2

{u1 ,u2 ,u3}

l3{u1 ,u3 ,u4}

ψ2
{u3 ,u5}

{u1 ,u4}

Figure 3: Association Graph for the running example.

difference here is that the introduced support function does not have

the necessary anti-monotonicity property which allows for applying

the Apriori principle. Given two setsX,Y , this property states that

if X ⊆ Y , then sup(X) ≥ sup(Y). In other words, adding more

items to a set cannot increase its support. However, the support

introduced in Definition 5 does not exhibit this property.

Theorem 1. The support of a location set L and a keyword set

Ψ is not anti-monotonic with respect to the location set, i.e., there

exist two location sets L ⊆ L′ and a keyword set Ψ, such that

sup(L,Ψ) < sup(L′,Ψ).

Proof. We prove via an example. Assume three keywords, four

locations, and two users who have made posts in exactly those

locations, as shown below:

ℓ1 ℓ2 ℓ3 ℓ4
u1 ψ1 ψ2 ψ3 ψ1

u2 ψ3 ψ1 ψ1 ψ2

Consider the keyword set Ψ = {ψ1, ψ2, ψ3}. Notice that only

user u1 supports location set L = {ℓ1, ℓ2, ℓ3}, i.e., sup(L,Ψ) =
1. On the other hand, both users support location set L′ =
{ℓ1, ℓ2, ℓ3, ℓ4}, i.e., sup(L′,Ψ) = 2. In fact, any 3-location set in

this example has support at most 1.

As a matter of fact, the support of a location set and a keyword

set can increase or decrease with respect to the location set. Despite

this negative result, we devise an efficient filter-and-refine approach,

where the filtering step exploits a weaker support measure.

Definition 6 (Weakly Supporting User). A user u weakly

supports a given location set L and keyword set Ψ, denoted as

u ∈ U
LΨ̃

, if for each location ℓ ∈ L, the user has made a post local

to ℓ and relevant to a keyword in Ψ.

The difference with respect to Definition 4 is that only the second

condition applies. In other words, in the Association Graph, there

must exist edges associating each one of the locations in L with

keywords from Ψ, but without necessarily involving all keywords

in Ψ. Accordingly, we define the notion of weak support.

Definition 7 (Weak Support). The weak support of a given

location set L and keyword set Ψ is the number of users weakly

supporting (L,Ψ), i.e., w_sup(L,Ψ) = |U
LΨ̃

|.

In our example, user u2 weakly supports (L,Ψ), where L =
{ℓ1, ℓ2} and Ψ = {ψ1, ψ2}. For both locations, u2 has local

posts (p21 and p22) that are relevant to at least one keyword (ψ1). In

addition, users u1, u3 also weakly support the same location set and

keyword set. On the other hand, u4 and u5 do not, as they do not

have posts local to both locations. Therefore, w_sup(L,Ψ) = 3.

Our filter and refine approach hinges on two properties of the

weak support. The first is its anti-monotonicity, while the second is

that it provides an upper bound for the support of an association.

Lemma 1. The weak support of a location set and a keyword

set is anti-monotonic with respect to the location set, i.e., for

any two location sets L′ ⊆ L and keyword set Ψ, it holds that

w_sup(L′,Ψ) ≥ w_sup(L,Ψ).

Proof. We show that any user u that does not weakly support

(L′,Ψ) cannot weakly support (L,Ψ). Assume otherwise, meaning

that for each location in L there exists a post of u that is local to

that location and relevant to the set Ψ. Trivially, this property also

holds for any location in L′ ⊆ L. Therefore, u must also support

(L′,Ψ) — a contradiction.

Lemma 2. The support of location setL and keyword setΨ is not

greater than their weak support, i.e., sup(L,Ψ) ≤ w_sup(L,Ψ).

Proof. We show that any useru that supports (L,Ψ) also weakly

supports (L,Ψ). As per Definition 4, u has made a post local to each

location in L and relevant to a keyword in Ψ (second condition).

Therefore, the condition of Definition 8 applies, and u must also

weakly support (L,Ψ).

Returning to the example, users u1, u2, u3, u5 weakly support

(L′,Ψ), whereL′ = {ℓ1}. Hence, as per Lemma 1,w_sup(L′,Ψ) ≥
w_sup(L,Ψ). Moreover, as per Lemma 2, we have seen that the

weak support of (L,Ψ) is one more than its support. Based on

these lemmas, we can derive the following important property.

Theorem 2. If the weak support of a location set L and a key-

word set Ψ is less than σ, then the support of any location set

L′ ⊇ L and Ψ cannot be more than σ.

Proof. The premise suggests that σ > w_sup(L,Ψ). From

Lemma 1 we have that w_sup(L,Ψ) ≥ w_sup(L′,Ψ), while

from Lemma 2 we get w_sup(L′,Ψ) ≥ sup(L′,Ψ). Putting

all three inequalities together we get σ > sup(L′,Ψ), i.e., the

antecedent.

This result leads us to the following filter and refine strategy.

Similar to the candidate generation step of the Apriori algorithm,

location sets of increasing cardinality are constructed. Then, the

weak support of the set is counted, and if this is below the threshold,

the set is filtered out. At the end of entire process (when set car-

dinality reaches m), the refinement step is perfomed by explicitly

counting the support of all surviving location sets.

Still, this approach could be inefficient, producing many false

positives. It is possible that the support of a location set is below

the threshold even though its weak support is above the threshold.

Its support may even be zero if there exists no user that has posts

covering all keywords. Such a location set cannot be pruned by

Theorem 2. Following our example, consider location set L =
{ℓ1, ℓ2}, keyword set Ψ = {ψ1, ψ2}, and assume that only user u2

exists. In this case, w_sup(L,Ψ) = 1, but sup(L,Ψ) = 0, since

there exists no post from u2 relevant to ψ2. Motivated by this, we

seek additional ways to identify location sets that cannot have high

support. We first define the notion of a relevant user.

Definition 8 (Relevant User). We say that a user u is rele-

vant to a given keyword set Ψ, and denote as u ∈ UΨ, if for each

keyword ψ ∈ Ψ, the user has made a post relevant to ψ, i.e., the As-

sociation Graph contains an edge that is adjacent toψ and includes

u in its label.

124

ULΨ

UΨ

U
LeΨ

UeLΨ

UL

weakly

supporting

supporting

relevant

U

Figure 4: Set relationships between supporting, weakly sup-

porting, and relevant users with respect to the association be-

tween location set L and keyword set Ψ.

Notice that user u2 is not relevant to Ψ = {ψ1, ψ2}. The next

result shows that if we restrict the set of weakly supporting users to

include only relevant users, we can still define a pruning rule.

Theorem 3. If the number of relevant users that weakly support

a location setL and a keyword set Ψ is less than σ, then the support

of any location set L′ ⊇ L and Ψ cannot be more than σ.

Proof. Recall that UΨ, U
LΨ̃

denote the set of relevant users and

weakly supporting users, respectively. Then, the theorem assumes

that |UΨ ∩ U
LΨ̃

| < σ. From (the proof of) Lemma 1 we have

that U
LΨ̃

⊇ U
L′Ψ̃

. Therefore, UΨ ∩ U
LΨ̃

⊇ UΨ ∩ U
L′Ψ̃

and thus

|UΨ ∩ U
LΨ̃

| ≥ |UΨ ∩ U
L′Ψ̃

|. From (the proof of) Lemma 2 any

user u that supports (L′,Ψ) must also weakly support (L′,Ψ).
In addition, u must be relevant to Ψ due to the first condition of

Definition 4. Hence, |UΨ ∩ U
L′Ψ̃

| ≥ sup(L′,Ψ). Combining the

two derived inequalities and the theorem assumption, we derive that

sup(L′,Ψ) < σ.

This result improves upon our filter and refine strategy, by allow-

ing us to early prune a location set that cannot have support above

σ, even though its weak support might be above σ.

A better way to understand the relation between the sets of sup-

porting ULΨ, weakly supporting U
LΨ̃

and relevant UΨ users of a

location set and keyword set (L,Ψ) is to draw a Venn diagram. Fig-

ure 4 depicts these sets, and also includes for completeness their dual

sets drawn with dashed lines (discussed in Section 5.2). We have

shown that while the cardinality of set ULΨ is not anti-monotone

with respect to L, the cardinalities of sets U
LΨ̃

and UΨ ∩ U
LΨ̃

are.

Figure 4 emphasizes that the intersection of relevant and weakly

supporting users is a tighter superset of the desired supporting

users set, while still allowing anti-monotonicity-based prunning. In

the following, we write rw_sup(L,Ψ) to denote the number of

relevant and weakly supporting users, i.e., |UΨ ∩ U
LΨ̃

|.
Returning to the example of Figure 2, the relevant to Ψ users are

all except u2. Therefore, we derive sup(L,Ψ) = |{u1, u3}| =
2, w_sup(L,Ψ) = |{u1, u2, u3}| = 3, and rw_sup(L,Ψ) =
|{u1, u3}| = 2, showing that the relevant and weak support is

closer to the actual support than weak support is.

5. FINDING FREQUENT ASSOCIATIONS
We first present a baseline method for Problem 1, which serves

as the foundation for more elaborate solutions based on indices.

5.1 Basic Algorithm
This algorithm implements the filter and refine approach dis-

cussed in Section 4. Recall that Theorems 2 and 3 allow to prune

location sets with support less than σ based on the concepts of rele-

vant and weakly supporting users (filter step). While this guarantees

Algorithm 1: Algorithm STA

Input: keyword set Ψ, maximum cardinalitym, support threshold σ

Output: result setRσ of all location sets with support at least σ

1 Rσ ← ∅
2 C1 ← L ⊲ candidate 1-location sets

3 UΨ ← IdentifyRelevantUsers(Ψ)

4 for 1 ≤ i ≤ m do

5 Fi ← ∅ ⊲ i-location sets with more than σ relevant and weakly supporting

users

6 foreach L ∈ Ci do

7 ComputeSupports(L, Ψ)

8 if rw_sup(L,Ψ) ≥ σ then

9 Fi ← Fi ∪ {L}
10 if sup(L,Ψ) ≥ σ then

11 Rσ ← Rσ ∪ {L}

12 Ci+1 ← CandidateGeneration(Fi) ⊲ candidate (i+ 1)-location sets

Algorithm 2: STA.IdentifyRelevantUsers

Input: keyword set Ψ
Output: set UΨ of relevant users

1 UΨ ← ∅
2 foreach u ∈ U do

3 covΨ← ∅
4 foreach p ∈ Pu do

5 if p.ψ ∈ Ψ then

6 covΨ← covΨ ∪ {ψ}

7 if |covΨ| = |Ψ| then

8 UΨ ← UΨ ∪ {u}

no false negatives, there can still be false positives, i.e., location sets

with support less than σ, which need to be identified (refine step).

Note that instead of performing this at the end, it can be done more

efficiently during candidate generation, as explained later.

Algorithm 1 outlines the basic method, denoted as STA. It op-

erates on the set P of posts organized by user, i.e., the list Pu
containing the posts of each user u. The input includes the keyword

set Ψ, the maximum cardinality m of a location set, and the sup-

port threshold σ. STA exploits the Apriori principle (lines 4–12) to

identify the location sets with support above σ, filtering out each

location set with fewer than σ relevant and weakly supporting users.

Initially, the result set is empty and the potential 1-location sets

are set to all locations (lines 1–2). Also, the set of users relevant

to Ψ is identified (line 3). Procedure IdentifyRelevantUsers,

depicted in Algorithm 2, iterates across every list Pu and checks if

user u has made posts that cover all keywords that appear in Ψ.

Then, STA proceeds in m iterations, following the Apriori prin-

ciple. At the i-th iteration, all i-location sets with rw_sup not less

than σ are stored in set Fi. Among them, those with support not

less than σ are added to the result set Rσ . After initializing Fi (line

5), each candidate i-location set L is examined (lines 6–11). The

set Ci of candidate i-location sets was generated at the end of the

previous iteration (line 12) by the CandidateGeneration proce-

dure that applies the Apriori principle. In particular, Candidate

Generation creates candidate location sets of cardinality one more

than what was just examined. It takes as input the i-location sets

Fi with relevant weak support above σ, and inserts into Ci+1 an

(i + 1)-location set only if all its i-location subsets are in Fi, due

to the Apriori principle implied by Theorem 3.

For candidate i-location set L, procedure ComputeSupports

(described later) is invoked to determine the number rw_sup(L,Ψ)
of relevant weakly supporting users, and the number sup(L,Ψ) of

supporting users (line 7). If the former support is above σ, L is

added to Fi (lines 8–9). If, additionally, the latter support is greater

than σ, then L is added to the result set Rσ (lines 10–11). This

essentially corresponds to refining the surviving candidates.

Algorithm 3 depicts the pseudocode for ComputeSupports. The

125

Algorithm 3: STA.ComputeSupports

Input: location set L, keyword set Ψ
Output: weak support and support of (L,Ψ)

1 r_sup(L,Ψ)← 0; sup(L,Ψ)← 0
2 foreach u ∈ UΨ do ⊲ relevant user

3 covL← ∅; covΨ← ∅
4 foreach p ∈ Pu do

5 foreach ℓ ∈ L do

6 if d(p.ℓ, ℓ) ≤ ǫ then

7 foreach ψ ∈ p.Ψ ∩Ψ do

8 covL← covL ∪ {ℓ}
9 covΨ← covΨ ∪ {ψ}

10 if |covL| = |L| then ⊲ weakly supporting user

11 rw_sup(L,Ψ)← rw_sup(L,Ψ) + 1
12 if |covΨ| = |Ψ| then ⊲ supporting user

13 sup(L,Ψ)← sup(L,Ψ) + 1

Table 3: Support of Associations Between Listed Location Sets

And Keyword Set Ψ = {ψ1, ψ2} Based on the Posts in Figure 2

Location set wr_sup sup

{ℓ1} 3 1
{ℓ2} 3 1
{ℓ3} 3 0

{ℓ1, ℓ2} 2 2

{ℓ1, ℓ3} 2 1
{ℓ2, ℓ3} 3 2

{ℓ1, ℓ2, ℓ3} 1 1

procedure iterates over all relevant users. Let u be the currently ex-

amined user. The objective is to determine if u (weakly) supports

(L,Ψ). For this purpose, the sets covL and covΨ are constructed

to indicate what locations among L and keywords among Ψ, re-

spectively, are covered by u. Each post of u is examined (lines

4–9). If the post’s location is within distance ǫ to some location in

ℓ ∈ L, and there exists a keyword ψ ∈ Ψ common with the post’s

keywords, then ℓ and ψ are inserted to covL and covΨ (lines 6–9).

If all keywords in L have been found in u’s relevant posts, then

the counter of relevant and weakly supporting users is incremented

(lines 10–11). Additionally, if all keywords appear in these posts,

the counter for the support is incremented (lines 12–13).

Table 3 shows the relevant and weak support, and support for all

location sets for keyword setΨ = {ψ1, ψ2}, as computed by STA for

the example of Figure 2 with support threshold σ = 2. Recall that

all users except u2 are relevant. As all 1-location sets have relevant

and weak support above σ (although none is actually a result),

all possible 2-location sets are constructed and their supports are

counted. Among them, {ℓ1, ℓ2} and {ℓ2, ℓ3} (marked bold) have

support 2 and are thus results. Observe the anti-monotonicity in

relevant and weak support, and the lack thereof in support. Finally,

as all 2-location sets have wr_sup above σ, the set {ℓ1, ℓ2, ℓ3} is

also considered but found to have low relevant and weak support.

5.2 Inverted Index-Based Algorithm
In STA, counting the weak support of a location set is particularly

time consuming, since it scans the entire list of posts to find the

weakly supporting users for each location. Even worse, if a location

is part of multiple location sets, this is repeated multiple times.

To address this performance bottleneck, we present next an ap-

proach, termed STA-I, that is based on a preconstructed inverted

index, which facilitates the identification of weakly supporting users

for any location. The assumption here is that the distance parameter

ǫ is known beforehand, i.e., it does not change with the queries.

To construct the index, we identify the posts that are within dis-

tance ǫ to each location ℓ. Then, for each location, we compile an

Table 4: Inverted Index for the Posts in Figure 2

Location Inverted list

ℓ1 ψ1 : u1, u5, ψ2 : u3, u5

ℓ2 ψ1 : u1, u3, ψ2 : u1, u4

ℓ3 ψ1 : u1, u3, u4

Algorithm 4: STA-I.IdentifyRelevantUsers

Input: keyword set Ψ
Output: set UΨ of relevant users

1 UΨ ← ∅
2 foreach ψ ∈ Ψ do

3 C ← ∅
4 foreach ℓ ∈ L do

5 C ← C ∪ U(ℓ, ψ)

6 UΨ ← UΨ ∩ C

inverted list U(ℓ), containing all users with posts local to ℓ. To

further speed up processing, we partition each list according to key-

word, such that each sublist U(ℓ, ψ) contains users with posts local

to ℓ and relevant toψ. Table 4 shows the lists for our example. STA-I

operates identically to STA, but uses the inverted index during the

procedures IdentifyRelevantUsers and ComputeSupports.

The IdentifyRelevantUsers procedure is depicted in Algo-

rithm 4. Recall, that the goal is to identify users who have made

posts relevant to all keywords in Ψ, irrespective of the posts’ geo-

tags. Hence, for each keyword ψ ∈ Ψ, and each possible location

ℓ, it retrieves the list U(ℓ, ψ) of users with relevant and local posts,

and it compiles the set of users with posts relevant to ψ and local

to some location in L. Finally, it computes the intersection of these

sets. This procedure essentially constructs the set of relevant users

as UΨ =
⋂

ψ∈Ψ

(
⋃

ℓ∈L
U(ℓ, ψ)

)

.

Algorithm 5 illustrates the ComputeSupports procedure, which

computes the weak support (lines 1–6) and the support (lines 8–

14) of location set and keyword set (L,Ψ). Regarding the former,

recall that a user weakly supports (L,Ψ) if for each location ℓ ∈ L

there exists a local post that is relevant to some keyword in Ψ.

The set
⋃

ψ∈Ψ
U(ℓ, ψ) represents users that have relevant posts

to some keyword in Ψ and are local to the specific location ℓ.

Thus the intersection over all locations in L of these sets represents

the weakly supporting users, i.e., U
LΨ̃

=
⋂

ℓ∈L

(

⋃

ψ∈Ψ
U(ℓ, ψ)

)

.

Specifically, the procedure computes the union in the inner loop

(lines 3–4), and the intersection of the unions in the outer loop

(lines 2–5). The weak support of (L,Ψ) is computed after the

non-relevant users are discarded (line 6).

Only when the weak support of (L,Ψ) exceeds threshold σ (line

7), its support is computed (lines 8–14), but in a manner significantly

different from that in STA. Recall from the discussion in Section 4

and Figure 4 that the set U
LΨ̃

of weakly supporting users has a

dual set U
L̃Ψ

, termed local-weakly supporting users. This latter set

contains users that for each keyword among Ψ have a post local to

some location among L. It is not hard to see that the users that

are both (relevant-)weakly supporting and local-weakly supporting

(L,Ψ) are exactly those that support (L,Ψ), i.e., it holds that

ULΨ = U
LΨ̃

∩ U
L̃Ψ

. Intuitively, the latter set satisfies the first

requirement of Definition 4, whereas the former the second.

Based on this observation, the ComputeSupports procedure

first computes the local-weakly supporting users U
L̃Ψ

(lines 8–

13). With similar reasoning as before, the procedure builds the set

as U
L̃Ψ

=
⋂

ψ∈Ψ

(
⋃

ℓ∈L
U(ℓ, ψ)

)

, where the union is compiled in

the inner loop (lines 11–12), and the intersection of the unions in

the outer loop (lines 9–13). Then, it intersects it with the previously

constructed U
LΨ̃

set to compute the support of (L,Ψ) (line 14).

126

Algorithm 5: STA-I.ComputeSupports

Input: location set L, keyword set Ψ
Output: weak support and support of (L,Ψ)
⊲ construct set U

LΨ̃
of (relevant-)weakly supporting users

1 U
LΨ̃
← ∅

2 foreach ℓ ∈ L do

3 A ← ∅ foreach ψ ∈ Ψ do

4 A ← A∪ U(ℓ, ψ)

5 U
LΨ̃
← U

LΨ̃
∩ A

6 rw_sup(L,Ψ)← |U
LΨ̃
∩ UΨ|

7 if rw_sup(L,Ψ) < σ then return

⊲ construct set U
L̃Ψ

of local-weakly supporting users

8 U
L̃Ψ
← ∅

9 foreach ψ ∈ Ψ do

10 B ← ∅
11 foreach ℓ ∈ L do

12 B ← B ∪ U(ℓ, ψ)

13 U
L̃Ψ
← U

L̃Ψ
∩ B

14 sup(L,Ψ)← |U
LΨ̃
∩ U

L̃Ψ
|

5.3 Spatio-Textual Index-Based Algorithm
Although precomputing the inverted index reduces dramatically

the cost of calculating the weak support of a location set, it cannot

handle different values of the distance parameter ǫ. Next, we present

an alternative approach to accelerating weak support calculations

based on spatio-textual indices. Instead of relying on precomputed

static lists, we dynamically compile the information needed from

the index. We first present a generic approach that works with the

majority of existing spatio-textual indices, and then we consider a

particular index and propose further optimizations.

5.3.1 Generic Algorithm

We adapt the basic Apriori-like algorithm assuming the availabil-

ity of a spatio-textual index which can process spatio-textual range

queries with OR semantics. The latter specify a spatial range R

and a set of keywords Ψ, and seek all spatio-textual objects whose

location is inside R and contain at least one of the keywords in Ψ.

We next describe the STA-ST algorithm which operates on top

of such a general-purpose spatio-textual index. It operates similarly

to STA, with the difference that procedure ComputeSupports is

implemented in an index-aware manner, as outlined in Algorithm 6.

It first constructs the set U
LΨ̃

of weakly supporting users, and then

determines the support of (L,Ψ). To build U
LΨ̃

, it issues a spatio-

textual range query with parameters the disc (ℓ, ǫ) of radius ǫ around

each location ℓ ∈ L and keyword set Ψ (lines 2–9). For a specific

location ℓ, the results (set of posts) are stored in Pℓ (line 4). Then,

it scans the results and inserts into a temporary variable A each

encountered user p.u (line 8). In addition, it associates with each

user a bitmap p.u.covΨ indicating which query keywords appear

in her posts (lines 6–7); this information is later used to determine

if the user supports (L,Ψ). Once all users with posts local to ℓ and

relevant to Ψ have been identified in A, they are merged with the

ones for previously examined locations (line 9). Eventually, U
LΨ̃

contains users with posts local to every location inL and relevant to

at least one keyword in Ψ, i.e., the users weakly supporting (L,Ψ).
To compute the weak support among relevant users, the procedure

takes the intersection of U
LΨ̃

with the known set UΨ of relevant

users (line 10). If the weak support is lower than the threshold, the

algorithm returns (line 11). Otherwise it computes the support by

examining whether each user has covered all query keywords (lines

13–15); this is determined directly from bitmaps p.u.covΨ.

5.3.2 Optimized Algorithm

Next, we focus on a specific spatio-textual index, I3 [22], which

we adapt to devise an even more efficient algorithm.

Algorithm 6: STA-ST.ComputeSupports

Input: location set L, keyword set Ψ
Output: weak support and support of (L,Ψ)

1 U
LΨ̃
← ∅

2 foreach ℓ ∈ L do

3 A ← ∅
4 Pℓ ← ST-RANGE((ℓ, ǫ),Ψ)
5 foreach p ∈ Pℓ do

6 foreach ψ ∈ p.Ψ ∩Ψ do

7 p.u.covΨ← p.u.covΨ ∪ {ψ}

8 A ← A ∪ p.u

9 U
LΨ̃
← U

LΨ̃
∩ A

10 rw_sup(L,Ψ)← |U
LΨ̃
∩ Uψ|

11 if rw_sup(L,Ψ) < σ then return

12 sup(L,Ψ)← 0
13 foreach u ∈ U

LΨ̃
do

14 if |u.covΨ| = |Ψ| then

15 sup(L,Ψ)← sup(L,Ψ) + 1

We first elaborate on the index structure. For our purposes, the I3

index can be seen as a quadtree that hierarchically partitions the spa-

tial domain. Each node corresponds to a specific rectangular region,

and points to its four children corresponding to the quadrants of the

region. Leaf nodes point to disk pages containing the actual posts

grouped by keyword. We associate with each node some additional

aggregate information. Specifically, for each keyword ψ, we store

the number of users with relevant posts that are contained within

the subtree rooted at this node N . We denote this by N.count(ψ).
STA-STO differs from STA-ST in the first iteration of the main

Apriori loop (lines 4–12 of Algorithm 1 for i = 1). Instead of

computing the weak support (and support) of every location, it uses

the index to identify locations with potentially high weak support,

eliminating groups of locations with weak support less than σ.

To achieve this, it executes a best-first search (bfs) traversal [9],

performing a simple test at each node to decide whether to continue

in its subtree. Intuitively, we wish to terminate bfs when no location

in the subtree can have weak support greater than σ.

Let Q be the priority queue implementing bfs. For each node N

entering Q, the algorithm computes a(N) =
∑

ψ∈Ψ
N.count(ψ),

and uses it as the queue’s priority key. At each iteration, the nodeN

inQwith the largest a(N) value is removed. If a(N) is greater than

or equal to σ, there may exist some location in the subtree ofN with

weak support greater than σ. Otherwise, a safe conclusion cannot

be drawn. Hence, the algorithm calculates an additional value b(N)
for this node, which is an upper bound on the weak support of any

location within N . Clearly, if b(N) < σ, the node contains no

useful locations and can be pruned. Such pruned nodes, along with

their a() values, are maintained in a deleted list D, which serves in

the calculation of b() values as explained next. For nodeN , its b(N)
value is the sum of a() values for all nodes that are inQ or inD and

that are within distance ǫ to N . An important observation here is

that, due to the bfs traversal and the index structure, nodes inQ∪D
do not spatially overlap and hence b(N) does not double count

posts. To summarize, STA-STO first makes the quick a(N) ≥ σ

test, and only if this fails does it compute b(N) and makes the more

expensive b(N) ≥ σ test. If the latter fails too, the node definitely

cannot contain a location set with weak support greater than σ.

For each location dequeued in the bfs traversal, STA-STO invokes

the STA-ST.ComputeSupport procedure as described in the pre-

vious section, to determine its exact weak support and its support.

Compared to it, the benefit is that STA-STO executes the procedure

only for promising locations instead of every possible location.

6. FINDING TOP-K ASSOCIATIONS
Next, we present algorithms for Problem 2. We start with a basic

127

Algorithm 7: Algorithm k-STA

Input: keyword set Ψ, maximum cardinalitym, number of results k

Output: result setRk containing top-k location sets with highest support

1 σ ← DetermineSupportThreshold(Ψ, k)

2 Rσ ← STA (Ψ,m, σ)

3 Rk ← k location sets fromRσ with highest support

approach, and then discuss more efficient index-based techniques.

6.1 Basic Algorithm
In Problem 2, we seek the top-k location sets with the highest

support, instead of setting a specific support threshold. However, a

support threshold is needed in order to apply an Apriori-like method;

thus, we explain how such a threshold can be computed. If we pick

any set of k distinct location sets and compute their supports, then

the minimum value among those can serve as the support threshold

σ; clearly, any other set with support lower than this cannot be in

the result. The challenge is to construct initial location sets with

high support so that the starting value of σ is effectively high.

Algorithm 7 outlines the generic method k-STA implementing

this simple idea. First, procedure DetermineSupportThreshold

is invoked to obtain an appropriate lower bound σ on the support

of the top-k set. Given σ, it invokes the STA algorithm to derive

all location sets with support above σ. Finally, among the returned

location sets, it returns the k with the highest support.

Regarding the DetermineSupportThreshold procedure, the

main idea is to construct at least k distinct location sets that cover

all keywords Ψ. Suppose that for each keyword ψ ∈ Ψ we have

determined k(ψ) distinct locations with local posts relevant to ψ.

Combining these k(ψ) distinct locations for each keyword, we can

construct distinct location sets. Note that a necessary condition to

obtain k location sets is
∏

ψ∈Ψ
k(ψ) ≥ k.

Following this process, a heuristic for obtaining combinations

with high support is to start with locations that are popular, i.e.,

have high weak support. In the absence of any index, procedure

DetermineSupportThreshold iterates over the set of posts lists

Pu, skipping users that do not have relevant posts to each ψ. For

the rest, the locations of the relevant posts to each ψ are noted.

In addition, a counter for the weak support of each location is

maintained. After a sufficient number of locations for each keyword

are seen, the procedure terminates. For each keyword, the locations

with the highest weak support are chosen and combined. The

support of each set is computed by ComputeSupports, and the

k-th highest among these values is set as the support threshold σ.

6.2 Index-Based Algorithms

6.2.1 Inverted Index

When an inverted index from locations to users with local posts is

available, DetermineSupportThreshold collects locations with

local posts relevant to each keyword in Ψ in a different manner.

It first computes the weak support of every location by invoking

ComputeSupports. Note that this has to be executed anyway when

we later invoke the STA-I algorithm irrespective of the support

threshold σ. Then, it examines locations in descending order of

their weak support. For each location ℓ, the procedure checks the

inverted list and associates the location with each keyword in Ψ
for which a local and relevant post exists. Similar to the basic

algorithm, once a sufficient number of locations per keyword are

seen, location sets are generated and their support is computed.

6.2.2 Spatio-Textual Index

In a generic spatio-textual index, DetermineSupportThreshold

Table 5: Dataset Characteristics

Dataset
Num. of Num. of Num. of Avg. num. of Avg. num. of Num. of

photos users distinct tags tags per photo tags per user locations

London 1,129,927 16,171 266,495 8.1 61.2 48,547

Berlin 275,285 7,044 88,783 8.1 39.4 21,427

Paris 549,484 11,776 122,998 7.8 38.8 38,358

operates identically to the basic algorithm with the exception that

the ComputeSupports procedure is index-aware. When the aug-

mented I3 index is used, a different process is followed. Procedure

DetermineSupportThreshold first performs a best-first search

traversal similar to that described in Section 5.3.2. The difference

is that initially there is no support threshold, and thus the b() val-

ues need not be computed. Moreover, the traversal is progressive,

meaning that at each step the next location with potentially high

weak support is identified. For each such location, its local posts

are retrieved (using the index) and it is marked for the keywords

that appear in these posts. As before, once a sufficient number of

locations per keyword are seen, the support threshold is computed.

7. EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of our

approach using real-world datasets comprising geolocated Flickr

photos. We first describe our experimental setup, outlining the

datasets and the queries used in the experiments, and then we report

and discuss the results.

7.1 Datasets
In our experiments, we have used geolocated photos from Flickr,

extracted from a large-scale dataset that is provided publicly by

Yahoo! for research purposes [18]. Specifically, we compiled

datasets for the cities of London, Berlin and Paris. For each dataset,

Table 5 lists the number of photos, users, and distinct keywords

contained in it, as well as the average number of keywords per

photo and distinct keywords per user. As a database of locations,

we used POIs collected from the Foursquare API1. The number of

distinct locations per city is also shown in Table 5.

To construct a keyword set that is used to search for socio-textual

associations, we followed the process described next. First, for each

dataset, we retrieved the 100 most frequent keywords, where the fre-

quency of a keyword was measured by the number of users having

photos with it. From those, we manually picked a set of 30 key-

words, removing more generic ones, such as “london”, “england”,

“uk”, “iphone”, “canon”, etc. The top 10 selected keywords for

each city are listed in Table 6, showing also the number of users

with relevant posts to each one. Then, we combined these popular

keywords to create keyword sets of cardinality up to 4. For each

case, we selected the top 20 combinations according to the number

of users having photos with those tags. Table 7 lists the first 5 among

these 20 combinations for each case. In all reported experiments,

we set the value of the spatial distance threshold parameter ǫ, used

to associate photos to locations, to 100 meters.

7.2 Indicative Result
Figure 5 shows an example of the socio-textual associations our

methodology discovers. In particular, we look for locations that

are strongly associated with the keyword set Ψ = {“london eye”,

“thames”}. The depicted green (resp., purple) points denote the lo-

cations of photos that contain the keyword “thames” (resp., “london

eye”) and belong to relevant users, i.e., they have also posted pho-

tos containing the other keyword “london eye” (resp., “thames”).

1https://developer.foursquare.com/

128

Table 6: Most Popular Keywords

London Berlin Paris

thames (2752) reichstag (876) louvre (2287)

park (1738) fernsehturm (774) eiffel+tower (1742)

london+eye (1730) architecture (716) seine (1488)

big+ben (1698) alexanderplatz (713) notre+dame (1244)

westminster (1543) wall (684) street (1194)

architecture (1519) graffiti (575) montmartre (1184)

museum (1386) street (562) architecture (1136)

art (1319) art (543) museum (1022)

tower+bridge (1276) museum (526) church (980)

statue (1178) spree (492) art (970)

Figure 5: Indicative example for London withΨ = {london eye,
thames}.

We can see that photos about “thames” are spread along the entire

length of the river Thames. On the other hand, although London

Eye has a specific location, due to its high visibility relevant photos

can be found at various other locations, e.g., in and around St. James

Park. Nevertheless, since London Eye happens to be located at the

bank of river Thames, the regions covered by the respective sets

of relevant photos have a high overlap. In fact, the single location

drawn as a star in this overlap has the strongest association with the

keyword set. In this case, there exists a singleton location set that

covers both keywords and has the highest support in the data.

7.3 Comparison with Other Association Types
As already explained (see Sections 1 and 2), there exist various

approaches that discover different associations between locations

and a given set of keywords. Hence, the purpose of our next exper-

iment was to investigate whether the location sets returned by our

approach (STA) are significantly different from those returned by

other works, collective spatial keywords (CSK) and aggregate pop-

ularity (AP). We note that we cannot compare with approaches that

discover location patterns (LP) as they ignore textual information.

To that end, we computed the top 10 results for STA, AP, and

CSK, with respect to the keyword sets we compiled for the three

datasets of London, Berlin, and Paris. Then, we computed the

Jaccard similarity of the result sets of CSK and AP to ours. This

measures the overlap in the query results, i.e., how many location

sets STA and either CSK or AP return in common.

The results of this experiment are presented in Table 8. The

results are averaged across queries with the same keyword set car-

dinality. As can be observed, the Jaccard similarity scores are very

low in all cases, with values not exceeding 0.3. The highest scores

are observed for queries with 2 keywords, where fewer possible

location combinations exist. In those queries, on average, around

Figure 6: Scatter plot where data points correspond to ex-

periments with distinct keyword sets; the x axis indicates the

number of associations above the support threshold, and the y

axis indicates the highest support among the associations.

2 or 3 of the top 10 location sets discovered by STA are common

with those appearing in the results of AP or CSK. The degree of

overlap drops even lower when the cardinality of the keyword set

increases, allowing for a significantly larger number of candidate

location sets. In those cases, often there is only one or zero results

in common. This outcome is consistent across the three datasets.

These results show that STA constitutes a novel and distinct cri-

terion for discovering interesting socio-textual associations among

locations, which cannot be replicated by existing approaches.

7.4 Number of Discovered Associations and
Maximum Support

Another aspect to investigate is the distribution of the number

of results (associations found) and the support scores for different

keyword set cardinalities. To that end, we computed the results

for all keyword sets described in Section 7.1, i.e., 60 sets for each

dataset, with cardinality |Ψ| ∈ [2, 4]. For each keyword set of

the respective dataset, we measured the number of results and the

support of the top result. The results of this experiment are shown

in Figure 6. We only present results for London; the other two

datasets exhibited a similar pattern, and are hence omitted. In this

result, the support threshold parameter was set σ = 0.1% of the

total number of users in the London dataset. Note that the value

of the support threshold affects both the execution time and the

number of results to be found. On the one hand, if the threshold is

set too low, an excessive number of results may be returned, and the

execution time may also be too high, since only few combinations

can be pruned; on the other hand, setting the support threshold too

high may return no results. Thus, the above value was selected

experimentally according to this trade-off.

We notice the following trend in the results. Having only two

keywords tends to produce results with high support (e.g., up to

around 3% of the total number of users). As the number of key-

words increases to 3 or 4, the maximum support among the returned

results reduces significantly, dropping close to the support thresh-

old; however, the number of returned results becomes much higher.

This is an effect of the fact that, as explained in Section 4, the

anti-monotonicity property does not hold in our problem.

7.5 Evaluation Time
Finally, we evaluate the efficiency of our proposed algorithms.

In this experiment, we used the same keyword sets as above.

First, we compare the execution time of the three algorithms,

STA-I, STA-ST and STA-STO, while varying the support threshold

129

Table 7: Most Popular Keyword Sets

|Ψ| London

2 london+eye, thames (922); big+ben, london+eye (908); thames, westminster (898); park, thames (880); big+ben, thames (846)

3
big+ben, london+eye, thames (557); big+ben, thames, westminster (497); big+ben, london+eye, westminster (472); london+eye, thames, westminster (464); park, thames,

westminster (440)

4
big+ben, london+eye, thames, westminster (358); big+ben, london+eye, thames, tower+bridge (293); art, green, park, thames (258); green, park, thames, trees (257); park,

statue, thames, westminster (257)

Berlin

2 alexanderplatz, fernsehturm (404); fernsehturm, reichstag (320); alexanderplatz, reichstag (253); reichstag, wall (249); fernsehturm, spree (248)

3
alexanderplatz, fernsehturm, reichstag (192); alexanderplatz, fernsehturm, spree (166); alexanderplatz, fernsehturm, wall (145); brandenburger+tor, fernsehturm, reichstag

(144); fernsehturm, reichstag, spree (142)

4
alexanderplatz, fernsehturm, reichstag, spree (106); alexanderplatz, brandenburger+tor, fernsehturm, reichstag (96); alexanderplatz, fernsehturm, reichstag, wall (95);

alexanderplatz, fernsehturm, potsdamer+platz, reichstag (90); alexanderplatz, fernsehturm, museum, reichstag (82)

Paris

2 eiffel+tower, louvre (777); louvre, seine (745); louvre, museum (706); louvre, notre+dame (691); eiffel+tower, notre+dame (606)

3
eiffel+tower, louvre, notre+dame (415); eiffel+tower, louvre, seine (343); louvre, notre+dame, seine (339); louvre, river, seine (327); arc+de+triomphe, eiffel+tower, louvre

(324)

4
eiffel+tower, louvre, notre+dame, seine (215); bridge, louvre, river, seine (209); arc+de+triomphe, eiffel+tower, louvre, notre+dame (208); louvre, museum, river, seine

(189); bridge, river, seine, street (187)

Table 8: Degree of Overlap Between the Associations Discovered

by STA and those of Existing Approaches

London Berlin Paris

|Ψ| AP CSK AP CSK AP CSK

2 0.22 0.24 0.28 0.30 0.20 0.14

3 0.17 0.04 0.09 0.07 0.08 0.03

4 0.14 0.03 0.01 0.04 0.00 0.00

Table 9: Ratio of Number of Location Sets with Support Above

Threshold over Number of Location Sets with Weak Support

Above Threshold; σ = 0.2%

|Ψ| London Berlin Paris

2 13.29% 23.80% 25.98%

3 1.35% 1.09% 3.85%

4 0.01% 0.00% 0.36%

parameter σ, which is a percentage of the number of users in each

dataset. Note that the basic STA method was at least an order of

magnitude slower than all other methods and is thus omitted from

all plots. Moreover, we include STA-ST in the comparison, in order

to assess the benefits resulting by the STA-STO optimizations. The

results are presented in Figures 7 and 8, for 2 and 4 keywords,

respectively; results for |Ψ| = 3 are similar and are omitted.

As the support threshold increases, the performance of all meth-

ods improves because fewer location sets survive the pruning. This

is apparent in Paris, but not so much in London and Berlin for the

specific range of support values depicted. Clearly, STA-I achieves

the best performance. This is not surprising, since exploiting the

preconstructed inverted index saves a substantial amount of the

execution time during evaluation. It is worth noticing, however,

that STA-STO is also very efficient, achieving competitive execu-

tion times compared to STA-I. In fact, this is not a merit of the

spatio-textual index per se, but rather a result of the proposed op-

timizations; indeed, the execution times of the generic STA-ST are

higher by an order of magnitude. The results appear to be consistent

across the different datasets and for different number of keywords.

Table 9 quantifies the number of location sets (or associations)

discovered that have weak support above but actual support below

the threshold, which was set to σ = 0.2%. For example, in London

for Ψ = 2, we have that 13.29% of the location sets considered

are actual results. As the keyword cardinality increases, the ratio

decreases dramatically, because it becomes harder for location sets

with weak support above the threshold to also cover all keywords.

Finally, we evaluate the performance of the algorithms for the

top-k version of the problem. The results are presented in Figure 9

for |Ψ| = 3. A similar outcome is observed, with k-STA-I outper-

forming k-STA-STO in all cases. For both algorithms, the execution

time tends to increase with k as more results are requested.

8. CONCLUSIONS
In this paper, we have addressed the problem of finding socially

and textually associated location sets from user trails on the Web.

We have formally defined the problem and studied its characteristics.

Based on this, we have proposed a general approach for addressing

the problem, which we have elaborated to derive three algorithms

based on different indices. Furthermore, we have extended our

approach to address also the top-k variant of the problem. The pro-

posed methods have been evaluated experimentally using geotagged

Flickr photos in three different cities.

Acknowledgements

This work was partially supported by the EU Project City.Risks

(H2020-FCT-2014-653747).

9. REFERENCES

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules in large databases. In VLDB, pages 487–499, 1994.

[2] M. Becker, P. Singer, F. Lemmerich, A. Hotho, D. Helic, and
M. Strohmaier. Photowalking the city: Comparing hypotheses about
urban photo trails on Flickr. In SocInfo, pages 227–244, 2015.

[3] G. Cai, C. Hio, L. Bermingham, K. Lee, and I. Lee. Mining frequent
trajectory patterns and regions-of-interest from Flickr photos. In
HICSS, pages 1454–1463, 2014.

[4] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial
keyword querying. In SIGMOD, pages 373–384, 2011.

[5] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query
processing: An experimental evaluation. PVLDB, 6(3):217–228,
2013.

[6] M. D. Choudhury, M. Feldman, S. Amer-Yahia, N. Golbandi,
R. Lempel, and C. Yu. Automatic construction of travel itineraries
using social breadcrumbs. In HT, pages 35–44, 2010.

[7] M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel.
Text vs. space: efficient geo-search query processing. In CIKM,
pages 423–432, 2011.

[8] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation
methods for the web. In WWW, pages 613–622, 2001.

[9] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM TODS, 24(2):265–318, 1999.

130

(a) London (b) Berlin (c) Paris

Figure 7: Varying support threshold (σ); |Ψ| = 2.

(a) London (b) Berlin (c) Paris

Figure 8: Varying support threshold (σ); |Ψ| = 4.

(a) London (b) Berlin (c) Paris

Figure 9: Varying number of results (k); |Ψ| = 3.

[10] S. Kisilevich, D. A. Keim, and L. Rokach. A novel approach to
mining travel sequences using collections of geotagged photos. In
AGILE, pages 163–182, 2010.

[11] T. Kurashima, T. Iwata, G. Irie, and K. Fujimura. Travel route
recommendation using geotags in photo sharing sites. In CIKM,
pages 579–588, 2010.

[12] I. Lee, G. Cai, and K. Lee. Mining points-of-interest association
rules from geo-tagged photos. In HICSS, pages 1580–1588, 2013.

[13] X. Lu, C. Wang, J. Yang, Y. Pang, and L. Zhang. Photo2Trip:
generating travel routes from geo-tagged photos for trip planning. In
Multimedia, pages 143–152, 2010.

[14] A. Majid, L. Chen, G. Chen, H. T. Mirza, I. Hussain, and
J. Woodward. A context-aware personalized travel recommendation
system based on geotagged social media data mining. International

Journal of Geographical Information Science, 27(4):662–684, 2013.

[15] E. Spyrou, I. Sofianos, and P. Mylonas. Mining tourist routes from
flickr photos. In SMAP, pages 1–5, 2015.

[16] Y. Sun, H. Fan, M. Bakillah, and A. Zipf. Road-based travel
recommendation using geo-tagged images. Computers, Environment

and Urban Systems, 53:110–122, 2015.

[17] C. Tai, D. Yang, L. Lin, and M. Chen. Recommending personalized
scenic itinerary with geo-tagged photos. In ICME, pages 1209–1212,

2008.

[18] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni,
D. Poland, D. Borth, and L.-J. Li. The new data and new challenges
in multimedia research. arXiv preprint arXiv:1503.01817, 2015.

[19] Z. Yin, L. Cao, J. Han, J. Luo, and T. S. Huang. Diversified
trajectory pattern ranking in geo-tagged social media. In SDM, pages
980–991, 2011.

[20] D. Zhang, C. Chan, and K. Tan. Processing spatial keyword query as
a top-k aggregation query. In SIGIR, pages 355–364, 2014.

[21] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and
M. Kitsuregawa. Keyword search in spatial databases: Towards
searching by document. In ICDE, pages 688–699, 2009.

[22] D. Zhang, K.-L. Tan, and A. K. Tung. Scalable top-k spatial keyword
search. In EDBT, pages 359–370, 2013.

[23] Y. Zheng, Z. Zha, and T. Chua. Mining travel patterns from
geotagged photos. ACM TIST, 3(3):56, 2012.

[24] Y. Zheng, L. Zhang, X. Xie, and W. Ma. Mining interesting locations
and travel sequences from GPS trajectories. In WWW, pages
791–800, 2009.

[25] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W. Ma. Hybrid index
structures for location-based web search. In CIKM, pages 155–162,
2005.

131

	Finding Socio-Textual Associations Among LocationsParas Mehta, Dimitris Sacharidis, Dimitrios Skoutas, Agnes Voisard

