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ABSTRACT
Time series data is ubiquitous but often incomplete, e.g., due to
sensor failures and transmission errors. Since many applications
require complete data, missing values must be imputed before fur-
ther data processing is possible.

We propose Top-k Case Matching (TKCM) to impute missing
values in streams of time series data. TKCM defines for each time
series a set of reference time series and exploits similar historical
situations in the reference time series for the imputation. A situa-
tion is characterized by the anchor point of a pattern that consists
of l consecutive measurements over the reference time series. A
missing value in a time series s is derived from the values of s
at the anchor points of the k most similar patterns. We show that
TKCM imputes missing values consistently if the reference time
series pattern-determine time series s, i.e., the pattern of length
l at time tn is repeated at least k times in the reference time se-
ries and the corresponding values of s at the anchor time points
are similar to each other. In contrast to previous work, we support
time series that are not linearly correlated but, e.g., phase shifted.
TKCM is resilient to consecutively missing values, and the accu-
racy of the imputed values does not decrease if blocks of values
are missing. The results of an exhaustive experimental evaluation
using real-world and synthetic data shows that we outperform the
state-of-the-art solutions.

1. INTRODUCTION
Time series data appears in many application domains, e.g., me-

teorology, sensor networks, the financial world, and network mon-
itoring. Often time series data is incomplete with values missing
because of sensor failures, transmission errors, etc. Many applica-
tions require complete data, hence missing values must be recov-
ered before further data processing is possible.

Our research is motivated by the problem of missing values in
the data collected by the Südtiroler Beratungsring für Obst- und
Weinbau (SBR). The SBR monitors and analyzes meteorological
data streams in real time and alerts wine and apple farmers of po-
tential harvest threats, such as frost, apple scab, and fire blight. The
SBR operates a network of more than 130 weather stations in South
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Tyrol, each of which records approximately 20 meteorological pa-
rameters at a sample rate of five minutes. The measurements date
back to 2007 with a total of 88.9M measurements. For illustration
purposes, we use the temperature taken at one meter above ground
level, which ranges from −20.3°C to +40.3°C and has a total of
7.8M (= 8%) missing values. Currently, missing values are manu-
ally imputed by domain experts, based on the values at neighboring
stations.

Various works have observed that time series are correlated and
imputation techniques have been proposed that exploit the informa-
tion of co-evolving time series [12, 13, 14, 16, 25]. Popular solu-
tions include SVD based matrix decomposition techniques [11, 12],
multivariate autoregression analysis [25], and PCA (principal com-
ponent analysis) guided data summarization [16, 17, 23]. These
approaches perform well if the time series are linearly correlated
according to the Pearson correlation. The imputation accuracy de-
teriorates if the time series are shifted and have a Pearson correla-
tion close to zero.

In this paper, we propose Top-k Case Matching (TKCM) to im-
pute missing values in streams of non-linearly correlated time se-
ries. TKCM defines for each time series s a small set Rs of ref-
erence time series. If the value in s at the current time tn is miss-
ing, TKCM defines a query pattern P (tn) that is anchored at tn
and composed of the l most recent measurements of the reference
time series. Then, the k most similar non-overlapping patterns to
the query pattern within a given time window are determined. The
missing value is derived from the values of time series s at the an-
chor points of the kmost similar patterns. This process is illustrated
in Fig. 1, where the value of the time series s at the current time tn
is missing (small circle on the right). There are two reference time
series of s, i.e., Rs = {r1, r2}. The query pattern P (tn) is com-
posed of the snippets of the reference time series in the black frame.
The k = 2 most similar patterns to the query pattern are anchored
at ti and tj and are shown as dashed rectangles. The missing value
of s is derived from the values of s at the anchor points ti and tj
(small circles).

TKCM exploits two common properties of time series. First,
time series often exhibit (not necessarily regularly) repeating pat-
terns, also referred to as seasonal patterns. Second, time series are
(not necessarily linearly) correlated in the sense that, whenever a
pattern in a set of reference time series repeats, time series s ex-
hibits similar values. If these two properties are satisfied we say
that at time tn the reference time series Rs pattern-determine time
series s, denoted by Rs, tn

pd−→ s. In other words, whenever simi-
lar patterns occur in Rs, the values of time series s are similar to
each other, too. In contrast to previous work, this property allows
not only linearly correlated reference time series but permits phase
shifts. For instance, in Fig. 1 the two (shifted) reference time se-
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Figure 1: Imputation of a missing value of s at time tn.

ries Rs = {r1, r2} pattern-determine time series s at time tn. We
show that TKCM imputes missing values consistently if the time
series are pattern determining.

The paper makes the following technical contributions:

• We present and formalize Top-k Case Matching (TKCM) to
impute missing values in streams of pattern-determining time
series, which covers non-linear relationships between time
series.

• We show that TKCM computes correct results for shifted
time series that are not linearly correlated. We use a pattern
of length l > 1 to exploit several consecutive measurements
to find similar historical situations.

• We propose a dynamic programming scheme to find the k
non-overlapping patterns that minimize the sum of dissimi-
larities with respect to the query pattern.

• We empirically show on real-world and synthetic datasets
that TKCM: (a) outperforms state-of-the-art solutions, (b)
can impute values in time series with phase shifts, and (c)
is resilient to large blocks of consecutively missing values.

The paper is structured as follows. Section 2 discusses related
works. After the preliminaries in Section 3 we describe our ap-
proach in Section 4. Section 5 analyzes the properties of TKCM
and works out the differences between linear and non-linear cor-
relations. In Section 6 we provide an implementation of TKCM
that uses a dynamic programming solution to find the k non-
overlapping patterns that are most similar to the query pattern. We
continue with the experimental evaluation in Section 7 before we
conclude this paper and present future research directions in Sec-
tion 8.

2. RELATED WORK
The need to recover missing data arises in many applications,

ranging from meteorology [18, 26], to social science [20], machine
learning [2], motion capture systems [14] and DNA microarray
analysis [24]. Imputing a missing value means to recover it with
a good estimate that is derived from intrinsic relationships in the
underlying dataset.

Simple imputation techniques include mean and mode imputa-
tion [2], which replace the missing value with the mean or mode of

the same attribute. Interpolation techniques, such as linear interpo-
lation and spline interpolation, estimate the missing value from im-
mediately preceding and succeeding values of the same attribute. If
the gap is long, i.e., if many consecutive values are missing, these
interpolation techniques perform badly. For instance, if an entire
period of a sine wave is missing, linear interpolation would replace
the gap with a straight line. Regression methods [25] estimate the
missing value of a time series (e.g., temperature in Zurich) based
on the value of other time series (e.g., temperature in Bern and
Basel). Paulhus et al. [18] observed that nearby weather stations
have similar values and computed a missing value at one station as
the average of the values of nearby stations. Yozgatligil et al. [26]
give a recent survey of imputation methods for meteorological time
series and cover approaches based on neural networks and multiple
imputation [19].

The ARIMA model [4] is a popular time series forecasting model
that is a generalization of the auto-regressive (AR) model. ARIMA
assumes a linear dependency of unknown future values on known
past values of the time series. Finding the proper values for p, d, q
in an ARIMA(p, d, q) model is tedious, complex and involves man-
ual analysis, known as the Box-Jenkins methodology [4].

Batista et al. [2] study the problem of missing data in the context
of machine learning algorithms and present the k-Nearest Neigh-
bor Imputation (kNNI) method to recover these values. For a
multi-attribute object (e.g., breast cancer test with multiple mea-
surements) that has a missing value for one attribute A, the kNNI
approach looks for k objects with similar values for the other at-
tributes according to a distance metric that is not specified. The
missing value is derived from the values of attribute A in these ob-
jects. Troyanskaya et al. [24] extend kNNI to weight the k most
similar items according to their similarity. Our approach, TKCM,
uses the concept of nearest neighbors (k most similar patterns),
but is designed for time series streams and uses a two-dimensional
query pattern for which the k most similar non-overlapping pat-
terns according to the Euclidean distance are searched.

Khayati et al. [11] propose REBOM to recover blocks of miss-
ing values in irregular time series with non-repeating trends. The
algorithm builds a matrix which stores the incomplete time series
and the n most linearly correlated time series according to Pear-
son correlation. Missing values are first initialized, e.g., using lin-
ear interpolation. Then the matrix is iteratively decomposed using
the Singular Value Decomposition (SVD) method, where the least
significant singular values are truncated. Due to the quadratic run-
time complexity, REBOM does not scale to long time series. Next,
Khayati et al. [12] present a solution with linear space complexity
based on the Centroid Decomposition (CD), which is an approxi-
mation of SVD. Unlike our approach, SVD and CD assume a lin-
ear correlation between an incomplete time series and its reference
time series. If time series are not linearly correlated, the imputation
accuracy deteriorates since these trends are captured by the trun-
cated least significant singular values. Khayati et al. [13] show that
CD imputes more accurately than SVD when some reference time
series are shifted and hence lowly linearly-correlated, because CD
prioritizes highly linearly-correlated reference time series. Never-
theless, their experiments show that adding more lowly-correlated
reference time series has a negative impact on CD’s accuracy.

Sorjamaa et al. [15, 22] propose an imputation method based on
a Self-Organizing-Map (SOM), which is an unsupervised learning
technique based on neural networks. A combination of SVD and
SOM [22] uses SVD for the imputation after initializing missing
values in the matrix by a SOM classifier, whereas [15] combines
two SOM classifiers for the imputation. Both methods are only
evaluated on linearly correlated time series.
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DynaMMo [14] is used for mining, summarizing, and imput-
ing time series extracted from human motion capture systems. It
is based on Kalman filters, which, similar to SVD, assume a lin-
ear correlation between time series to accurately estimate unknown
values. Moreover, unlike our approach, DynaMMo allows only one
reference time series, which often is insufficient for an accurate im-
putation.

The works most similar to our approach are MUSCLES [25] and
SPIRIT [16, 17, 23], which focus on the online imputation of miss-
ing values in streams of time series data. Both algorithms use vari-
ants of auto-regressive (AR) models and exploit linear correlations
between data streams. When the linear correlation diminishes, as in
the case of shifted time series, none of the two approaches performs
well.

MUSCLES [25] is an online algorithm that is based on a mul-
tivariate auto-regression model, whose parameters are incremen-
tally updated using the Recursive Least Squares method. Besides
past values of the incomplete time series, MUSCLES takes also the
most recent values of co-evolving and linearly correlated time se-
ries into account that are within a window p. How to choose p is not
discussed; in the experiments p = 6 is used. After p consecutive
missing values, MUSCLES relies exclusively on imputed values
for the incomplete time series. Since small imputation inaccuracies
accumulate over a long stretch of missing values, MUSCLES ac-
curacy deteriorates. Additionally, MUSCLES does not scale well
to a large number of streams, unless an expensive offline subset
selection on the time series is performed [17].

SPIRIT [16, 17, 23] uses an online Principal Component Analy-
sis (PCA) to reduce a set of n co-evolving and correlated streams
to a small number of k hidden variables that summarize the most
important trends in the original data. For each hidden variable,
SPIRIT fits one AR model on past values, which is incrementally
updated as new data arrives. If a value is missing, the AR models
are used to forecast the current value of each variable, from which
an estimate of the missing value is derived. The imputed value,
along with the non-missing values, is then used to update the fore-
casting models. Updating the models with imputed models incurs
similar problems as MUSCLES since inaccuracies are propagated.
Since PCA and SVD are based on the same underlying principle,
PCA shares SVD’s weaknesses for shifted time series.

From an implementation perspective, TKCM needs to find sim-
ilar patterns in time series. This problem has been studied exten-
sively for a single time series, yielding different dimensionality re-
duction techniques, e.g., Discrete Fourier Transform [6], Piecewise
Aggregate Approximation [7], and iSAX [21]. Keogh et al. [10]
present a fast approach to find a subsequence (i.e., one-dimensional
pattern), termed shapelet, of a time series that is most representa-
tive for a set of time series. Finding patterns in our approach is
more complex. We seek patterns that span several time series, and
we have to select the k most similar non-overlapping patterns. The
main focus of this work is not performance, but an accurate impu-
tation of shifted time series streams.

3. PRELIMINARIES
Consider a set S = {s1, s2, . . .} of streaming time series. Each

time series reports values from a sensor measured at time points
. . . , tn−2, tn−1, tn, where tn denotes the current time, i.e., the time
of the latest measurement. The value of a time series s ∈ S at
time ti is denoted as s(ti). We write s(tn) = NIL to denote that
the current value of s is missing. W = {tn−L+1, . . . , tn−1, tn}
denotes the L time points in our streaming window for which we
keep measurements in main memory. We assume that the streaming
window W is long enough to include the query pattern and k non-

overlapping similar patterns.
For each time series s ∈ S there exists an ordered sequence
〈r1, r2, . . .〉 of candidate reference time series, where ri ∈ S\{s}.
They have been identified by domain experts and are consulted if
the current value in s is missing and must be recovered. The candi-
date reference time series of s are ranked according to how suitable
they are for imputing a missing value in s. A single reference time
series does not yield a robust method to estimate a missing value.
Instead the d best candidate reference time series that do not have
a missing value at the current time tn are used. Let s ∈ S be an
incomplete time series with s(tn) = NIL. The reference time se-
ries Rs for s at the current time tn are the first d time series in the
ordered sequence for which r(tn) 6= NIL.

Note that there can be multiple incomplete time series with a
missing value at tn. For each incomplete time series si its miss-
ing value si(tn) is imputed individually using the respective set of
reference time series Rsi .

Example 1. As a running example, we use the four time se-
ries in Table 2. The current time is tn = 14:20. Time se-
ries s is incomplete, hence the missing value at 14:20 must be
imputed. We assume a sliding window of one hour, containing
L = 12 measurements. For all time points before tn the val-
ues either have been reported by the sensor or have been imputed,
e.g., r2(13:40) = 1̂8.8°C. The candidate reference time series are
〈r1, r2, r3〉. At the current time tn = 14:20, the d = 2 reference
time series for s are Rs = {r1, r2}. When the current time was
tn = 13:40, we had Rs = {r1, r3} since r2(13:40) was missing.
2

Notation Description
tn Current time
S = {s1, s2, . . . } Set of time series
s(tn) = NIL Missing value of time series s at time tn
ŝ(tn) 6= NIL Imputed value of time series s at time tn
d Number of reference time series
Rs = {r1, . . . , rd} Set of d reference time series for s
W = {. . . , tn} Time points in streaming window
L Length of streaming window W
l Pattern length
P (ti) Pattern anchored at time ti
k Number of anchor points
A = {ti1 , . . . , tik} k most similar anchor points

Table 1: Summary of notation.

4. TOP-K CASE MATCHING (TKCM)

4.1 Approach
For the recovery of a missing value in an incomplete time series

we look for patterns in the past when the values of the reference
time series were similar to the current values.

Definition 1. (Pattern) Let Rs = {r1, . . . , rd} be the reference
time series for an incomplete time series s. The pattern P (ti) of
length l > 0 over Rs that is anchored at time ti is defined as a d× l
matrix P (ti) as follows:

P (ti) = ((r1(ti−l+1), . . . , r1(ti)),
...

...
(rd(ti−l+1), . . . , rd(ti))).
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Time t · · · 13:25 13:30 13:35 13:40 13:45 13:50 13:55 14:00 14:05 14:10 14:15 14:20
s · · · 22.8°C 21.4°C 21.8°C 2̂3.1°C 23.5°C 22.8°C 21.2°C 21.9°C 23.5°C 22.8°C 21.2°C NIL
r1 · · · 16.5°C 17.2°C 17.8°C 16.6°C 15.8°C 16.2°C 17.4°C 17.7°C 15.3°C 16.3°C 17.1°C 17.5°C
r2 · · · 20.3°C 19.8°C 18.6°C 1̂8.8°C 2̂0.0°C 2̂0.5°C 19.8°C 18.2°C 20.1°C 20.2°C 19.9°C 18.2°C
r3 · · · 14.0°C 14.8°C 13.6°C 13.0°C 14.5°C 14.3°C 14.0°C 15.0°C 13.0°C 14.5°C 14.3°C 14.6°C

Table 2: Time series s with a missing value at time tn = 14:20 and the three reference time series r1, r2 and r3.

A pattern is anchored at a time point ti and consists of the values
from ti−l+1 to ti of each reference time series. Each row repre-
sents a subsequence of a reference time series, and each column
represents the values of the reference time series at a time point.
The pattern contains for each reference time series only the values
at time ti, if l = 1. The pattern includes additionally the preceding
l − 1 values, and hence captures the trend, if l > 1.

Example 2. Figure 2 shows two patterns over the reference time
series Rs = {r1, r2} in our running example (cf. Table 2). Both
patterns have length l = 3 and are anchored at time points 14:00
and 14:20, respectively. Pattern P (14:00) contains one imputed
value, namely r2(13:50) = 2̂0.5°C. Since l > 1 the pattern cap-
tures the current trend of the time series. 2
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2̂0.5 19.8 18.2

13:50 13:55 14:00

r1

r2

l = 3
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Figure 2: Two patterns of length l = 3 over d = 2 reference time
series.

The pattern that is anchored at the current time is termed query
pattern P (tn). We search in the reference time series for the k
patterns that are most similar to P (tn) using the L2 norm.

Definition 2. (Pattern Dissimilarity) Let s be an incomplete
time series with reference time series Rs at time tn. The dissimi-
larity, δ, between two patterns P (tm) and P (tn) is defined as

δ(P (tm), P (tn)) =

√ ∑
ri∈Rs

∑
0≤j<l

(ri(tm−j)− ri(tn−j))2.

Example 3. The dissimilarity between the two patterns in
Figure 2 is computed as follows: δ(P (14:00), P (14:20)) =√

(17.7− 17.5)2 + (17.4− 17.1)2 + (16.2− 16.3)2 + . . . =
0.43. 2

The dissimilarity measure is used to determine the kmost similar
patterns to query pattern P (tn). The anchor time points of these k
patterns are referred to as the k most similar anchor points A.

Definition 3. (k Most Similar Anchor Points) Let P (tn) be the
query pattern for incomplete time series s at time tn with reference
time series Rs, and L be the length of the streaming time window.
The k most similar anchor points to tn are a set A ⊆ W , with
|A| = k, for which the following holds:

∀t ∈ A : tn−L+l ≤ t ≤ tn−l (1)

∀t, t′ ∈ A : t 6= t′ → |t− t′| ≥ l (2)

∀A′ : (1) ∧ (2) ∧ |A′| = k →∑
ti∈A

δ(P (ti), P (tn)) ≤
∑

ti∈A′
δ(P (ti), P (tn)) (3)

The first condition states that all patterns are within the time win-
dow and do not overlap P (tn). The second condition states that the
patterns do not overlap each other. The third condition ensures that
the patterns that are anchored at the time points in A minimize the
sum of the dissimilarities with respect to query pattern P (tn).

We pick only non-overlapping patterns to avoid near duplicates
[5, 8]. Our experiments have shown that if overlapping patterns
were allowed, the k most similar anchor points for some pattern
P (ti) are frequently time points ti+1 and ti−1, which anchor the
first and second most similar patterns, etc. This is clearly not de-
sired. Instead, non-overlapping patterns guarantee that we find a
diverse set of patterns on which the imputation is based.

The missing value in the incomplete time series s is the average
of the values of s at the most similar time points.

Definition 4. (Imputed Value) Let s be a time series with refer-
ence time series Rs at tn and missing value s(tn). Furthermore,
let A be the k most similar time points to the current time. The
imputed value ŝ(tn) for time series s at time tn is

ŝ(tn) =
1

k

∑
t∈A

s(t). (4)

Example 4. Figure 3 shows a graphical representation of our
running example (cf. Table 2). The value of s at time tn = 14:20
is missing and must be imputed. The query pattern P (14:20) is
framed in black. The two patterns most similar to the query pat-
tern are shown as dashed rectangles and are anchored at time 14:00
and 13:35, respectively. Thus, A = {14:00, 13:35} are the anchor
points. The missing value is computed as the average of the val-
ues s(14:00) and s(13:35): ŝ(14:20) = (21.9°C + 21.8°C)/2 =
21.85°C. 2
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5. ANALYSIS

5.1 Correlation
A salient property of TKCM is its ability to handle time series

that are shifted and hence not linearly correlated. The Pearson cor-
relation, the most common correlation measure, quantifies the de-
gree of linear correlation between time series s and r, as

ρ(s, r) =

∑
t∈W (s(t)− s̄)(r(t)− r̄)√∑

t∈W (s(t)− s̄)2
√∑

t∈W (r(t)− r̄)2
,

where s̄ and r̄ are the means of, respectively, s and r in windowW .
Pearson correlation ranges from −1 to 1, indicating total negative
and positive correlation, respectively. Thus, s and r are linearly
correlated if |ρ(s, r)| is high. If ρ(s, r) = 0 time series s and r are
not linearly correlated.

Intuitively, a linear correlation ensures that (a) if one time series
has close values for two time points, also the other has close values
for these two time points and (b) if one time series has far apart
values for two time points, also the other has far apart values for
these two time points.

Example 5. Consider Figure 4a with time series s(t) = sind(t)
and r1(t) = 1.5 × sind(t) + 1, having different amplitudes and
offsets. The value of r1 at t = 840 is r1(840) = 2.3, and the same
value r1(t) appears for time points t ∈ {780, 480, 420, 120, 60}.
Figure 4a illustrates that these are exactly the time points for which
s has the same value of s(840) = 0.86. Thus, the time series
are perfectly linearly correlated. Figure 4b uses a scatterplot to
display the correlation between s and r1. The scatterplot displays
for each time point t the point (r1(t), s(t)). For instance, at time
t = 840 we have r1(840) = 2.3 and s(840) = 0.86 and the point
(2.3, 0.86) is displayed in the scatterplot. The more the scatter-
plot resembles a line with a non-zero slope, the higher the linear
correlation and hence Pearson correlation. 2
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(a) Time series s and r1

0 1 2 2.3

−1

0

0.86
1

r1(t)

s(t)

(b) Scatterplot of linear correlation

Figure 4: Linearly correlated time series s(t) = sind(t) and
r1(t) = 1.5× sind(t) + 1.

Example 5 illustrates how the imputation for linearly correlated
time series works. If s(tn) is missing, we know that whenever time
series r1 observes value r1(tn) (e.g., 2.3), time series s observes
the same value s(t) (e.g., 0.86). Hence we can use value s(t) for
any t where r1(t) = 2.3 to impute value s(tn).

In contrast, if the Pearson correlation approaches zero, s can
have very different values although the reference time series has
the same value. This is illustrated in Example 6.

Example 6. Figure 5a depicts the time series s(t) = sind(t) and
r2(t) = sind(t−90). The two time series have the same amplitude
and offset but they are phase shifted. Time series r2 has the value
r2(840) = 0.5 also for time points t ∈ {600, 480, 240, 120}.

However, s has different values, i.e., value s(t) = 0.86 for time
points t ∈ {480, 120} and value s(t) = −0.86 for time points
t = {600, 240}. The scatterplot in Figure 5b shows that the data
points do not cluster around a line, which means that they are non-
linearly correlated. Their Pearson correlation is −0.0085. Note
that for the same value of r2(t) we can have two different values
for s(t). For instance, for r2(t) = 0.5 we have either s(t) = 0.86
or s(t) = −0.86. 2
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Figure 5: Non-linearly correlated time series s(t) = sind(t) and
r2(t) = sind(t− 90)

Example 6 illustrates the key problem with non-linear correla-
tions: the values of one time series can no longer be used to reli-
ably determine a missing value in another time series. In the exper-
iments we will see that this leads to imputations with a high root
mean square error.

5.2 Pattern Length
The previous section illustrated that shifted time series that are

not linearly correlated are difficult to handle. Intuitively, for shifted
time series it is not sufficient to consider a single point in time. In-
stead it is necessary to consider a pattern that includes neighboring
time points to correctly relate time series. This section illustrates
that a pattern with a length l > 1 improves the imputation for non-
linear correlations. We write Pl(t) to denote a pattern of length l
anchored at time t.

Example 7. Figure 6 displays s and, for each time point t, the
pattern dissimilarity of the pattern anchored at r1(t) to the query
pattern P (840), i.e., δ(P (t), P (840)). Figure 6a does this for pat-
tern length l = 1. The pattern dissimilarity is zero whenever the
value of s is equal to s(840). Figure 6b shows what happens if we
increase the pattern length to l = 60. Also for this case whenever
the pattern dissimilarity for the reference time series r1 is zero, i.e.,
for 480 and 120, we have value 0.86 for time series s. Observe that
for increasing values of l less patterns with distance zero exist (e.g.,
two in Fig. 6b instead of 5 in Fig. 6a). But the patterns with l > 1
at distance zero describe the situation better: s(840) is located at a
down-slope, and in Fig. 6b values of s where the pattern distance
is zero only exist at down-slopes, while in Fig. 6a we have such
values at both up- and down-slopes. 2

Example 8. For shifted time series a pattern length l > 1 in ad-
dition captures the trend of time series and yields a more accurate
imputation. First, Figure 7a illustrates s and the pattern dissimilar-
ity to r2 for l = 1. Figure 7b shows the same setting with l = 60.
With l > 1 the pattern dissimilarity reaches zero only for time
points 480 and 120, where time series s has value 0.86, which is
the expected value for missing value s(840). This illustrates that
by increasing l, TKCM finds anchor points where the incomplete

334



0 180 360 540 720 840

0

2

4

6

t [minutes]

s

δ(P (t), P (840)) forr1

(a) Pattern length l = 1

0 180 360 540 720 840

0

2

4

6

t [minutes]
(b) Pattern length l = 60

Figure 6: A longer pattern reduces the number of patterns that are
identical to the query pattern.

time series s has similar values and trends. Consequently, TKCM
uses pattern length l to effectively deal with shifted time series that
are not linearly correlated. 2
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Figure 7: For shifted time series a longer pattern finds historical
situations that are similar in value and trend.

LEMMA 5.1. (Monotonicity in Pattern Length) The number of
patterns that are within a distance τ to query pattern P (tn) de-
creases as the pattern length l increases:

|{tm|δ(Pl+1(tm), Pl+1(tn))≤τ}| ≤ |{tm|δ(Pl(tm), Pl(tn))≤τ}|

PROOF. Let ∆ = δ(Pl(tm), Pl(tn)). If pattern
length l is increased we get δ(Pl+1(tm), Pl+1(tn)) =√

∆2 +
∑

ri∈Rs(ri(tm−l)− ri(tn−l))2. Observe that both
terms under the square root are non-negative, hence δ is mono-
tonically increasing as l increases. It follows that the number of
patterns with distance ≤ τ decreases as l grows.

5.3 Consistent Imputation

Definition 5. (Pattern-Determining at time tn) At time tn the
reference time series Rs pattern-determine time series s, written
Rs, tn

pd−→ s, if for the k most similar anchor points A (cf. Def. 3)
and patterns of length l the following holds for a small value ε:

∀ti, tj ∈ A : |s(ti)− s(tj)| ≤ ε

Example 9. In our running example (cf. Fig. 3), the query
pattern P (tn=14:20) is based on the two reference time series
Rs = {r1, r2}. The k = 2 most similar anchor points are
A = {14:00, 13:35}, and the values of s at these two anchors are
21.9°C and 21.8°C, respectively. The two reference time series
Rs pattern-determine s at time tn (written Rs, 14:20 pd−→ s) with
ε = |21.9°C− 21.8°C| = 0.1°C. 2

Pattern-determining time series guarantee that for a missing
value s(tn) we find in the sliding window at least k similar pat-
terns P (ti1), . . . , P (tik ) to P (tn) and the missing value s(tn) is
similar to the observed values s(ti).

Definition 6. (Consistent Time Series) Let s be a time series with
missing value s(tn) = NIL. Let ŝ be a time series where the
missing value s(tn) has been imputed, that is ŝ(tn) 6= NIL and
∀t ∈ W \ {tn} : ŝ(t) = s(t). Time series ŝ is consistent if
∀t ∈ A : |ŝ(t)− ŝ(tn)| ≤ ε.

When TKCM imputes an incomplete time series s, we get an
imputed time series ŝ. Intuitively, ŝ is consistent if its value at the
current time tn is similar to past values when the reference time
series observed a similar pattern.

LEMMA 5.2. Let s be an incomplete time series with a missing
value s(tn) = NIL and Rs its reference time series. Let ŝ be the
imputed time series produced by TKCM. If (a) Rs, tn

pd−→ s and (b)
s(tn) is imputed as defined in Eq. 4, ŝ is a consistent time series.

PROOF. Let P (tn) be the query pattern that TKCM constructs
for the reference time series in Rs with pattern length l. TKCM
looks for the k most similar anchor points A with respect to P (tn).
Since the reference time series Rs pattern-determine s at time tn,
we have that ∀t, t′ ∈ A : |s(t) − s(t′)| ≤ ε. The imputed value
ŝ(tn) is the average of s at the anchor points (cf. Eq. 4). Since all
values of s at A are similar among each other within a distance of
ε, their mean ŝ(tn) is equally similar within an ε distance to all of
them, i.e. ∀t ∈ A : |ŝ(t)− ŝ(tn)| ≤ ε. Consequently the imputed
time series ŝ is consistent.

Next, we give an example of pattern-determining time series to
illustrate what kind of phenomena TKCM can handle. Specifically,
we show that sine waves of the form f(t) = A × sind(t 360

P
+

φ) + o with amplitude A, period P , offset o, and phase shift φ are
pattern-determining and that TKCM achieves consistent imputation
on these series. The experiments in Section 7 confirm that this also
holds for real world time series.

LEMMA 5.3. Assume s(t) = A1 × sind(t 360
P

+ φ1) + o1 and
r(t) = A2 × sind(t 360

P
+ φ2) + o2. Then Rs = {r} is pattern-

determining s at time tn for l > 1, k ≥ 1 and L ≥ kP + l.

PROOF. Observe that for l > 1, pattern P (tn) occurs exactly
once every full period, i.e., P (t) = P (tn) only if t = tn−iP for
every i ∈ N. Since L ≥ kP + l we know there are k patterns P (t),
such that P (t) = P (tn). Since s has the same periodicity as r, we
know that ∀t, t′ ∈ A : |s(t)− s(t′)| ≤ 0 = ε.

6. IMPLEMENTATION OF TKCM

6.1 Overview
To impute a missing value in a time series s at the current time

tn, TKCM performs three steps:

1. Pattern Extraction: Extract the anchor points of all candidate
patterns from the streaming windowW and compute the dis-
similarity of these patterns to query pattern P (tn) (cf. Defi-
nition 2).

2. Pattern Selection: Select from the anchor points determined
in step 1 the subset A of the time points that anchor the k
most similar non-overlapping patterns (cf. Definition 3).
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3. Value Imputation: Impute the missing value at tn using an-
chor points A (cf. Definition 4).

In step 2, TKCM must find the k patterns that neither overlap
each other nor P (tn), and that minimize the sum of dissimilarities
with respect to P (tn). A simple greedy algorithm that sorts the an-
chor points according to dissimilarity and picks the first k ones that
do not overlap fails to minimize the sum of dissimilarities. There-
fore, we propose a dynamic programming scheme that exploits an
optimal sub-structure of this problem. Let D[j] denote the dissimi-
larity between the jth pattern in the window and the query pattern,
and M [i, j] denote the sum of dissimilarities of the i most simi-
lar non-overlapping patterns from among the first j patterns in W ,
where i ≤ j. M [i, j] = 0 if i = 0, because no patterns have to
be chosen. Similarly, M [i, j] = ∞ if i > j because we cannot
possibly find i non-overlapping patterns if we have only j < i to
choose from. Otherwise, we have two options: either (a) we omit
the jth pattern and pick i patterns that possibly overlap it; or (b)
we pick the jth pattern having dissimilarity D[j] and have space
left for i−1 patterns that do not overlap it. In the latter case, the
first pattern to no longer overlap the jth pattern, if one exists, is the
(j − l)th pattern.

This yields the following recurrence that minimizes the sum of
dissimilarities:

M [i, j]=


0 if i = 0,
∞ if i > j,

min

{
M [i, j−1]
D[j] +M [i−1, j − l]

otherwise
(5)

The sum of dissimilarities of the k most similar anchor points is
given by M [k, L−2l+1], since L−2l+1 is the number of anchor
points when we exclude the l − 1 first and l last time points in W
(cf. Def. 3).

6.2 Algorithm
The implementation uses one ring buffer of length L for each

time series s and an offset O into the ring buffers to efficiently
update the streaming window. The value at time tn is located at
s[O] and the oldest value at s[(O+1)%L], where % is the modulo
operator. TKCM’s pseudo code is listed in Algorithm 1. The input
parameters are the ring buffer for the incomplete time series s with
a missing value at s[O], d ring buffers R for the reference time
series, the window size L, the pattern length l, and the number of
anchor points k. The algorithm stores the imputed value in s[O]
and returns it.

For processing, the algorithm uses an array D to store pattern
dissimilarities, a (k+1)× (L−2l+2) matrix M to store the result
for the dynamic programming algorithm, and an array A of size k
to store the k most similar anchor points.

Lines 1–7 correspond to step 1, where the dissimilarities of all
patterns in W are computed and stored in array D. The first
l−1 and the last l time points are ignored as described above.
In step 2, the algorithm finds the k most similar anchor points
(Lines 8–23). Lines 8–14 implement the recurrence in Equation 5.
max(j−l, 0) computes the predecessor of the jth pattern, yield-
ing j = 0 if no such predecessor exists. Once matrix M is filled,
M [k, L−2l+1] contains the sum of dissimilarities of the k most
similar anchor points A. Finally, TKCM backtracks in lines 15–23
to find the anchor points A. The algorithm starts in the lower-
right most cell M [k, L−2l+1] and applies the recurrence back-
wards. If for a cell M [i, j] we have M [i, j] = M [i, j−1] the jth
anchor point is skipped as it is not part of the optimal solution,
and the algorithm proceeds at cell M [i, j−1]. Otherwise, the jth

Algorithm 1: TKCM
Input: Ring buffer s, Array R of d ring buffers, window size L,

pattern length l, and k.
Output: Imputed value in s[O].

1 for j ← 1 to L−2∗l+1 do
2 D[j]← 0;
3 for i← 0 to d−1 do
4 for x← 0 to l−1 do
5 y ← l+j−x−1;
6 D[j]← D[j]+(R[i][(O+y)%L]−R[i][(O−x)%L])2;

7 D[j]← sqrt(D[j]);

8 for j ← 0 to L−2∗l+1 do
9 M [0][j]← 0;

10 for i← 1 to k do
11 if i > j then
12 M [i][j]←∞;
13 else
14 M [i][j]←min(M [i][j−1], D[j]+M [i−1][max(j−l, 0)]);

15 i← k;
16 j ← L−2∗l+1;
17 while i > 0 do
18 if M [i][j] = M [i][j−1] then
19 j−−;
20 else
21 A[i−1]← j;
22 i−−;
23 j ← max(j−l, 0);

24 s[O]← 0;
25 for i← 0 to k−1 do
26 s[O]← s[O] + (s[(O+l+A[i]−1)%L]/k);

27 return s[O];

anchor point is added to A and the algorithm proceeds with cell
M [i−1,max(j−l, 0)] until i reaches 0, indicating that k anchor
points have been chosen. Finally, in lines 24–27, which correspond
to step 3, the algorithm imputes the missing value using the k most
similar anchor points according to Definition 4.

Example 10. The top of Fig. 8 shows a streaming window of
length L = 10 with current time tn = t13. The query pat-
tern of length l = 3 and all extracted patterns are shown as red
and black intervals, respectively. The first (i.e., j = 1) pattern
is P (t6) and the last pattern is P (t10). The lower left table lists
the patterns in the streaming window, their index j, predecessor,
and dissimilarity with respect to query pattern P (t13). For in-
stance, P (t8) with index j = 3 has no non-overlapping prede-
cessor, hence max(j − l, 0) = 0. The right table shows the matrix
M computed by Algorithm 1. For instance, M [1, 1] is the result
of computing min(D[1] +M [1−1,max(1−3, 0)],M [1, 1−1]) =
min(0.5+0,∞) = 0.5. M [2, 5] = 1.2 in the lower-right corner
contains the minimum sum of dissimilarity. To retrieve the k most
similar non-overlapping patterns, the algorithm starts at M [2, 5]
and follows the highlighted path through the matrix: gray means
that a pattern was omitted and green means that a pattern is part of
the final result. For instance, M [2, 5] is equal toM [2, 4], hence the
j = 5th pattern P (t10) is not part of the solution. M [2, 4], in turn,
is the result of D[4]+M [1, 1] = 0.7+0.5 = 1.2, hence j = 4th
pattern P (t9) is part of the solution. Continuing with M [1, 1] we
find another match before reaching M [0, 0]. The algorithm finds
the k = 2 anchor points A = {t6, t9} and computes the imputed
value ŝ(t13) = 1/2(s(t6) + s(t9)).
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1

2

P (t) j max(j−l, 0) D[j]

P (t6) 1 0 0.5
P (t7) 2 0 0.3
P (t8) 3 0 2.1
P (t9) 4 1 0.7
P (t10) 5 2 4.0

Figure 8: Dynamic programming algorithm to compute the time
points of the top k = 2 non-overlapping patterns of length l = 3
that minimize the sum of dissimilarities.

6.3 Complexity Analysis

LEMMA 6.1. When the current time tn advances, TKCM needs
O(1) time per stream s to update the corresponding ring buffer of
size O(L).

PROOF. When tn advances, a new value replaces an old value
in the time series, requiring O(1) time in a ring buffer of size L.

LEMMA 6.2. The time complexity of TKCM to impute a missing
value is O((l × d+ k)× L).

PROOF. Initially TKCM computes the dissimilarity of O(L)
patterns, each of size l × d, having an overall time complexity of
O(l× d×L). Next the algorithm iterates over the O(k×L) sized
dynamic programming matrixM . Hence the overall time complex-
ity is O(l × d× L+ k × L).

LEMMA 6.3. The space complexity of TKCM to impute a miss-
ing value is O(k × L).

PROOF. The pattern extraction phase requires O(L) space to
store the dissimilarities of all patterns. TKCM needs O(k × L)
space for matrix M .

7. EXPERIMENTAL EVALUATION
In the experiments we simulate large blocks of consecutively

missing values (e.g. one week). We repeatedly call TKCM to im-
pute each missing value. This simulates a common sensor failure
that requires a technician to reach a faulty weather station and re-
place the broken sensor. As accuracy measure we use the root mean
square error (RMSE), defined as

RMSE =

√
1

|T |
∑
tn∈T

(s(tn )− ŝ(tn))2,

where T is the set of missing time points. The experiments are
conducted on a Linux server, running Ubuntu 14.04 server edition.
It is powered by an Intel Xeon X5650 CPU with a frequency of
2.67GHz and 24GB of main memory. TKCM is implemented in C
and compiled with Clang 3.4-1, based on LLVM 3.4.

7.1 Datasets and Setup
We use both real-world and synthetic datasets in our experimen-

tal evaluation. First, we use the SBR dataset of meteorological time
series in South Tyrol (cf. Sec. 1). Second, we shift the time series

of the SBR data set by a (different) random amount up to one day
and call this dataset SBR-1d. Third, we use the Flights dataset [3]
that consists of eight time series, each of length 8801 (6 days). A
time series describes at time t the number of airplanes that departed
from a given airport and are in the air at time t. Fourth, we use the
publicly available Chlorine dataset [1] used by SPIRIT [16]. This
synthetic dataset was generated by a simulation of a drinking water
distribution system; it describes the chlorine concentration at 166
junctions over a time frame of 4310 time points (15 days) with a
sample rate of 5 minutes. The propagation of the chlorine level
in the system causes phase shifts in the dataset. Fig. 9 shows an
excerpt of three sample time series from each dataset. Each time
series has different amplitudes, phase shifts, and trends.
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Figure 9: Three sample time series from each dataset.

We compare TKCM to three competitors: CD [13] (provided by
the author), MUSCLES [25] (implemented in Matlab), and SPIRIT
[23] (obtained from [1], Matlab code). SPIRIT’s Matlab code
does not impute missing values, hence we extended the code to
use one autoregressive model per hidden variable as described in
[23]. SPIRIT automatically adds or removes hidden variables as
the streams evolve. When a hidden variable appears, a new autore-
gressive model of order p = 6 needs to be fitted, which requires
at least p values of the new hidden variable before it can be used.
If in that time a value needs to be imputed, the model is not yet
ready. Consequently we fixed the number of hidden variables at
two, which gave generally the best results in our experiments. For
MUSCLES and SPIRIT we use a tracking window size of p = 6 as
recommended by the authors [23, 25]. Contrary to the author’s rec-
ommendation we set the exponential forgetting factor λ to 1 rather
than to 0.96 ≤ λ ≤ 0.98. We found that for λ < 1 the accuracy de-
creases, because the algorithms “forget” the old non-imputed (and
accurate) values and adapt more to the new imputed (and inaccu-
rate) values. CD has no parameters to tune. The code for our MUS-
CLES, SPIRIT, and TKCM implementations is available online1.

1http://www.ifi.uzh.ch/en/dbtg/Staff/wellenzohn/dasa.html
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7.2 Calibration
We begin with an initial calibration of TKCM’s parameters d,

k, and L. Unless otherwise noted we set the parameters to the
following default values; d = 3 reference time series, k = 5 most
similar anchor points, a streaming window of L = 1 year, and
pattern length l = 72.

In the left column of Fig. 10 we show TKCM’s accuracy for
increasing values of d on three datasets; for brevity we omit the
SBR dataset as it shows identical behavior to the SBR-1d dataset.
TKCM’s accuracy significantly increases (that is the RMSE de-
creases) as d increases up to d = 3 reference time series, while
d > 3 does not provide significantly better accuracy. Since the
Flights dataset has only 8 time series, we can set d at most to 7.
The right column of Fig. 10 shows the impact of parameter k on
TKCM’s accuracy. In general we tend to pick small values of k,
e.g., k ∈ [3, 10] to get the best possible (most similar) patterns
from the window. Larger values of k may add less similar patterns,
in particular for short streaming windows. We observed that for
the two small datasets Flights and Chlorine k = 5 is sufficient.
TKCM’s accuracy noticeably decreases on the Flights dataset for
k > 5, because the dataset contains only measurements for 6 days
and if one day is missing we try to find more than 5 similar situa-
tions within 5 days, which makes no sense. For the larger (1 year)
SBR and SBR-1d datasets we found that there is a marginal accu-
racy increase even from k = 5 to k = 10, after which the accuracy
remains stable. Therefore, our recommendation is to use a small
value of k, e.g. k = 5, and if the dataset is large, one can safely
double k.
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Figure 10: Calibration shows that d = 3 and k = 5 are good
default values.

For the small Flights and Chlorine datasets (6 and 15 days, re-
spectively) we use in our experiments the entire time range as
streaming window length L. For the SBR and SBR-1d datasets
we use a streaming window length L = 105120 (1 year), be-
cause one year covers the whole temperature range and contains
each pattern several times. This choice is conservative; we found
that already a window size of 6 months gives a good accuracy of
RMSE = 1.8°C, which only dropped to 1.7°C for a 5 year win-
dow. In general, larger window sizes L provide only a slightly
superior accuracy.

7.3 Accuracy

7.3.1 Pattern Length l

For shifted time series, the pattern length l is the key to an accu-
rate and robust imputation. In Fig. 11, we evaluate l by varying the
pattern length l from 1 to 144 (i.e., a pattern that spans 12 hours).
As expected, for the (non-shifted) SBR dataset l has close to no im-
pact on TKCM’s accuracy, because there is a high linear correlation
between the incomplete time series and its d = 3 reference time
series. For the SBR-1d dataset the RMSE drops by about 0.5°C
(25%) by increasing l to 72. On the flight dataset we observe an
improvement of 50% for l = 72 and 60% for l = 144. The reason
why we see an improvement beyond l = 72 is the different sample
rate of 1 minute of the Flights dataset as opposed to the 5 minutes
in the SBR dataset. While l = 72 yields a pattern that spans 6 hours
in the SBR dataset, it only spans 1 hour in the Flights dataset. On
the Chlorine dataset we observe an accuracy increase of 60% with
pattern length l = 72, after which the accuracy slightly decreases.
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Figure 11: Pattern length l evaluated on each dataset.

To put these raw numbers into perspective and see the real impact
of l, we compare TKCM’s recovery of an incomplete time series s
in Fig. 12 with pattern length l = 1 (left column) and l = 72
(right column). Observe how much TKCM’s recovery oscillates
with l = 1 and how well TKCM adapts to the assumed missing
time series s with l = 72. Even for the SBR dataset there is a slight
oscillation, albeit minimal compared to the three shifted datasets.
The reason for this strong oscillation when l = 1 is that with a
short pattern, the reference time series do not pattern-determine
the incomplete time series. The difference in dissimilarity between
“good” patterns and “bad” patterns is too small for TKCM to de-
tect, as explained in Sec. 5.1. Put differently, in the presence of
shifts, time series are no longer linearly correlated; whenever a ref-
erence time series observes a very similar value, the incomplete
time series has very different values.

Fig. 13a shows the scatterplot of an incomplete time series s
in the Chlorine dataset against one of its reference time series
r1. There is clearly no strong linear correlation (ρ(s, r1) =
0.5): e.g. for r1(t) = 0.1, s(t) has two different values (0 and
0.15). Fig. 13b shows that the average ε (cf. Def. 5) decreases
as l increases on the Chlorine dataset with k = 5. Value ε =
maxt,t′∈A |s(t)− s(t′)| essentially describes the range of the val-
ues of s at the k most similar anchor points A. The lower ε gets, the
less the values of s differ at the most similar anchor points, which
indicates that the reference time series strongly pattern determine s
for k and l. Notice that the average ε increases after l = 72, which
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Figure 12: The reason for the strong oscillation in TKCM’s recov-
ery with l = 1 are shifts in the reference time series. Increasing the
pattern length l helps TKCM to detect shifts.

coincides with our observations in Fig. 11d.
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Figure 13: Left: Scatterplot of s against the reference time series
r1. Right: Range of s at the k anchor points (Chlorine dataset).

7.3.2 Missing Block Length
In Fig. 14 we study TKCM’s accuracy in terms of the length of

the missing block, i.e., the number of consecutively missing values
that TKCM needs to impute. First, we use our large dataset SBR-1d
and simulate sensor failures of up to several weeks. Fig. 14a shows
that the accuracy of TKCM only slightly decreases by 0.2°C as the
block length grows from 1 to 4 weeks, after which the accuracy
plateaus. Next, we increase the missing block length for the small
dataset Chlorine from 10% to 80% of the dataset size. We start with
the remaining 90% to 20% of the dataset in the streaming window
of length L = 4310 and impute the rest of the dataset as missing
values. Fig. 14b shows that also for this case the accuracy decreases
only slowly.

7.3.3 Comparison with Competitors

SBR. We first perform a baseline comparison of all algorithms on
the SBR dataset that has no phase shifts. Fig. 15a shows an excerpt
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Figure 14: Impact of the missing block length on the accuracy
(Chlorine dataset).

of the experiment where we assume a block of values is missing in
time series s, and impute the missing values with each approach.
TKCM, SPIRIT, MUSCLES, and CD perform virtually equally
well. Observe that the last valley in the temperature curve shows
a higher temperature than the previous valleys. While TKCM and
CD are able to capture this trend, MUSCLES and SPIRIT impute a
too low value. The most likely reason is that the models that MUS-
CLES and SPIRIT build are not able to adapt quickly enough to
the new behavior of the time series, while TKCM adapts instanta-
neously to the changing behavior.

SBR-1d. Next we impute the same block of missing values in the
SBR-1d dataset that has shifted time series. Observe how TKCM’s
accuracy only slightly decreases in Fig. 15b; TKCM slightly misses
the second last downwards slope, but the last valley is again accu-
rately imputed. SPIRIT completely misses the amplitude; its re-
covered peaks are too low and its valleys are too high in tempera-
ture. Moreover, the overall trend of the missing block is not well
recovered. MUSCLES recovery is borderline at best; the overall
periodicity of the signal is recovered, but MUSCLES was not able
to recover any feature of s. Moreover, s has a slightly increas-
ing temperature trend, but MUSCLES’ recovery has a decreasing
trend. CD’s recovery is shifted with respect to s, as also indicated
by the discontinuous imputation at the very beginning of the miss-
ing block.

Flights. On the Flights dataset we observe a similar behavior
as in the previous experiment. Fig. 15c shows that TKCM cap-
tures each peak and valley accurately, while SPIRIT’s accuracy de-
creases over time. Initially, the trend of s is vaguely captured, but
after the highest peak, the trend of SPIRIT’s imputation is inverse
(i.e., peaks and valleys are swapped) with respect to the true sig-
nal. Again, MUSCLES produces an extremely smoothed signal,
that does not resemble the true time series; peaks and valleys are
not recovered. CD’s recovery is only partially shown as many re-
covered values are negative. Most likely, the large block of missing
values (ca. 20% of the dataset) is the reason.

Chlorine. In the Chlorine dataset TKCM captures the trend of
s generally well, the valleys are almost perfectly recovered, while
the peaks are slightly less accurate. SPIRIT’s recovery does not
capture the amplitude of s, and also the trend of the recovery does
not match that of s. MUSCLES completely misses the first peak,
imputing it with a valley instead; also the general trend of MUS-
CLES’ recovery does not resemble s. In this dataset we found
MUSCLES and SPIRIT to perform with widely differing accura-
cies, sometimes their imputations is good, sometimes worse than
in this example. There is no clear pattern when either approach
works or fails. CD’s recovered signal has a very small amplitude
and also the trend does not capture that of s.
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Figure 15: Imputation of incomplete time series s with different
imputation techniques on four different datasets.

Summary. Fig. 16 shows the RMSE for all compared algorithms
on each dataset. In this comparison we impute 4 time series per data
set; with missing block lengths per time series of 1 week in the SBR
and SBR-1d datasets, and 20% of the dataset size for Flights and
Chlorine. All algorithms are given the same amount of data (L
measurements per time series). We use L = 6 months for the SBR
and SBR-1d datasets, because of CD’s prohibitively large runtime
for L = 1 year (our default) and the default L for the remain-
ing datasets. The experiments show that only for the non-shifted
SBR dataset all algorithms provide a comparable accuracy. For
the remaining three shifted datasets, TKCM clearly outperforms
its competitors both in terms of perceived accuracy (Fig. 15) and
raw RMSE (Fig. 16). Our general observation is that non-shifted
linearly-correlated data poses no significant challenge to any al-
gorithm. As soon as shifts are present in the data, the accuracy
of state-of-the-art solutions is largely unpredictable, ranging from
good to unusable.

7.4 Runtime
As discussed in Sec. 6.3, TKCM’s time complexity is linear with

respect to all parameters (l, d, k, and L) as confirmed by Fig. 17.
In this experiments on the SBR-1d dataset we vary each parameter,
leaving the other three parameters at their defaults (l = 72, d = 3,
k = 5 and L = 1 year). Fig. 17a and Fig. 17b show TKCM’s run-
time with respect to the size of the query pattern P (tn), Fig. 17c
shows the impact of the number of anchor points k, and Fig. 17d
shows the impact of the streaming window size L on the runtime.
Parameter L has the largest impact on TKCM’s runtime, followed
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Figure 16: Comparison of TKCM, SPIRIT, MUSCLES, and CD
for each dataset.

by l and d with similar impact. Parameter k is relatively cheap –
even if set to very large values, e.g., k > 50. For our default pa-
rameter settings we observe a runtime of approximately 2 seconds
to impute a single missing value.
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Figure 17: Runtime experiments. TKCM’s time complexity is
linear with respect to all its parameters l, d, k, and L (SBR-1d
dataset).

Performance breakdown. As described in Sec. 6 the two
main phases of TKCM are pattern extraction (PE) and pattern se-
lection (PS). In our default setup, the PE-phase accounts for 92% of
TKCM’s overall runtime. If we further subdivide the PE-phase, we
see that 82% of the overall runtime are required to fetch data from
main memory and 10% are used to compute the pattern dissimilar-
ity δ. If we increase k to 300 we see the runtime of the PS-phase
climbing from 8% up to 25%. Thus, for the default value of k, the
runtime incurred by the PS-phase is outweighed by the PE-phase.
Hence, to improve TKCM’s performance, future research must fo-
cus on speeding up the pattern extraction phase.

Comparison. A direct comparison of the runtimes of the con-
sidered approaches is not meaningful, because the systems are im-
plemented in different programming languages (TKCM in C, CD
in Java, MUSCLES and SPIRIT in Matlab). To give a rough feeling
for the overall performance we consider each approach in turn. CD
is an offline algorithm and not applicable to streams. CD’s matrix
decomposition lasted in our experiments roughly 20 minutes per
execution and is hence not applicable to streaming environments.
Both SPIRIT and MUSCLES required one millisecond to impute
one missing value, TKCM requires roughly 2 seconds.
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8. CONCLUSION AND FUTURE WORK
We studied the problem of missing values in meteorological

streams of time series data and presented an algorithm, termed
TKCM, to accurately impute missing values in a streaming envi-
ronment. If the current value in a time series s is missing, TKCM
determines a two-dimensional query pattern over the last l mea-
surements of d reference time series. It then retrieves the anchor
points of the k most similar non-overlapping patterns to the query
pattern. The missing value is computed from the values of s at
these k anchor points. We show that TKCM achieves consistent
imputation if the reference time series pattern-determine s, which
covers non-linear relationships between time series such as phase
shifts. An extensive experimental evaluation using four real-world
and synthetic datasets confirms that TKCM is accurate and outper-
forms state-of-the-art competitors.

Future work points in several directions. First, we will work on
the efficiency of TKCM, in particular the pattern extraction phase,
which proved to be the most time-consuming component. In partic-
ular, we plan to reduce the number of extracted patterns by pruning
patterns that cannot possibly belong to an optimal solution. Sec-
ond, we plan to investigate how to automatically determine the best
candidate reference time series, although in many application do-
mains (and especially in meteorology) we can rely on human ex-
perts. Third, we plan to compare different dissimilarity functions δ
(e.g. L1-norm, DTW [9], etc.). Moreover, it would be interesting
to compute an alignment between shifted time series (e.g., using
DTW [9]) and to compare TKCM’s accuracy on the aligned time
series using a pattern length l = 1 to the accuracy on the shifted
time series using l > 1.
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