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Foreword

Welcome to the 19th edition of the International Conference of Extending Database Technology (EDBT).
Originally biennial, the EDBT conference has been held annually and jointly with ICDT (“International
Conference on Database Theory”) since 2009. This year, EDBT is taking place in Bordeaux, France, on March
15-18, 2016, continuing its long tradition as a top venue for presenting and discussing recent advancements
in data management.

This year we received 137 submissions to the research track, 18 submissions to the vision track, 24 sub-
missions to the industrial/application track, 28 submissions to the demo track and 11 tutorial proposals.
The high quality of these submissions made the job of selecting the best of them rather challenging. The
various program committees after thorough reviewing and careful consideration selected 38 research papers,
5 vision papers, 9 industrial/application papers, 16 demos and 3 tutorials. The proceedings include these
contributions. A new addition this year is the poster track for presenting novel ongoing work. There were 64
submissions from which the poster program committee selected 31 contributions included in this proceedings.

The proceedings also include an overview of the keynote talk by Elisa Bertino (Purdue), an overview of the
keynote talk by Gustavo Alonso (ETHZ) and a laudation concerning the EDBT 2016 Test of Time Award
that was given to the paper

“Bridging Physical and Virtual Worlds: Complex Event Processing for RFID Data Streams” by
Fusheng Wang, Shaorong Liu, Peiya Liu, Yijian Bai, published in the EDBT 2006 proceedings.

The EDBT 2016 program is the result of the joint effort of many people that I would like to take this
opportunity to thank. Ioana Manolescu (Vision Track Chair), Georgia Koutrika (Industrial/Application
Track Chair), Letizia Tanca (Demo Track Chair) and Amelie Marian (Tutorial Chair), all did an excellent
job, as Themis Palpanas with the workshops (whose proceedings appear in a companion volume). Thanks
also to the members of the program committees of the various tracks that worked very hard to review each
submission in detail and engaged in many discussions to create the best possible program.

Special mention should be made to the Test of Time Award committee members: Sihem Amer-Yahia, Yannis
Toannidis and Christian S. Jensen. The general chair, Sofian Maabout and the local organizers worked
hard with all arrangements necessary for securing a successful event. Special thanks to Kostas Stefanidis,
the proceedings chair, and Patrick Mary, the website chair, for their invaluable contribution to this event.
Christine Collet and Norman Paton were instrumental in advising and coordinating with the EDBT Executive
Board.

And lastly and most importantly, thanks to all the authors that submitted their work to EDBT 2016. Their
contributions were what made this a strong program. I hope that you find the EDBT 2016 conference
informative, enjoyable and thought-provoking!

Evaggelia Pitoura
EDBT 2016 Program Chair



Program Committee Members

Research Program Committee

Bernd Amann (U Pierre et Marie Curie)
Walid Aref (Purdue U)

Sourav S Bhowmick (Nanyang TU)
Michael Bohlen (U of Zurich)

Klemens Bohm (KIT)

Francesco Bonchi (Yahoo! Labs)

Angela Bonifati (Lille 1 U)

Philippe Bonnet (ITU)

Luc Bouganim (INRIA)

Nieves Brisaboa (U de La Coruna)
Reynold Cheng (U of Hong Kong)

Beng Chin Ooi (National U of Singapore)
Vassilis Christophides (INRIA Paris)
Panos K Chrysanthis (U of Pittsburgh)
Paolo Ciaccia (U of Bologna)

Philippe Cudre-Mauroux (U of Fribourg)
Bin Cui (Peking U)

Alfredo Cuzzocrea (U of Trieste)
Khuzaima Daudjee (U of Waterloo)
Antonios Deligiannakis (TU of Crete)
Elena Ferrari (U of Insubria)

Peter Fischer (U Freiburg)

Helena Galhardas (U of Lisbon)

Johann Gamper (Free U Bolzano)
Minos Garofalakis (TU of Crete)

Floris Geerts (U of Antwerp)

Jiawei Han (UT Urbana Champaign)
Takahiro Hara (Osaka U)

Thomas Heinis (Imperial College)
Arantza Illarramendi (U del Paes Vasco)
George Kollios (Boston U)

Georgia Koloniari (U of Macedonia)
Yiannis Kotidis (Athens U of Bus. & Econ.)
Nick Koudas (U of Toronto)

Georg Lausen (U Freiburg)

ii

Wang-Chien Lee (Penn State U)

Wolfgang Lehner (TU Dresden)

Hong-Va Leong (Hong Kong Polytechnik U)
Roy Levin (IBM Research)

Feifei Li (U of Utah)

Xuemin Lin (U of New South Wales)

Eric Lo (Honk Kong Polytechnik)

Norman May (SAP)

Sebastian Michel (TU Kaiserslautern)
Kjetil Norvag (Norwegian U of Sc. & Tech.)
Ippokratis Pandis (Cloudera)

Paolo Papotti (QCRI)

Marta Patino (Politecnico de Madrid)
Torben B Pedersen (U of Aalborg)

Peter Pietzuch (Imperial College)

Maya Ramanath (IIT Delhi)

Matthias Renz (LMU)

Rodolfo Resende (U Federal de Minas Gerais)
Tore Risch (Uppsala U)

Pierangela Samarati (U Studi Milano)
Mohamed Sarwat (Arizona State U)
Kai-Uwe Sattler (TU Ilmenau)

Marc Scholl (U of Konstanz)

Heiko Schuldt (U of Basel)

Assaf Schuster (Technion)

Thomas Seidl (RWTH Aachen)

Jianwen Su (UC Santa Barbara)

Peter Triantafillou (U of Glasgow)

Yannis Velegrakis (U of Trento)

Stratis Viglas (U of Edinburgh)

Jef Wijsen (U of Mons — UMONS)
Yoshitaka Yamamoto (U of Yamanashi)
Carlo Zaniolo (UCLA)

Demetrios Zeinalipour-Yazti (U of Cyprus)
Wenjie Zhang (U of New South Wales)



Vision Track Committee

Nicolas Anciaux (INRIA Paris-Rocquencourt)
Tovka Boneva (U Lille 1)

Yanlei Diao (Ecole Polytechnique)
Stratos Idreos (Harvard U)

Yannis Ioannidis (U of Athens)
Christian Jensen (Aalto U)

Alekh Jindal (Microsoft)

Zoi Kaoudi (QCRI)

Giansalvatore Mecca (U della Basilicata)
Leonid Libkin (U of Edinburgh)

Neoklis Polyzotis (Google)

Nicoleta Preda (U de Versailles)

Eric Simon (SAP)

Alessandro Solimando (INRIA)

Fabian Suchanek (Télécom ParisTech)

Industrial Program Committee

Andrey Balmin (Platfora)

Fei Chen (HP Labs)

Vuk Ercegovac (Google)

Mohamed Eltabakh (Worcester PI)
Irini Fundulaki (ICS-FORTH)

Oktie Hassanzadeh (IBM Watson)
Anastasios Kementsietsidis (Google)
Lipyeow Lim (U of Hawaii)
Konstantinos Morfonios (Oracle)
Lucian Popa (IBM Almaden Research)
Lin Qiao (LinkedIn)

Mohamed Sharaf (U of Queensland)
Julia Stoyanovich (Drexel U)
Nesime Tatbul (Intel Labs and MIT)
Panayiotis Tsaparas (U of Ioannina)
Steven (Euijong) Whang (Google)
Kevin Wilkinson (HP)

Poster Track Committee

Alberto Abell6 (Politécnica de Catalunya)
Nikolaus Augsten (U of Salzburg)
Christos Doulkeridis (U of Piraeus)

Ioana Giurgiu (IBM Research (Zurich)
Aris Gkoulalas-Divanis (IBM Research)
Sven Groppe (U of Lubeck)

Katja Hose (Aalborg U)

Verena Kantere (U of Geneva)

Viktor Leis (Technische Ut Munchen)
Paolo Missier (Newcastle U)

Eirini Ntoutsi (LMU)

Senjuti Basu Roy (U of Washington Tacoma)
George Pallis (U of Cyprus)

Shaoxu Song (Tsinghua U)

External Reviewers

Daichi Amagata (Osaka U)

Mohammad Amiri (UC Santa Barbara)
Khaled Ammar (U of Waterloo )

Christos Anagnostopoulos (U of Glasgow)

iii

Carlos Andrade (U of Hawaii at Manoa)
Ilaria Bartolini (U di Bologna)

Dritan Bleco (AUEB)

Carlos Bobed (U of Zaragoza)

Douglas Burdick (IBM Research Almaden)
Siarhei Bykau (Purdue U)

Lijun Chang (UNSW)

Georgios Chatzimilioudis (U of Cyprus)
Sean Chester (NTNU)

Pietro Colombo (U of Insubria)
Camelia Constantin (U P&M Curie)
Maria Daltayanni (U of San Francisco)
Vasilis Efthymiou (U of Crete)

Ioanna Filippidou (AUEB)

George Fletcher (Eindhoven UT)

Sara Foresti (U degli Studi di Milano)
Daniele Foroni (U of Trento)

Shi Gao (UCLA)

Xiaoyu (Steve) Ge (U of Pittsburgh)
Kostas Georgoulas (AUEB)

Orestis Gkorgkas (NTNU)

Alfredo Goni (Basque Country U)
Zengfeng Huang (UNSW)

Meng Jiang (UIUC)

Julius Koepke (U of Klagenfurt)
Mustafa Korkmaz (U of Waterloo)
Zeynep Korkmaz (U of Waterloo)
Christos Laoudias (U of Cyprus)

Jialu Liu (UIUC)

Giovanni Livraga (U Milano)

Xiuli Ma (Peking U)

Massimo Mazzeo (UCLA)

Evica Milchevski (TU Kaiserslautern)
Davide Mottin (U of Trento)

Hubert Naacke (UPMC-LIP6)

Nathan Rico Ong (U of Pittsburgh)
Kiril Panev (TU Kaiserslautern)

Marco Patella (U di Bologna)

Fabio Petroni (Sapienza U of Rome)
Yoann Pitarch (U Paul Sabatier)
Donatello Santoro (U della Basilicata)
Klaus Schmid (LMU)

Konstantinos Semertzidis (U of Ioannina)
Anatoli Shein (U of Pittsburgh)
Masumi Shirakawa (Osaka U)

Vasilis Spyropoulos (AUEB)

Yan Tang (UC Santa Barbara)

Io Taxidou (U of Freiburg)

Cory Thoma (U of Pittsburgh)

Sabrina De Capitani di Vimercati (U Milano)
Xiaoyang Wang (UNSW)

Doris Xin (UIUC)

Mohan Yang (UCLA)

Man Lung Yiu (Hong Kong Polytechnic U)
Quan Yuan (UIUC)

Roberto Yus (U of Zaragoza)

Chao Zhang (UIUC)

Andreas Zuefle (LMU)



Test-of-Time Award

In 2014, EDBT began awarding the EDBT Test-of-Time (ToT) Award, with the goal of
recognizing one paper, or a small number of papers, presented at EDBT earlier and that
have best met the “test of time”, i.e., that has had the most impact in terms of research,
methodology, conceptual contribution, or transfer to practice over the past decade(s). The
EDBT ToT Award for 2016 will be presented during the EDBT/ICDT 2016 Joint Conference,
March 15-18, 2016, in Bordeaux (France). The EDBT 2016 Test-of-Time Award committee
was formed by Sihem Amer-Yahia (CNRS, Laboratoire d’Informatique de Grenoble, France),
Yannis Ioannidis (University of Athens, Greece), Christian S. Jensen (Aalborg University,
Denmark), and all PC chairs of former EDBT conferences including EDBT 2006.

The committee was asked to select a paper or a small number of papers from the EDBT 2006
(Munich) proceedings. After careful consideration, the committee and the EDBT Executive
Board have decided to select the following paper as the EDBT ToT Award winner for 2016:

Bridging Physical and Virtual Worlds:
Complex Event Processing for RFID Data Streams

by Fusheng Wang, Shaorong Liu, Peiya Liu, Yijian Bai
published in the EDBT 2006 proceedings, 588—607

The paper proposes an event-oriented approach to the processing of RFID data which makes
it possible to automate the translation of RFID based application semantics through complex
event detection. In particular, it demonstrates the ability to process complex events by
capturing temporal constraints in an algebra. The resulting declarative event-based approach
is shown to simplify RFID data processing and is shown to be scalable. The paper pioneers
declarative event-based RFID processing. The simplicity and expressiveness of the proposed
framework are admirable. For example, the framework makes it possible to express object
tracking on historical data as well as to formulate real-time monitoring.

The committee and the EDBT Executive Board find that this paper stands out in terms of
relevance, impact, and influence in databases. It has had substantial impact. In particular,
it has impacted real systems, and the engine it proposes has been integrated into Siemens
RFID Middleware. It is also the most cited EDBT 2006 paper, has spurred a significant
amount of follow-up work, and remains relevant today.
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ABSTRACT

Deploying existing data security solutions to the Internet of
Things (IoT) is not straightforward because of device het-
erogeneity, highly dynamic and possibly unprotected envi-
ronments, and large scale. In this paper, after outlining key
challenges in data security and privacy, we summarize re-
search directions for securing IoT data, including efficient
and scalable encryption protocols, software protection tech-
niques for small devices, and fine-grained data packet loss
analysis for sensor networks.

1. INTRODUCTION

The Internet of Things (IoT) paradigm refers to the net-
work of physical objects or “things” embedded with elec-
tronics, software, sensors, and connectivity to enable objects
to exchange data with servers, centralized systems, and/or
other connected devices based on a variety of communication
infrastructures. IoT makes it possible to sense and control
objects creating opportunities for more direct integration
between the physical world and computer-based systems.
When [oT is augmented with sensors and actuators, IoT
is able to support cyber-physical applications by which net-
worked objects can impact the physical environment by tak-
ing “physical” actions. IoT will usher automation in a large
number of domains, ranging from manufacturing and energy
management (e.g. SmartGrid), to healthcare management
and urban life (e.g. SmartCity). Applications range from
monitoring the moisture in a field of crops, to tracking the
flow of products through a factory, to remotely monitoring
patients with chronic illnesses and remotely managing med-
ical devices, such as implanted devices and infusion pumps.
Forecasts by McKinsey&Company estimate that the eco-
nomic impact of IoT technology by year 2025 will range
from 2.7 to 6.2 trillion dollars [7]. Gartner forecasts predict
that by the year 2020 20.8 billions of IoT devices will be
installed. Such staggering numbers show that IoT will have
a major impact.

However, while on one side, IoT will make many novel
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applications possible, on the other side IoT increases the
risk of cyber security attacks. In addition, because of its
fine-grained, continuous and pervasive data acquisition and
control/actuation capabilities, IoT raises concerns about pri-
vacy and safety. A recent study by HP about the most
popular devices in some of the most common IoT niches
reveals an alarmingly high average number of vulnerabil-
ities per device [10]. On average, 25 vulnerabilities were
found per device. For example, 80% of devices failed to re-
quire passwords of sufficient complexity and length, 70% did
not encrypt local and remote traffic communications, and
60% contained vulnerable user interfaces and/or vulnerable
firmware [10]. Multiple attacks have already been reported
in the past against different embedded devices [2], [16] and
we can expect many more in the IoT domain.

2. SECURITY AND PRIVACY RISKS FOR
10T

IoT systems are at high security risks for several reasons.
They do not have well defined perimeters, are highly dy-
namic, and continuously change because of mobility. In ad-
dition IoT systems are highly heterogeneous with respect to
communication medium and protocols, platforms, and de-
vices. [oT systems may also include “objects” not designed
to be connected to the Internet. Finally, IoT systems, or por-
tions of them, may be physically unprotected and/or con-
trolled by different parties. Attacks, against which there
are established defense techniques in the context of con-
ventional information systems and mobile environments, are
thus much more difficult to protect against in the IoT. The
OWASP Internet of Things Project [1] has identified the
most common IoT vulnerabilities and has shown that many
such vulnerabilities arise because of the lack of adoption
of well-known security techniques, such as encryption, au-
thentication, access control and role-based access control. A
reason for the lack of adoption may certainly be security un-
awareness by I'T companies involved in the IoT space and by
end-users. However another reason is that existing security
techniques, tools, and products may not be easily deployed
to IoT devices and systems, for reasons such as the variety
of hardware platforms and limited computing resources on
many types of IoT devices. Even well known encryption
protocols, such as RSA, prove to be very expensive when
running on devices with limited computing capabilities espe-
cially when multiple encryption operations have to executed
concurrently such as in the case of networked vehicles [12],
and small drones [14].

Privacy is particularly critical in the context of IoT. As
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medical and well-being devices are increasingly been adopted
by users and personalized medicine and health care appli-
cations are being designed and deployed that rely on con-
tinuous fine-grained data acquisition from these devices, the
human body is becoming a rich source of information. Such
information is typically collected from devices and then up-
loaded to some cloud and/or transmitted to other devices,
such as mobile phones, which in turn may forward the infor-
mation to other parties. The collected information is typi-
cally very rich and often includes meta-data such as location,
time, and context, thus making possible to easily infer per-
sonal habits, behaviors, and preferences of individuals. It
is thus clear that on one side such information has to be
carefully protected by all parties involved in its acquisition,
management, and use, but also users should be provided
with suitable, easy to use tools to protect their privacy and
support anonymity depending on specific contexts [11].

3. RESEARCH DIRECTIONS

Developing comprehensive security and privacy solutions
for IoT requires revisiting almost all security techniques we
may think of. Encryption protocols need to be engineered so
to be efficient and scalable for deployment on large-scale IoT
systems and devices with limited computational resources.
Benchmarks are needed to perform detailed assessments of
such protocols [14]. In addition, as devices may be phys-
ically unprotected, attackers may have access to the state
of the memory while encryption operations are being per-
formed. Addressing such problems may require new tech-
niques based, for example, on white-box cryptography [3].
White-box encryption techniques hide encryption keys by
transforming them into large look-up tables in order to make
harder for attackers to extract the keys. Such techniques are
however very expensive and many of the proposed white-box
encryption protocols have been cryptanalyzed. Introducing
dynamics in the look-up tables by a shuffling approach [15]
may help addressing such problem. In addition, scalability
of such protocols is critical, in that in many safety-sensitive
applications encryption operations must be very efficient.
For example, in a vehicle network, a message from a vehicle
informing other vehicles of a sudden break should be pro-
cessed very quickly in order to give the other vehicles enough
time to break. Carefully engineered approaches taking ad-
vantage of specialized hardware, such as GPUs, available on
systems on chip must be designed and benchmarked [12].

Software running on the devices must also be secured.
Major challenges here arise from the fact that many IoT de-
vices are based on processors such the ARM processor, which
have differences in the instruction sets with respect to other
conventionally used processors. Such diversity has an impli-
cation for example on the techniques for protecting software
from attacks, such as return-oriented programming attacks,
as such techniques must be tailored to the specific instruc-
tion set of the platform of interest [6]. Other research issues
concern how to protect at run-time software from memory
vulnerabilities. Solutions to this problem may have to take
into account the specific programming languages used on
IoT devices, such the case of nesC used in TinyOS, and the
resource limitations [8]. Also well-known software manage-
ment practices, like remote software patching and firmware
updates, may become difficult if at all possible in an IoT
environment and may actually open the door to additional
attacks [5], [4]. Communication protection and defense tech-

niques against novel botnet attacks that exploit IoT de-
vices [8] are also critical.

Data security, availability, and quality are other critical
areas for IoT. Data security requires, in addition to the use of
encryption to secure the data while being transmitted and at
rest, access control policies to govern access to data, by tak-
ing into account information on data provenance and meta-
data concerning the data acquisition context, such as loca-
tion and time [9]. Availability requires among other things
to make sure that relevant data is not lost. Addressing such
requirement entails designing protocols for data acquisition
and transmission that have data loss minimization as a key
security goal. Kinesis [13] is an example of a sensor network
system designed to make it possible for sensors to automati-
cally take response actions in the event of data transmission
disruptions. Ensuring data quality is a major critical re-
quirement in IoT as data acquired and transmitted by IoT
devices may be of poor quality, because of several reasons
such as bad device calibration, device faults, and deliberate
attacks aiming at data deception attacks. Solutions like data
fusion need to be revised and extended to deal with dynamic
environments and large-scale heterogeneous data sources.

Finally privacy introduces new challenges, including how
to prevent personal devices from acquiring and/or transmit-
ting information depending on the user location and other
context information, and how to allow users to understand
risks and advantages in sharing their personal data.

4. CONCLUDING REMARKS

IoT technology introduces several exciting opportunities
and new applications. However, it is critical that solutions
be adopted to ensure security, privacy, and safety of IoT sys-
tems with minimal impact on performance, scalability, and
usability. Even though the computer and network security
area has offered over the years many important techniques
and methods, revisiting and extending these techniques and
methods in order to address the specificities of IoT systems
entails many scientific and engineering challenges.
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ABSTRACT

Data processing is changing in radical ways from how it has
developed in the last four to five decades.

On the one hand, data science and big data have brought an
unprecedented growth and variety in data sizes, demanding
workloads, data types, and applications. From studying social
networks on graph data to genomics over string matching
algorithms; from low latency key value stores used to retrieve user
profiles to large scale data appliances focusing on data
warehousing; from real time stream data processing to database
engines on cloud platforms, the types, scope, and requirements on
data management engines has grown enormously.

On the other hand, hardware is no longer a source of performance
as it has been in the last decades. Instead, it has become a
complex, fast evolving, highly specialized, and heterogeneous
platform that requires considerable tuning and effort to use
optimally. Today, hardware is not becoming necessarily faster per
se but provides instead a wide range of options for accelerating
and tuning applications through new features. Unlike what
happened in the past, applications in general and database engines
in particular, have to work much harder to extract performance
improvements from new hardware as the exploitation of these
new features is not automatic and often requires a redesign of the
system. In addition, many of the opportunities offered by modern
hardware are still without adequate support from high level tools
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such as compilers or debuggers, placing quite a burden on system
designers.

In this talk 1 will discuss the issues in data processing that arise as
a result of modern hardware: the need to deal with parallelism and
distribution, the increasing importance of networking, the
proliferation of accelerators, and the raise of heterogeneity in the
machine. These issues are both a threat and a challenge,
demanding a radical redesign of many aspects of data processing
and database engines. Using examples from recent work ranging
from query scheduling to hardware accelerators, | will present
several exciting and radically new directions that are opening up
for database research as a result of the advances being made in
hardware. An important theme in the talk is the call for database
designers and researchers to become proactive and identify the
hardware features and characteristics that are needed to better
support data processing.
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ABSTRACT

Micro-blogging systems have become a prime source of in-
formation. However, due to their unprecedented success,
they have to face an exponentially increasing amount of
user-generated content. As a consequence finding users who
publish quality content that matches precise interest is a
real challenge for the average user. This paper presents a
new recommendation score which takes advantage both of
the social graph topology and of the existing contextual in-
formation to recommend users to follow according to user
interest. Then we introduce a landmark-based algorithm
which allows to scale. The experimental results and the user
studies that we conducted confirm the relevance of this rec-
ommendation score against concurrent approaches as well as
the scalability of the landmark-based algorithm.

1. INTRODUCTION

Micro-blogs have become a major trend over the Web
2.0 as well as an important communication vector. Twitter,
the main micro-blogging service, has grown in a spectacu-
lar manner to reach more than 570 million users in April,
2014 in less than seven years of existence. Currently around
1 million new accounts are added to Twitter every week,
while there were only 1,000 in 2008. 500 million tweets are
sent every day and on average a Twitter user follows 108 ac-
counts’. Facebook is another example with 1.26 billion users
who publish on average 36 posts a month. A Facebook user
follows on average 130 “friends” which results in 1,500 pieces
of information a user is exposed on average when he logs in'.
Other similar systems like Google+, Instagram, Youtube,
Sina Weibo, Identi.ca or Plurk, to quote the largest, also
exhibit dramatic growth.

'http://expandedramblings.com
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This fast and unprecedented success has introduced sev-
eral challenges for service providers as well as for their users.
While the former have to face a tremendous flow of user
generated content, the latter struggle to find relevant data
that matches their interests: they usually have to spend a
long time to read all the content received, trying to filter
out relevant information. Two (complementary) strategies
have emerged to help the user to find relevant data that
matches his interest in the huge flow of user generated con-
tent: posts filtering like in [13, 14, 8] and posts/account
searches and/or recommendation like in [7, 4, 5].  Social
network systems usually offer the ability to search for posts
or accounts that match a set of keywords. This could be a
“local” search to filter out the posts received, or a “global”
search to query the whole set of existing posts/accounts.
For the latter search, there exist two options: some pre-
computed posts sets that correspond to the hot topics at
query time, or customized searches where the query result is
built according to the keywords specified by the user. How-
ever, the broad match semantics generally adopted by the
searching tools is very limited. Even a ranking score based
on the number of keywords is not sufficient to retrieve all
posts of interest. Combined with the lack of semantics and
the number of posts a day, the large number of searches per-
formed every day also raises scalability issue. For instance
in 2012, more searches were performed each month (24 bil-
lion) on Twitter than on Yahoo (9.4 billion) or on Bing (4.1
billion).

In this paper we consider the problem of discovering qual-
ity content publishers by providing efficient, topological and
contextual user recommendations on the top of a micro-blog
social graph. Micro-blogging systems are characterized by
the existence of a large directed social graph where each user
(accounts) can freely decide to connect to any other user for
receiving all his posts. In this paper we make the assump-
tion that a link between a user u and a user v expresses
an interest of u for one or several topics from the content
published by v. We consequently choose to model the under-
lying social network graph as a labeled social graph, where
labels correspond to the topics of interest of the users. Our
objective is to propose a recommendation score that cap-
tures both the topological proximity and connectivity of a
publisher along with his authority regarding a given topic
and the interest of the intermediary users between the one
to be recommended and the publisher.
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The size of the underlying social graph raises challenging
issues especially when we consider operations that involve
a graph exploration. In order to speed up the recommen-
dation process we propose a fast approximate computation
based on landmarks, i.e., we select a set of nodes in the
social graph, called landmarks, which will play the role of
hubs and store data about their neighborhood. This set of
landmarks is selected using different strategies we compare
experimentally in Section 5.

Contributions. In this paper we propose a recommenda-
tion system that produces personalized user recommenda-
tions. Our main contributions are:

1) considering the idea that measures based on the graph
topology are good indicators for the user similarity, we
propose a topological score which integrates semantic
information on users and their relationships;

2) furthermore, we introduce a landmark-based approach
to improve recommendation computation time and to
achieve a 2-3 order of magnitude gain compare to the
exact computation;

3) an experimental validation of our approach, including
a comparative study with other approaches (Twitter-
Rank [26] and Katz [16]).

Observe that we illustrate our proposal in the context of
micro-blogging systems, but our model is general and may
be used for any social networks where users publish content
and receive posts from the accounts they follow.

The paper is organized as follows: after the introduction in
Section 1, we present the related work in Section 2. Section 3
describes our model and our recommendation scores along
with their composition property. Then we propose our fast
recommendation computation based on a landmark strategy
in Section 4. Our experimental validation is presented in
Section 5 while Section 6 concludes the paper and introduces
future work.

2. RELATED WORK

Recommendation systems for social networks were re-
cently proposed like [16, 4, 26, 11, 7, 21, 10, 3, 28, 24]. The
work in [16] presents a comparison of different topological-
based recommendation methods adapted in the context of
link-prediction. In [2], authors propose to combine two rank-
ing scores estimated with a fair bets approach on the user
invitation graph and on the profile browsing graph. The
work in [24] presents a user recommendation system which
exploits node similarity scores estimated as a combination of
local and global scores. Local score is based on the number
of neighbors of the query node and of the recommendation
node while global score involved the shortest path between
them. Thus the recommendation scores for these approaches
are only based on the topology and unlike our proposal do
not consider neither content nor authority of the users. On
the other side, the work in [20] finds users with high topi-
cal authority scores in micro-blogging systems. Unlike our
method, those scores are not personalized, the system com-
putes global authority scores, which in our case are used
as parameters of the recommendation scores computed for
some user.

Other approaches, like [4, 11], consider collaborative filter-
ing. The work in [4] introduces a collaborative tweet ranking
based on preference information of the users, authority of the
publisher and the quality of the content. Recommendations
are produced at a tweet level. Hannon et al. [11] evaluate a
set of of profiling strategies to provide user recommendations
based on content, e.g. the tweets of the user or the tweets
of his followers, or collaborative filtering. The methods pro-
posed by [21] and [7] also provide tweet recommendations.
Pennacchiotti et al. [21] analyze the tweets content as well as
the content of the user’s direct neighbors while Diaz-Aviles
et al. [7] use the user past interaction to compute rankings
in real-time. All these works consider content but unlike
our proposal they do not consider paths longer than direct
follower /followee links.

Few papers combine content and topology of the social
graph. Wend et al. [26] present an extension of the PageR-
ank algorithm named TwitterRank which captures both the
link structure and the topical similarity between users. How-
ever this similarity is based on topics provided by LDA and
their distance-based similarity computation between users
does not capture the semantic similarity between topics.
We also propose an authority score for an account which
estimates the local and global influence of this account for
a given topic. Our scoring function also provides higher
weight for short paths to favor ”"local” recommendations. In
[10], authors describe the production recommender system
implemented in Twitter. It relies on an adaptation of the
SALSA algorithm [15] which provides user recommenda-
tion in a centralized environment based on a bipartite graph:
the user’s circle of trust, computed with random walks from
the user considering content properties, and the accounts fol-
lowed by the users from the circle of trust (the authorities).
Our approach is different since it captures the users interest
through the labeled social graph, which allows to compute
scores based on semantics, on authority and on topology.

To scale and to accelerate our recommendations compu-
tations, we pre-compute scores for a subset of nodes named
landmarks. Landmark-based approach is a well-known divide-
and-conquer strategy for the shortest paths problem that
have been shown to scale up to very large graphs [25, 9, 22,
23].  The idea is to select a set L of nodes as landmarks
which store the distance to other nodes. The distance d(u,v)
between two nodes u and v is then estimated by computing
the minimum d(u, 1) + d(l,v), where [ € L. Das Sarma et
al. [23] chose to pre-compute the time-consuming shortest-
path operations for each node in structures called "sketches”
and to use them to provide shortest-path estimations at
query-time which enables scaling for large web graphs. Gu-
bichev et al. [9] extend the sketch-based algorithm proposed
by [23] to retrieve shortest paths and improve the overall
accuracy. Tretyakov et al. [25] use shortest-path trees to
achieve an efficient and accurate estimation which support
updates. They also introduce a landmark selection strategy
that attempts to maximize the shortest-paths coverage. In
[22] authors also investigated the impact of landmark selec-
tion on the accuracy of distance estimations. They proved
that optimizing the landmark coverage is a NP-hard problem
and showed experimentally that clever landmark selection
strategies yield better results. Similar to these approaches,
we employ landmarks for computation scaling and use some
of the existing landmark selection strategies in the context
of user recommendation.



3. MODEL

We introduce in this section the underlying social graph
model and our recommendation scores. Table 1 lists the dif-
ferent notations used throughout the paper.

N, E resp. set of nodes and edges
T TU(t) followers for u (resp. total or on topic t)
T topics vocabulary

labely, labele  labeling function for nodes and for edges, resp.

topog(u,v) topological score of v for u with decay factor

o(u,v,t) recommendation score of v for w on topic ¢

os(u,v,t) approximate recommendation score considering
paths going through a node n € S

wp(t) topical component of the path score for path p

wp(t) path score for path p

auth(u,t) node authority score for u on topic t

ee(t) edge relevance of edge e on topic ¢

a, decay factor for an edge and path resp.

A L a landmark, the set of landmarks

Py set of all paths between u and v

Pyow set of all paths between u and v through A

Tir(N) the k-vicinity of A

Ry v recommendation vector of v for u for all topics

Table 1: List of notations

3.1 Labeled social graph

We model the Twitter social network as a directed labeled
graph G=(N, E, T, labely, label g ) where N is set of vertices
such that each vertex w € N is a user (account). E C
N x N is a set of edges where an edge e = (u,v) € E
exists if u follows v, i.e, u receives the publications of v.
The labeling function labely : N — 27 maps each user to
the set of topics that characterize his posts, chosen in a topic
vocabulary 7. The topics associated by the labeling function
labelg : E — 27 to an edge e = (u,v) describe the interest
of the user u for the posts of v. In this paper topics are
extracted from tweets by using OpenCalais! combined with
a trained Support Vector Multi-Label Model using Mulan?
(see Section 5). For a user u, we define I'* () the set of nodes
following u on topic ¢t and by ' the set of all his followers.
An example of such graph is depicted in Figure 1. For users
B and C we display their topics of interest along with an
excerpt of their tweets.

3.2 Recommendation

For a user u and a query composed of several topics Q =
{t1,...,tn}, our model recommends users v based on the
following criteria which consider both graph topology and
content semantics:

(¢) user proximity: u trusts his friends, the friends of his
friends, etc., but this confidence decreases with dis-
tance ;

(i) the number of paths from u to v: user v is likely to be
more important for w if there are many other relevant
users (7.e., linked to u) who recommend v;

(¢i1) topical path relevance of the connections between u and
v with respect to Q.

Yhttp://www.opencalais.com/
®http://mulan.sourceforge.net/

e technology, news
Microsoft announces a

major bug windows 8 #bug

Linux, now used by 23% of
personal computers #stats

Android KitKat in now live !
bit ly/uhias8z

Is it the right moment to
invest in #bitcoin ?

bigdata, technology,
e science, news

Data science is
transforming the way we do
business bit.ly/1rPwV8v

#BigData is what happens
when the cost of storing data
falls below the cost of
deciding to throw it away

Intel launches its own
distribution of Hadoop !

Figure 1: A labeled social graph

Our recommendation score combines the topical relevance
of paths with a topological measure which considers all ex-
isting paths between two nodes u and v of the graph. More
precisely, the recommendation score o(u,v,t) of the user v
for user u on topic t on paths p = u ~» v is the sum of all
path scores wWp(t) and is expressed as follows:

DEFINITION 1~ (RECOMMENDATION SCORE).

U(U>U>t): Z wp(t): Z B‘plwp(t) (1)

PE Py, v PE Py, v

where P, . denotes the set of all paths between u and v,
wp(t) is the total path score of a path of length |p| and wy(t)
the topical relevance wy(t). The decay factor 8 € [0,1] gives
more importance to shorter paths.

The final recommendation score for the query @) is com-
puted as a weighted linear combination (some are proposed
in [1]) where user scores for each individual topic ¢; € Q are
weighted by the relevance of ¢; for the posts of u which is
computed by the topic extraction method (see Section 5).
Note that we can deduce from Equation 1 a score which
considers only the topology by ignoring the topical relevance
of paths (i.e. setting wy(t) to 1). This score is higher if there
exist many short paths between u and v and is denoted as :

topog(u,v) =y B! (2)

PEPy v

It corresponds to the Katz score [16] that has been suc-
cessfully employed for link prediction. We will use it as a
baseline for comparison with our method in Section 5.

The topical relevance wp(t) of a path p = u ~» v for a topic
t in Equation 1 considers both the relevance of nodes (user
authority) and the topical relevance of edges (edge relevance)
on the path p w.r.t the topics of the query Q). We define in
the following these concepts.

Edge relevance:.

Each edge on a path p contributes to the score of p with a
semantical score which depends on its topics. Distant edges
contribute less to the recommendation score than edges close
to u. More precisely, the relevance of an edge e at distance
d from u on path p for a topic ¢ is defined as :

5e(t) = ad X mawt’elabelE(e)(Sim(tlv t)) (3)



where label g (e) is the labeling function that returns the top-
ics associated to the edge e. The decay factor a € [0, 1]
decreases the influence of an edge according to its distance
from u. The function sim : T2 — R computes the seman-
tic similarity between two topics ¢t and t'. We use in the
present paper the Wu and Palmer similarity measure [27] on
top of the WORDNET ? database (we have a small number
of topics for labeling our dataset without synonymy issues),
but other semantic distance measures, such as RESNIK or
Disco * could also be used. The choice of the best similar-
ity function is beyond the scope of the current paper. When
an edge is labeled with several topics, we only keep the max-
imum similarity to ¢ among all its topics to avoid high scores
for edges labeled with many topics that have small similarity
to t.

User authority:.

We define a per node topical authority function auth(u,t)
of u on a topic t which depends on the number of users
who follow w on t. The authority score is decomposed into
two scores: (z) the local authority score that gives a higher
score to users that are specialized on topic ¢ than to users
u who publish on a broad range of topics and (i7) the global
popularity score that gives higher scores to users that are
more followed on ¢t. Combination of local and global scores
has also been used to compute authorities for Web pages [12]
or micro-blogging [10]. The authority score auth(u,t) of a
user u on a topic t is consequently defined as follows :

log(141'(1))

ol
[T log(1 + mazven (T (1))
——

auth(u,t) =

local global

where [['(t)| is the number of followers of u on ¢, and |T™|
is its total number of followers. We used the logarithm func-
tion to smooth the difference between popular accounts and
accounts with very few followers. The local authority is 1
when wu is followed exclusively on t and the global popularity
is 1 when u is the most followed user on t. If no other user
follows u on t both scores are 0. The authority scores for
a given topic t are high for users that are mainly followed
on topic ¢t and that have a significant number of followers.
The combination of both local and global scores leads to
similar authority scores for very specialized accounts with
few followers and for very popular but generalist accounts.
Observe for scores update that |[I'| and |I"*(¢)| can be com-
puted on local information of each user, without graph ex-
ploration. Oppositely the computation of mazven(I'°(t))
may be costly since it requires to query the complete graph.
However, the log strongly limits the impact of a variation
in the popularity of an account with millions of followers,
and we can assume this value is stored (and re-computed
periodically).

ExAMPLE 1
the example graph in Figure 1, with a sample of tweets for the
users B and C' along with their topics. User B is more rele-
vant for technology than C. Indeed B and C have the same
global popularity with two followers on this topic for both ac-
counts. However the local authority of B on technology is

3http://wordnet.princeton.edu/
“http://www.linguatools.de/disco/disco_en.html

(LOCAL AND GLOBAL AUTHORITY). Consider

higher than the one of C since 2 out of the three topics on
which B is followed are technology, whereas for C' only 2 out
of the 6 topics on which it is followed are technology. For
the topic bigdata, the local authority of B and C' is the same
(1 out of 8 for B and 2 out of 6 for C') but C is more fol-
lowed on bigdata (2 users who follow him) than B (1 user).
Therefore, the total authority of C on bigdata is higher.

Topical path relevance:.

Finally, we consider that the path relevance of p is high
when both the relevance of the nodes and the one of the
edges of p are high:

wp(t) = ee(t) x auth(end(e),t) (4)

ecp

where end(e) returns the end node of the edge e. The rec-
ommendation score of v for the user u on topic t is then
obtained by replacing wp(t) in equation (1) by its formula
given by equation (4). The resulting user recommendation
score thus captures the topology (proximity and connectiv-
ity) of the graph along with the followers interests (expressed
as labeled edges) and the authority score regarding the topic
of interest for each user on the path.

EXAMPLE 2  (TOPICAL PATH RELEVANCE). In Fig. 1, we
want to recommend to A users on the topic technology (we
suppose a search within a range k = 2). Users D and E can
be reached with respectively the paths p1 = A — B — D and
path po = A — C — E, each of length 2. The relevance

of the edge A Lbigdatatechnology, p g higher than the one of

¢ Yedete, E, since the first one is at distance 1 from A,

whereas the second is at distance 2. Moreover, the authority
of node B on technology (computed as (local) x (global) =

2y L9U42) ) io higher than the authority of C' on technology

3 7 Tog(1+2)
(% X 5238155) Owverall, the semantic relevance of the edges

on p1 for technology is higher than the one of edges on pa
and D obtains a higher recommendation score than E.

3.3 Score analysis
We will show in the following the iterative formula for

score computation and the score composition property that
is used in Section 4 for landmark-based computation.

Iterative score computation.

Recommendation scores o(u,v,t) (Equation 1) are com-
puted by using the Power Iteration algorithm [19] (see Algo-
rithm 1 in Section 4). It starts by initializing o(u, u,t) = 1
and o(u,v,t) = 0 (Yu # v). At each step ¢, a new score
o(u,v,t) (that considers all paths from u to v with length
< i) is computed by using the scores o(u,v,t) ™Y of the
neighbors w € I'” computed at step (i — 1). The computa-
tion is performed until convergence. The iterative formula
for score computation is the following :

PROPOSITION 1 (ITERATIVE COMPUTATION).

oD w,v,t)= > (Bo"V(w,w, )+
welv ™

+ topolly ) (u, w) W (1)) (5)

where topoz;ﬁ1 (u, w) is the topological score (see Equation 2)
with a decaying factor of a.f. The score Ww—v(t) = B.cu.



MAT 1 clabel g (w—swv) (SIM(E,1)).auth(v, 1)) is the score of a path
that contains only the edge w — v with topic t.

PROOF. Suppose a path p of length k£ < ¢ from u to v.
This path can be decomposed into a path p; of length k£ —1
from w to the neighbor w of v and an edge e from w to
v of length 1. By using Equations (3) and (4), the score
Wp(t) is computed as: @y (t) = B.ap1 () + BP1.a/P T (1) =

Byt (t)+B8F 1o T (B maxyrey, (cage) (sim(t, t)).auth(v, t)).

The score wp1(t) corresponds to a path that finishes at w.

We can re-organize the paths in Equation 1 by grouping
those that pass through the same neighbor w of v: o(u,v,t) =
ZpEPu’U wp(t) = ngr‘U*(t)(ZpePuyv,pr wp(t))- By re-
placing @, (¢) into this equation we obtain the iterative score
formula. [

Score composition.

From the iterative score computation we can deduce for
each path p from a node u to a node v its total path score
wp(t) on topic t from the score of of its sub-paths already
computed using the following property :

PROPOSITION 2
Assume a path p = p1.p2, with Wy, (t) and Wy, (t) the total
path scores of respectively p1 and p2 for a topic t. The total
path score of p can be computed as:

wp(t) = 5‘1)2‘ Wp, () + ﬁlplla‘pl‘wm ()
PROOF. By induction using the recursive formula, we prove
the proposition for paths with length &£ > 1. [

Iterative score computation convergence.

In order to show the convergence of the iterative compu-
tation of recommendation scores o (u, v, t) of users v for user
u on topic ¢t (Equation (5)), we express this computation in
matrix form as :

R = (BARM + (Ba)SiTY) (6)

where ng) is the recommendation vector for topic t com-
puted at step k (R!" [v] is the recommendation score o (u, v, t)
computed at step (k)). Matrix A is the adjacency matrix
of the graph (A[v][u] = 1 if u follows v). Matrix S; is the

similarity-authority matrix (Si[v][u] = sim(mazy e, (u—so) (t', 1)) X

auth(v,t)). Vector T(i’;) is the topological vector at step k

(T, O(/;) [v] is the topological score topoffﬂ) (u,v)). It can be ex-

pressed as follows :
TED = AT +1

where I[u] = 1 and I[v] = 0 for all u # v. We deduce that
the computation convergence is achieved under the following
condition :

ProrosITION 3
If B < 1/0maz(A), where omaz(A) is the highest eigen value
for A, then the iterative scores computation of our recom-
mendation scores converges.

ProoF. Based on the recursive formula which defines the
topical vector for a given node n, the topical scores matrix
defined by the series expansion

Top=)» af'A'=(I-aBA)" —T

i=1

(RECOMMENDATION SCORE COMPOSITION).

(SCORES COMPUTATION CONVERGENCE).

converges when [ —a A is positive definite, so a8 < 1/0maz(A4).

Consider a step k' when convergence is reached for T,gs.
Then for any & > k', we have the recursive computation

R = (BA)R™M 4+ C with C = (aﬁ)STOEZO) constant. The
convergence for R**Y is reached when R(™) = (8A) R 4
C thus when R = (I — BA)~' x C. This can be achieve
if 8 < 1/0mac(A). Since 8 > «af, this later condition is
sufficient to ensure convergence. [

4. LANDMARK-BASED COMPUTATION

The recommendation score computation presented in the
previous section assumes to explore all paths from a user u
to the nodes to be recommended. Computing recommenda-
tion scores by graph exploration at k hops for a graph with
n nodes supposes to consider outfjvg paths for the average
case (outqyg denotes the average out degree) and of N* paths
in the worst case for a complete graph. This might be pro-
hibitive in the context of social graphs with millions of nodes
and edges. We rely here on a landmark-based approach to
propose fast approximate recommendations.

The computation is performed in two steps: (i) in the
preprocessing step we precompute for a sample of nodes in
the graph, named landmarks, top-n recommendation scores
(n being a parameter of the system) for every topic t € T
and (1) at query time we compute approximate recommen-
dations by exploring the graph until a given depth (also a
parameter of the system) and collect precomputed recom-
mendations from landmarks encountered during this explo-
ration.

Figure 2: Landmark-based recommendation

EXAMPLE 3. Figure 2 illustrates this approach, where n
is the query mode and A1, A2, A3 and A1 are landmarks.
When performing the graph exploration represented by the
blue dashed-line from the node n, the landmarks A1, A2 and
A1 are encountered. Node T2 is encountered during explo-
ration and ils score for n is computed at the same time as
the scores for A1, A2 and \4. 71 is not encountered during
the exploration from n, butl it is encountered by the explo-
rations starting from landmarks A1 and A2. Its recommen-
dation score for n is estimated by aggregating the scores of
A1 and A2 for n computed at query time with the scores of
r1 for A1 and A2 which were precomputed.



4.1 Preprocessing

For the preprocessing step we consider a subset £ C N of
nodes, so-called the landmarks, with |£| < |N|. Instead of
a random sampling, several strategies may be considered to
determine L. For instance, landmark-based approaches for
computing shortest paths within a large graph rely mainly
on centrality properties (betweenness or closeness centrality)
to determine the sampling. The publisher-follower charac-
teristics of our graph also allow other topology-based sam-
pling, like a selection of the nodes with the most important
number of followers (most popular accounts) or the ones that
follow the highest number of accounts (most active readers).
While the choice of the landmarks may impact the global
performances of our approach we do not investigate further
the sampling strategies in the current paper. Nonetheless
some of these sampling techniques are experimentally com-
pared in Section 5.

Algorithm 1: LANDMARK RECOMM (A, maxy, T, 3, n)

Require: landmark (), maximum exploration (maxy), set of

topics (T'), topological decay factor (3), number of results to

return (n)
Ensure: a set of recommendation list R), a topological vector
topog(\)

1: Yo:=X k:=0
2: while k < mazy, and converged = false do
Trp1:=0
for all u € T, do
Tk+1 = Tk+1 ur«
for allv € I'* do
for allt € T do
oD (N v, t)+ =
B x U(k)(k,u,t) + topoﬁﬂ (A u) X Wy
9: end for

10: 1501)0(5]67%)()\7 v)+ =B x topog )
11: end for

12: Ri[ul4+ = o(B) (A u, t)

13: topog(\, u)+ = topog()\, w)

14:  end for

15 if e, a® (N u,t))/|Re| < tol, ¥t € T then
16: converged := true

17:  end if

18 k:=Fk+1

19: end while

20: return for all t € T top-n((R¢), topog(X))

Algorithm 1 performs the recommendation computation
(we remove the initialization of recommendation scores to
simplify the presentation) and is used both in the prepro-
cessing and in the approximate score computation step. It
takes as parameters the starting node A\ of the graph ex-
ploration, the maximum exploration depth maxy, the set of
topics on which the recommendations are computed T, the
path decay factor 8 and the number n of final results to be
kept.

The set of reached nodes at depth k from ) is called the
k-vicinity of A\, denoted Tx(A). Yoo (A) denotes the set of
reachable nodes from A. For each topic t € T the algo-
rithm computes a recommendation vector R; with R [u] =
(X, u,t) (see Equation 6), where u € Yoo () is a reachable
node from A. The algorithm also computes the topological
scores topog (A, u) with decay factor § for all u € To (Equa-
tion 2), used to estimate the final recommendation scores at
query time (see below). Iteration in line 4 allows to ex-
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plore the k-vicinity of A. For each iteration we add in the
k-vicinity nodes that could be reached with an additional
hop (1. 5). For each node v reached at this step (1. 6), we
compute (or update if the node has been already encoun-
tered)) the recommendation score for each term of the topic
vocabulary (1. 7-8), and the node’s topological score (1. 10).
The score for u on paths of length £ is added to the sorted
topical (1.12) and topological (1.13) lists of A. Finally, only
the top-n recommendations for each vector R; and only the
top-n topological scores topog(\) are stored.

In the preprocessing step, for each landmark A\ € £ we
compute the recommendation scores on all topics for all
nodes encountered during the iterative computation. So Al-
gorithm 1 runs until the convergence is reached (maxy, is set
to a large value) with the parameter T set to 7.

4.2 Fast approximate recommendation

We now present the algorithm for fast approximate rec-
ommendations based on the pre-computations performed for
each landmark in the preprocessing step. We assume that
we want to recommend to an account u other accounts for
a topic t.

We first perform a graph exploration starting from u, sim-
ilar to the one described by the Algorithm 1, for a given
maximal depth k, maxg, set to a small value (e.g. 2 or 3).
The graph exploration finds landmarks in the k-vicinity of
u and computes path scores on topic t for paths from u to
each encountered landmark. These scores are further com-
bined with the scores stored by the landmarks in order to
compute the approximate recommendation scores.

More precisely, we denote A C L the set of landmarks en-
countered by the graph exploration. For each A € A the top-
n recommended accounts v along with their recommendation
scores o (A, v,t) and their topological score topog(A, v) are al-
ready computed in the preprocessing step. The approximate
recommendation of a node v for a user u is an aggregation
of the scores of v computed by all the landmarks A € A :

DEFINITION 2
The approximate recommendation score of a node v for a
node u on the topic t with respect to the set of landmarks A
is defined as :

Fa(u,v,t) = > Ga(u,v,t)

AEA

where the score o (u,v,t) denotes the score of v that takes
into consideration the set of paths Py x . from u to v that
pass through the landmark .

The score o (u,v,t) is computed by the composition of the
scores o(u, A, t) and topogq (u, A) obtained during the explo-
ration phase with the scores o(\,v,t) and topog(\,v) that
are stored in the sorted lists of A.

PROPOSITION 4  (APPROXIMATE SCORE COMPUTATION).
The recommendation score of v for u with respect to the land-
mark A can be computed as follows :

ox(u,v,t) = o(u, A\, t) X topog (A, v) +topoga(u, A) X (A, v, t)

PROOF. Any path p from P, ., could be decomposed into
p1 and p2, with p1 € P, x and p2 € Py . Obviously any path
p = p1.p2 with p1 € P, x and p2 € P, is a path from P, » ,.

(APPROXIMATE RECOMMENDATION SCORE) .



Consequently, based on Proposition 2) we have:

oa(u,v,t) = Z wp(t)

PEPy A v

Z Z B'”‘.wm(t)+5‘P1'.a"71‘.wp2(t)

P1EP, A P2EPN 4

P1EPy
= o(u, A\, t).topog (A, v) + topog.a(u, A).oc(A, v, 1)

O

P2EP) 4 PLEP, P2EP) 4

Note that our approach estimates a lower-bound of the rec-
ommendation scores while landmark-based approaches tra-
ditionally proposed for shortest paths computation provide
score upper-bounds, based on the triangular inequality. In-
deed in our setting the approximate scores do not consider
all the paths from u to v, but only the subset P, x, that
pass through A\. However experiments show this approxima-
tion allows to retrieve a set of recommendations close to the
one retrieved by an exact computation.

Algorithm 2: APPROX RECOMM(u, k, t, 8, a)

Require: a node u, a max. depth k, a topic ¢, the decay factor

for path 8 and for edge .
Ensure: an ordered list of recommendations R; for u

(R¢,topog.o(u)) <~ LANDMARK_RECOMM (u, k, t, 3.cr)
: for all v € Ry do
if v € £ then
for all w recommended by v do
R [w]+ =
o (u, v, t).topog (v, w) + topog.o (u,v).0(v, w,t)
end for
end if
end for _
return R;

We perform our approximate recommendation for a node
u and a topic t by using Algorithm 2. It first calls the
LANDMARK_RECOMM algorithm to compute recommenda-
tion scores from u to all nodes within a distance k along
with their topological score (1. 1). Observe that unlike the
preprocessing step, the exploration depth has a small value
k (2 in our experiments) so that the algorithm will not be
run until the convergence. The recommendations are com-
puted only for a single topic t. Note also that the decay
factor is here .. For each encountered landmark (1. 2-
3) we combine its recommendation for the topic ¢ with the
recommendation score computed from w to the landmark
according to Proposition 4 (L. 5).

5. EXPERIMENTS

In this section we present the experiments that we have
conducted on a real Twitter and DBLP datasets to validate
our structures and algorithms.

5.1 The datasets

The Twitter dataset we use in our experiments contains
approximately 2.2 million users (with their 2.3 billion associ-
ated tweets acquired in 2015 from February to April) linked
by more than 125 million edges (i.e following relationships).

S om). Y. A YT Bl > g,
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Table 2 describes the main topological properties on the gen-
erated dataset. For our Twitter dataset these properties are

[ Property | Twitter | DBLP |
Total number of nodes 2,182,867 525,567
Total number of edges | 125,451,980 | 20,526,843
Avg. out-degree 57.8 47.3
Avg. in-degree 69.4 53.6
max in-degree 348,595 9,897
max out-degree 185,401 5,052

Table 2: Datasets topological properties

very close to the ones of the real Twitter network observed
in [18].

Topic extraction:.

As already mentioned, in order to generate the topics of
the edges we first used the OpenCalais document categoriza-
tion to tag a subset of the users (nodes) in our graph with
topics extracted from their published tweets. This strat-
egy allowed to tag 10 percents of our nodes using a list of
18 standard topics for Web sites/documents proposed by
OpenCalais. The user categorization was completed by us-
ing a trained Support Vector Multi-Label Model using Mu-
lan, with a precision of 0.90, that associated to each user
in the graph his publisher profile (topics on which he pub-
lishes). Each follower is characterized by a follower profile
containing topics with high frequency among the topics of
their followed publishers. Finally the labels of each edge are
the topics in the intersection between the corresponding fol-
lower and publisher profiles. The resulting graph is a fully
labeled social graph with 2.2M nodes and 125M edges. We
refer to this dataset as Twitter. The edge labels obtained
with our generation method show a biased distribution simi-
lar to the one observed for Web sites in Yahoo! Directory [17]
(see Figure 3).
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Figure 3: Distribution of edges per topic

For the DBLP dataset, we merged different versions of the
ArnetMiner DBLP datasets®. The resulting dataset contains
2,291,100 papers, 1,274,860 authors and 4,191,643 citations.
From this dataset we build a graph of author citations by
creating a directed edge between author u and author v if
some paper of u cites a paper of v. This results in a fi-
nal dataset with 525,567 authors and 20,526,843 citations

Shttp://aminer.org/billboard /citation



between them. Observe that we only kept cited authors.
Then we used the Singapore Classification® to manually la-
bel some of the major conferences. The other conferences
are labeled based on the number of authors they have in
common with already labeled coferences (topics of two con-
ferences are close if there are many authors that publish in
both of them). Paper topics are deduced from the conference
topics by assuming that a paper published in a conference
is about the main topic of this conference. Author profiles
are built from the topics of their published papers. The
resulting dataset is summarized in Table 2.

5.2 Implementation

We implemented our solution in Java (JVM version 1.7).
The experiments were run on a 64-bit server with a 10 cores
Intel Xeon processor at 2.20GHz and 128GB of memory.
The server is running Linux with a 3.11.10 kernel.

The topic similarities given by the Wu and Palmer sim-
ilarity scores are pre-computed and stored in memory as a
triangular similarity matrix. We considered here only the
18 common topics for Web documents, which results in a
2.5 KB file, but observe that for 10,000 topics the similarity
matrix will require around 750MB so can still easily fit in
memory. A similar approach was chosen for the similarity
matrix of the DBLP dataset. We stored the landmark rec-
ommendations as inverted lists: for each landmark, we have
a set of accounts recommended along with their recommen-
dation score for each topic from 7. Landmarks were chosen
according to one of the selection strategies presented in Ta-
ble 4. We compare the quality of our recommendations
with two related algorithms chosen as baseline: the stan-
dard Katz score [16], which considers only the topology (all
paths between two accounts along with their length, given by
the topological score in Equation 2), and TwitterRank [26]
which captures both the link structure and the topical sim-
ilarity between users. In the following we denote our score
as TR.

The values of parameter 8 and « are set to 0.0005 and
respectively to 0.85, similarily to the values used for the
Katz and the TwitterRank alogorithms in [16] and [26].

5.3 Quality of the recommendation
We consider a test set of T" edges of the graph together

with their corresponding topics representing the ground truth.

As observed in [16], to maintain the topological properties
of the graph during the evaluation process, the target node
of an edge of the test set must have at least ki, in-degree
and the source node at least kou: out-degree (ki = 3 and
kout = 3 in our experiments). All edges from T are then
removed from the graph. For each edge e = u — v in T we
randomly select 1000 accounts in the graph. We compute
recommendation scores for the 1001 accounts (the 1000 ac-
counts and v) with respect to u on the topics of e and we
form a ranked list (similar to [6]) for each topic. For each
list, if v belongs to the top —n accounts of the ranked list we
have a hit, otherwise a miss. The overall recall and precision
are defined similarly to [6] with #hits/T and #hits/N.T re-
spectively. For our experiments we set the test size 7' = 100
and we average values over 100 trials.

Figure 4 illustrates the accuracy of the different recom-
mendation strategies for the Twitter dataset. We see that

Shttp://www.ntu.edu.sg/home/assourav /crank.htm
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Figure 4: Recall at N (Twitter)

TwitterRank is outperformed by other algorithms. Indeed
only for 4% of the recommendations the account correspond-
ing to the removed edge is found in the top-1 for Twitter-
Rank, while Katz provides as first recommendation the cor-
rect account in 29% of the tests and TR in 34%. So Tr
provides a 8.5 and 1.2 gain with TwitterRank and Katz re-
spectively for the top-1. For the top-10 the improvement
remains significant: 3.8 and 1.3 with TwitterRank and Katz
respectively.
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Figure 5: Precision vs recall (Twitter)

Figure 5 confirms that TR outperforms other approaches:
for a similar recall value greater than 0.4, the precision of TR
is at least twice the one of Katz and one order of magnitude
higher than the one of TwitterRank.
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Figure 6: Recall at N (DBLP)

We observe in Figures 6 and 7 that the DBLP dataset
exhibits similar results. The recall however exhibits a faster
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Figure 7: Precision vs recall (DBLP)

increase for TR due to the self-citations phenomenon: au-
thors from a given paper often cite one or several of their
previous papers on the topic. These papers may share some
citations with the paper corresponding to the edge removed
for the selected author. This also explains the faster recall
increase for Katz strategy. TwitterRank whose recommen-
dations are essentially based on the popularity (in-degree)
of an account reached in the graph does not capture this
phenomenon and provides slightly worse results than with
the Twitter dataset.

Figure 4 also illustrates the benefit when taking into ac-
count both the edge similarity and the authority. Adding
the edge similarity to Katz, which takes into account only
the topology (number and length of the paths between two
nodes), provides a better precision and recall (+11% for the
precision and N = 20, see TR—auth). When we consider
our approach without edge-similarity scores, but with topic
authorities of the nodes, we improve both recall and preci-
sion (+25% compare to Katz precision, see TR—sim). Fi-
nally our approach which integrates the topology, the edge
similarity and the topic authorities, outperforms these ap-
proaches (+32%, +19% and +6% with resp. Katz, TR—auth
and TR—sim).

However there exists a large discrepancy for accuracy when
considering two dimensions of analysis: the edge removal
strategy and the popularity of the topic used for the recom-
mendation. For the top-10, Figure 8 shows that for Twitter
we have a very low accuracy, i.e. a recall of 0.15, 0.03 and
0.18 for respectively Katz, TwitterRank and TR, when try-
ing to retrieve an account which belongs to the top-10% less
followed accounts (T'W min). Conversely very popular ac-
counts (top-10% most followed accounts) are most of time
retrieved in the top-10 recommendations with a recall be-
tween 0.9 and 0.95 for all strategies. This can be explained
by their path-based approach which aggregates scores on in-
coming paths, so accounts with numerous incoming paths
got a high score. Observe that for popular accounts, Twit-
terRank provides the best results. Indeed most of large ac-
counts are labeled with several topics. While TwitterRank
score relies on the account popularity and on the presence
or not of a label for an account (whatever the number of
labels it has), TR score considers for its authority score the
number of incoming edges labeled with a given topic. But
the more labels an account has, the lower authority score
for a given topic it may have. Oppositely an account with
a low in-degree rarely has several labels. Our approach that
also considers semantic similarity between topics on edges is
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then particularly efficient. With the DBLP dataset, authors
who belong to the 10% less cited are more likely retrieved
than with the Twitter dataset for Katz and TR due to the
higher density of the graph. However TwitterRank based on
the popularity fails to retrieve these authors. Even for the
10% most popular authors, TwitterRank does not achieve
the good results obtained for the Twitter datasets, due to a
different distribution of the in-degree. While the 10% most
followed accounts in Twitter include few extremely popular
accounts and some moderately popular, the 10% most fol-
lowed authors in DBLP consist in a more uniform dataset
regarding the in-degree.
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Figure 8: Recall w.r.t. popularity

Since the distribution of edge topics is very biased we also
study the impact of the popularity of the topic on the rec-
ommendations. Results are depicted in Figure 9 for topics
social, leisure and technology. Two main conclusions
are underlined with this experiment. First, the less popular
an account is, the better accuracy for our recommendations
we get. So for an infrequent topic like social we get a recall-
at-10 for TR, Katz and TwitterRank of respectively 0.959,
0.751 and 0.253. Oppositely for the popular topic technol-
ogy we get respectively 0.462, 0.424 and 0.09. Indeed for a
popular topic many accounts may be found in a close and
connected neighborhood of the account we want to recom-
mend, possibly with a higher score than for the account for-
merly linked by the removed edge. Second we observe that
TR which considers the semantic similarity between topics
always outperforms other strategies.
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Figure 9: Recall w.r.t. topic popularity

However this experiment does not highlight the quality of
the recommendations performed by each algorithm but only
the ability to retrieve a removed link between two followers



(link prediction). To estimate the quality of the recommen-
dations we rely on a user validation.

User Validation Task.

In order to evaluate the relevance of the generated recom-
mendations, we conducted a user validation task on 54 IT
users (undergraduate, postgraduate and PhD students, and
academics) from which 46% are regular Twitter users. We
set up an on-line blind test where we ask users to rate the
relevance of a set of recommendations for a given topic on a
scale from 1 (low relevance) to 5 (high relevance). A recom-
mendation set consists in the top-3 recommendations given
by Katz, TR and TwitterRank, so 9 recommended accounts
for topics Technology, Social and Leisure. On the inter-
face the recommendation list is shuffled, and for each recom-
mendation we display a sample of 5 randomly chosen tweets
from the corresponding account.
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Figure 10: Relevance scores (user validation Twit-
ter)

Figure 10 presents the results of our user validation. We
observed that the user during the validation usually mark
with the average 2 or 3 value all accounts when he was doubt-
ful about the relevance or not of an account what happened
usually when tweets were neutral, unclear, or when they
required some knowledges about a given topic (e.g. few Eu-
ropean people know who is Tom Brady so can not assert this
tweet is about the leisure topic). So scores greater than
value 3 are significant since they means users really observe
the relevance of an account.

From this experiment we conclude that on average TR
and TwitterRank provide more relevant recommendations
according to the topic searched. However according to the
popularity of the topics (see Figure 3) we have very dif-
ferent results. The social topic gave more homogeneous
results with a score between 2.7 for TwitterRank, 2.8 for
Katz and 2.9 for TR. The reason for this result is that posts
published by these accounts are generally difficult to clas-
sify since they mix social and health, or social and politics
for instance. Oppositely topics like leisure or technology
are less ambiguous. For these topics, we see that TR and
TwitterRank outperform Katz, which was expected since
these two approaches consider the content published for their
recommendation scores, unlike Katz. While TwitterRank
generally recommends accounts with a large number of fol-
lowers, TR can also recommend smaller account but more-
specialized, which results in a better relevance score for topic
with a medium popularity like leisure, when TwitterRank
is slightly better for the most popular topic technology.

We also conduct a user validation for the DBLP dataset.
We build a list with the top-3 recommendations returned
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by each method for researchers from our lab. Observe they
belong to different areas (IR, DB, OR, network, software en-
gineering, etc). To illustrate how the different methods may
help to discover relevant authors we limit to 100 the num-
ber of citations of the authors returned by each algorithm
(so we avoid to propose very popular and obvious authors).
‘We propose to each researcher the randomized list with the
9 authors retrieved based on his DBLP entry. He marks
each proposal between 1 and 5 according to the relevance of
the proposal (i.e. the proposed author could have been cited
regarding the past publications done by the researcher). We
collect 47 answers and results are presented in Table 3.

Katz TrR | TWR
average mark 2.38 | 2.47 1.51
# 4 and 5-mark 46 47 11
best answer (%) | 0.38 [ 0.50 0.12

Table 3: User validation (DBLP)

The first row shows that both Katz and TR outperform
TwitterRank on this dataset. The second row shows that
around a third of the recommendations proposed by Katz
and TR are considered particularly relevant by our panel
(4 or 5-mark)) while only 8% are so-considered with Twit-
terRank. A first rationale is that papers we cite, including
papers from co-authors, often cite the same relevant articles
within a topically-closed research community. The impor-
tance of the semantics on edge is less than with Twitter since
researchers, whatever the number of articles they published,
cite/are cited by mainly researchers from their community.
This explains the close score for Katz and TR. The impor-
tant role of the popularity in TwitterRank explains it poor
results in this context since it proposed popular authors even
when there exists a small number of paths between the query
author and them. Last row confirms the quality of our rec-
ommendations since TR presents for 50% of the tests the
best top-3 recommendations, when Katz and TwitterRank
achieve respectively 38% and 12%.

5.4 Approximate computations

We perform a set of experiments to illustrate the benefits
of the landmark-based approximate computations. Since re-
sults may be highly related to the choice for the landmarks
selection, as underlined in [22], we decided to implement and
compare recommendations based on 11 different landmark
selection strategies presented in Table 4.

Size and building time of the landmark index. A first
experiment highlights the important time discrepancy for
the landmark selection algorithms (see Table 5). Obviously
random selections of the landmarks like RaANDOM, BTw-FoL
and BTw-PUB are the fastest strategies (around 2ms per
landmark), while strategies based on the centrality prop-
erty are 5 orders of magnitude slower (around 17h) due to
O(N?.log N + NE) centrality complexity (with Johnson’s
algorithm). Table 5 also illustrates that the recommenda-
tion computation for a given landmark is almost indepen-
dent of the landmarks selection strategy (between 12 and 15
mns), which means that convergence is achieved in a similar
number of steps after exploring a similar number of paths.

Comparison of the landmark selection strategies for
recommendations. We evaluate our approximate approach



Algorithm | Description

RANDOM Draw landmarks with a uniform distribution

FoLLow Draw landmarks with a probability depending on
their # of followers

PUBLISH Draw landmarks with a probability depending on
their # of publishers

IN-DEG Landmarks are nodes with highest in-degree

Brw-FoL Draw landmarks among nodes with # of followers
in [min_follow,max follow]

Our-DEG | Landmarks are nodes with highest out-degree

BTw-PUB | Draw landmarks among nodes with # of publish-
ers in [min_publis,max_publish]

CENTRAL Select landmarks that are reachable at a given dis-
tance from most of chosen seed nodes

OuT-CEN Select the landmarks based on the number of dif-
ferent output seeds that they cover

COMBINE Weighted combination between the CENTRAL and
OuT-CEN

COMBINE2 | Weighted combination between the BTw-FoL and
Brw-PuB

Table 4: Landmarks selection algorithms proposed

Strategy landmarks

select. (ms) | comput. (s)
RANDOM 2.4 756.7
FoLLow 3,712.8 877.3
PuBLISH 3,614.7 868.6
IN-DEG 459.6 854.3
Brw-FoL 2.4 735.1
Our-DEG 1,815.7 918.6
Brw-PuB 1.7 822.7
CENTRAL 61,060.2 807.8
OuT-CEN 66,862,3 816.5
COMBINE 130,461.8 818.2
COMBINE2 2.45 805.6

Table 5: Determining landmark w.r.t. strategies

presented in Section 4. We perform a BFS at depth 2 from
a query node and combine scores with the ones of the land-
marks encountered. (see Algorithm 2). Then we compare
the recommendations retrieved with the ones provided by
the exact computation with convergence. Average results
for 100 landmarks are reported in Table 6.

Strategy #Ind | time in s (gain) L10 | L100 | L1000
RANDOM 2.9 0.93 (338) | 0.130 | 0.124 0.125
ForLLow 17.5 0.83 (379) | 0.377 | 0.140 0.096
PuBLISH 11.7 0.58 (539) | 0.349 | 0.136 0.100
IN-DEG 58.9 0.84 (373) | 0.523 | 0.149 0.066
Brw-FoL 3.5 0.55 (577) | 0.061 | 0.059 0.058
Our-DEG 6.2 0.81 (388) | 0.518 | 0.147 0.064
Brw-PuB 2.9 0.54 (585) | 0.129 | 0.127 0.123
CENTRAL 5.3 0.76 (414) | 0.134 | 0.123 0.125
OuT-CEN 4.4 0.74 (425) | 0.172 | 0.131 0.121
COMBINE 4.2 0.71 (443) | 0.180 | 0.125 | 0.118
COMBINE2 3.7 0.54 (584) | 0.129 | 0.126 0.124
Table 6: Comparison of the landmark selection
strategies

First we observe that the number of landmarks encoun-
tered during the BF'S at distance 2 differs from one strategy
to another and ranges from 2.9 on average for the RAN-
DOM strategy to 58.9 for IN-DEG. Centrality approaches lead
to less landmarks encountered since they select landmarks
among nodes which connect connected subgraphs and a two-
hop BFS is more unlikely to visit several connected sub-
graphs. We notice that the processing time does not depend
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on the number of landmarks found, what seems counterintu-
itive since more landmarks means more computations (score
combinations) to perform. The rationale is that we perform
pruning when we encounter a landmark during the BFS,
to avoid considering twice paths from the BFS which pass
through a landmark. Since the recommendation computa-
tion is dominated by the BF'S exploration and computation,
this pruning largely reduces the whole processing time. A
second important result is that our approximate computa-
tion allows to get a 2-3 order of magnitude gain compared
to the exact computation. Finally observe that a strategy
which allows to find more landmarks is more tolerant to a
landmark departure or to a landmark with outdated recom-
mendation values.

Finally to validate the quality of the approximate com-
putation we report the average Kendall Tau distance be-
tween the approximate computation and the exact compu-
tation obtained at convergence when a landmark stores re-
spectively the top-10, top-100 or top-1000 recommendations
for all topics (see last 3 columns of Table 6). Keeping 1000
recommendations for the landmarks at the pre-processing
allows to reach a Kendall Tau distance between 0.06 and
0.13 for the top-100 recommended accounts for a node at
query time. Keeping a top-10 at landmarks leads to a higher
Kendall Tau distance since a landmark may update at most
10 scores from the top-10 built at distance 2 from the BFS.
Consequently an account which is ranked at the 11th place
for two landmarks is not kept as a recommendation whereas
its aggregate score may be higher than accounts kept as
recommendations. Remark that even when storing the top-
1000 for each topic, the landmarks recommendations can
easily fit in memory since they require 1.4MB storage each.

6. CONCLUSION

We present the TR recommendation score which com-
bines topology and semantic information regarding the user
interest. To face prohibitive computations with very large
graphs, we propose a landmark-based approach which re-
quires a pre-computation step for a small set of identified
nodes and achieves a 2-3 order of magnitude gain compare
to the exact computation. The experiments and user valida-
tion show that TR outperforms other algorithms. As future
work we intend to study updating strategies since many fol-
lowing links have a short lifespan. This graph dynamicity
may impact the scores stored by the landmarks. Moreover
we made the choice to handle the recommendation task in
a centralized manner motivated by the current social media
architectures like Twitter Who-to-Follow service hosted on
a single server. However, with the continuous increase of the
social graph sizes, distribution strategies must be considered
in the future. Regarding our approach, distribution implies
to split the graph by taking into account connectivity, but
also to perform landmark selections and distributions that
allow a node to evaluate the recommendation scores “locally”
minimizing network transfer costs.
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ABSTRACT

Web 2.0 users conveniently consume content through subscribing
to content generators such as Twitter users or news agencies. How-
ever, given the number of subscriptions and the rate of the sub-
scription streams, users suffer from the information overload prob-
lem. To address this issue, we propose a novel and flexible di-
versification paradigm to prune redundant posts from a collection
of streams. A key novelty of our diversification model is that it
holistically incorporates three important dimensions of social posts,
namely content, time and author. We show how different applica-
tions, such as microblogging, news or bibliographic services, re-
quire different settings for these three dimensions. Further, each
dimension poses unique performance challenges towards scaling
the diversification model for many users and many high-throughput
streams. We show that hash-based content distance measures and
graph-based author distance measures are both effective and effi-
cient for social posts. We propose scalable real-time stream pro-
cessing algorithms leveraging efficient indexes that input a social
post stream and output a diversified version of the stream, diversi-
fied across all three dimensions. Next, we show how these tech-
niques can be extended to serve multiple users by appropriately
reusing indexing and computation where possible. Through exten-
sive experiments on real Twitter data, we show that our diversifica-
tion model is effective and our solutions are scalable. We show that
different algorithms perform best for different application settings.

1. INTRODUCTION

Tremendous amounts of online social data are generated every
day. For instance, Twitter has reported over 280 million monthly
active users in its microblogging service and 500 million Tweets
posted per day'. One common way to consume social data is through
implicit or explicit subscription. For example, almost all news
agencies offer RSS feeds for people to subscribe. Google Scholar
continuously recommends new publications to its users based on a
user’s profile and publication history. In a microblogging system
like Twitter, one can subscribe to other users’ posts by following
them.

"https://about.twitter.com/company
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All posts matching a user’s subscriptions are typically displayed
in a convenient central place, such as the user’s timeline in Twit-
ter or Facebook. These timelines are updated in real time. A key
challenge is that a user could be easily overwhelmed by the num-
ber of posts in the timeline, especially if the user is subscribed to
many post producers. Further, a user’s timeline often contains lots
of posts that carry no new information with respect to other similar
posts. This data overload issue also happens in other applications
with smaller data throughput such as news and research papers. For
instance, it has been shown that a primary care physician should
read hundreds of medical publications per day to keep up with the
medical literature [2].

To alleviate the data overload problem, in this paper we pro-
pose a novel way to efficiently and effectively diversify social post
streams by pruning redundant posts. By social post streams we
mean a broad class of content generated by services where each
post, in addition to its textual content, has a unique author and a
unique timestamp, and where authors are associated through vari-
ous social relationships. For instance, in Google Scholar authors
are connected by relations such as co-authorship or overlapping
research interests. In microblogging sites users are connected by
follower/followee relations.

Given a stream consisting of all the posts from a user’s subscrip-
tions, our goal is to output in real-time a subset of the stream in
which (i) all posts are dissimilar to each other and (ii) any post in
the whole stream will be either included or covered by a post in the
sub-stream. A post covers another post if the two posts are simi-
lar in all three similarity dimensions: (a) content, (b) time and (c)
author.

Two posts have similar content if their text components are sim-
ilar. Intuitively, all other dimensions being equal, users want to
avoid seeing two posts with very similar content. Similarly, the
timestamp distance of two posts is important in social post diver-
sification. Two posts that have similar content but are far away in
terms of post time, may both be of interest to the user. Note that
time is widely used for diversifying search results in microblogging
systems [10, 14, 4].

The author similarity is a more subtle dimension that to the best
of our knowledge has not been used before for computing diver-
sity in social media. For example, CNN and Fox News, which
both have official Twitter accounts, are dissimilar to each other be-
cause they generally have different political views. We compute the
distance between two authors through their social connections. In
particular, we compare the sets of friends (or followers in the case
of Twitter) of the two authors, which has been shown to be a good
author similarity measure in social networks [21, 9].

Challenges: To summarize, in our model two posts are redun-
dant with respect to each other if they are similar in all of the three
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dimensions. It is challenging to apply the proposed diversification
model in a large scale social service with high posts throughput.
First, we must efficiently compare the content of a new post to
the content of all previous posts (within a time window). For this,
we apply Hash-based techniques to measure the content similar-
ity between social posts. Hash-based techniques have been applied
before to Web documents [11], but not to social posts, which are
generally shorter and may heavily rely on abbreviations or URLs.

Second, handling the author dimension is challenging. A naive
approach is to check if the author of each new post is similar to
the author of each existing post (within a time window). However,
we show that depending on the setting (similarity thresholds across
the three dimensions), a different indexing data structure is more
efficient to achieve real-time posts processing.

Third, the three diversity dimensions offer an opportunity to use
the results of the one dimension to prune the work needed for the
other dimension. For instance, if a reader knows that posts P; and
P> have high content similarity, then she doesn’t need to check if
their authors or time are similar.

Fourth, if we move from one user to many users, where each user
has a collection of subscriptions, the challenge is how to reuse the
computation performed for diversifying one user’s stream to diver-
sify streams of other users. We show that we can reuse computation
across users only if their shared subscriptions meet a strict condi-
tion.

Previous work on diversity: There has been much work on di-
versifying results for documents [15, 1, 3], social posts [10, 14, 4]
and database records [5, 6]. However, none of these works can be
applied to our setting where: (i) data is streaming and an instant
decision must be made on whether a post should be pushed to the
user, and (ii) a multi-dimensional diversity model is adopted. In
contrast, most previous works focus on the search setting, where a
user submits a query and the set of results must be diversified based
on content, including work on social posts [10, 14].

The problem studied in this paper is also fundamentally different
from previous work on stream summarization [20, 18, 16, 23], be-
cause: (i) we do not aim to generate an aggregation of documents,
but instead select a subset of posts, and (ii) we define strict cover-
age constraints to guarantee that not even one uncovered posts is
missed.

Contributions: In this paper, we make following contributions:

e We propose a new paradigm to define diversity on social
posts, by incorporating three important dimensions — con-
tent, time and author — and we define corresponding opti-
mization problems (Section 2).

e We study how content similarity can be efficiently applied to
social posts, which are generally short and contain abbrevia-
tions (Section 3).

e We propose efficient data structures and algorithms to solve
the social posts stream diversification problem (Section 4).

e We show how the single-user algorithm can be extended to
handle many users, by reusing computation across users (Sec-
tion 5).

e We perform a comprehensive experimental evaluation, where
we focus on microblogging data, which poses the most se-
rious scalability challenges. We show how different algo-
rithms perform better for different diversity needs (Section 6).

Section 7 reviews related work. We conclude in Section 8.

18

2. FRAMEWORK AND PROBLEM DEFINI-
TION

Let P represent a stream (ordered set) of social posts. Each post
P; in P has an author author(P;), textual content text(P;) and a
timestamp time(P;) (also referred as ;). We define the distance
measures across the three diversity dimensions as follows.

e Content Distance. We represent the content distance be-
tween two posts P; and P; as dist.(P;, P;). Cosine similar-
ity is a possible way to define the distance, but for efficiency
purposes we employ the hash-based simhash measure as ex-
plained in Section 3, where we show that simhash is effective
for social posts.

e Time Distance. The time distance between two posts P; and
P; is denoted as dist:(P;, P;) = |t; — t;]-

o Author Distance. We denote the author distance between P;
and P; as distq(P;, P;). For social data, we define the sim-
ilarity between two authors as the cosine similarity between
their friends’ vectors, which has been successfully used in
previous work to measure the user similarity in Twitter [21,
9]. The author distance is (1 — similarity). For other do-
mains other distance measures may be more appropriate.

Next, we define the coverage semantics between posts.

Definition 1. (Post Coverage) Given a content diversity threshold
e, a time diversity threshold M\ and an author diversity threshold
Aa, two social posts P; and P; cover each other if:

o dist.(P;, P;) < Ac and
o disti(P;, Pj) < A\¢ and
° dista(Pi7 Pj) S )\a.

Note that the coverage semantics between two posts is symmet-
ric. The three thresholds may vary according to the characteristics
of a social system as we discuss below. The primary focus of this
paper is to study the efficient processing of a posts stream and not
to set these threshold values.

We next define the Social Post Stream Diversification (SPSD)

problem.
Problem 1 [Social Post Stream Diversification (SPSD)] Given
a social post stream P, and diversity thresholds A, A and A\, com-
pute a sub-stream of posts Z C P that covers P, that is, VP; € P
3P; € Z, such that P; covers P;.

Note we have to compute Z in real-time, i.e., immediately decide
whether a post P; should be included in Z at its arrival. That is, we
cannot first view the whole stream and then decide which posts
should be included in the substream.

In SPSD, there is a single user who consumes the stream and
many authors who generate the posts of the stream (a user may also
be an author and vice versa). That is, a solution to SPSD should be
deployed for each user, for example, as part of the Twitter app of a
user. On the other hand, a social network service would rather have
a central diversification engine that diversifies the posts for each
of its users, so that no client side post processing is required. We
refer to this version of SPSD as Multiple-Users SPSD (M-SPSD).
Another difference between SPSD and M-SPSD is that in SPSD we
can easily support user customized diversity thresholds. Figure 1
shows how SPSD and M-SPSD differ in terms of the setting and
deployment.
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Figure 1: Settings of SPDP and M-SPDP.

Problem 2 [Multiple-Users Social Post Stream Diversification
(M-SPSD)] Given a social post stream P, diversity thresholds A,
A+ and A, and a set of users where each user is subscribed to a
subset of the authors, compute a diversified sub-stream for each
user.

3. CONTENT DISTANCE ESTIMATION FOR

MICROBLOGGING POSTS

Among the three diversity dimensions, the content distance is
the most expensive to compute, because it must be computed for
each new post. This is especially true given our real-time decision
semantics described above. In contrast, the author similarity be-
tween each pair of authors may be precomputed (e.g., once every
week), as it changes slowly over time. For that reason, we cannot
afford to use traditional content similarity measures such as cosine
similarity. Instead, we turn to hash-based distance measures. In
this section we present the details of the employed content distance
technique along with an analysis of its effectiveness for microblog-
ging data.

We define the content distance between two posts P; and P; as
the Hamming distance of their SimHash [17] fingerprints. Previous
work has applied SimHash on web documents [11] and showed that
it is efficient and effective. We represent the SimHash of text(P;)
as S;, which is a 64-bit fingerprint. The Hamming distance of two
SimHash fingerprints is the number of different bits between them.
According to the experimental analysis in [19], the cosine distance
between two texts positively correlates to the Hamming distance of
their corresponding SimHash fingerprints.

Distribution of SimHash distances in Twitter

First, we study the distribution of SimHash distances on Twitter
data. We collected a dataset of 200 thousand tweets from the Twit-
ter Streaming API, which returns a stream of randomly selected
substream of Twitter ([12] showed that the stream is not exactly
random but this is not too important for our problem). The distri-
bution of the Hamming distances for these tweets is depicted in Fig-
ure 2, which shows a perfect normal distribution with mean value
32, as expected, and with most of the distances between 24 to 40.
User Study

To further evaluate the effectiveness of SimHash for social posts,
we conducted a user study to learn the relationship between the
SimHash distance between two posts and the perceived dissimilar-
ity between the posts. A second goal of the study is to learn what is
a good SimHash distance threshold (e.g., a threshold of 3 bits was
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Figure 2: Hamming distance distribution

chosen to define redundant Web pages [11]) and if any preprocess-
ing of the tweet text (e.g., expand shortened URLs) may improve
the effectiveness of SimHash.

Setup and Methods: In particular, we collected a dataset of 2000
pairs of tweets randomly selected from the 200,000 tweets returned
by the Twitter Streaming API, with SimHash distances between 3
and 22 — 100 tweets from each distance value. We chose 3 to 22
because this is the range where we expect to find posts that are very
similar (redundant with respect to each other). This range choice is
supported by our results below. We recruited 12 undergraduate and
graduate students.

We evenly divided these 2000 pairs into 4 groups and distributed
them to the 12 students for labeling. The author and timestamp of
the posts are hidden. Some examples of these pairs are shown in
Table 1. Each group of tweets is labeled by 3 students. The students
were asked to mark whether the two tweets in a pair are redundant
with respect to each other.

To help the users more accurately label the similarity between
two posts, we showed the expanded URL (instead of the shortened
one shown in Table 1). We used a majority vote, that is, if at least
2 out of the 3 students labelled a pair as redundant, we labelled the
pair as near-duplicates.

Results: Out of the 2000 pairs, the users marked 949 pairs as
redundant. Figure 3 shows the precision and recall achieved by
various SimHash distance values. For each Hamming distance h,
the precision is defined as the fraction of pairs with Hamming dis-
tance no more than h that are true near-duplicates. Recall is the



Table 1: Example tweet pairs and their Hamming distances

Tweet pair Hamming distance
Over 300 people missing after South Korean ferry sinks. (Reuters) Story: http://t.co/9w2JrurhKm
3
Over 300 people missing after South Korean ferry sinks. (Reuters) Story: http://t.co/E1vKp9JJfe
In order to succeed, your desire for success should be greater than your fear of failure™ Bill Cosby
In order to succeed, your desire for success should be greater than your fear of failure. #quote #success - 8
Bill Cosby
Alibaba’s growth accelerates, U.S. TPO filing expected next week http://t.co/mUcmLJ4cpc #Technology #Reuters
Alibaba’s growth accelerates, U.S. IPO filing expected next week: SAN FRANCISCO (Reuters) - Alibaba 13
Group Hold... http://t.co/aLAV8w4gWF

fraction of the total number of near-duplicate pairs that are detected
with Hamming distance at most h. This graph shows that SimHash
distance is an effective measure to identify similar posts.

0.9 >

08 N
07 \\
o.s ™

. L..“.‘“\
05 M ———s .
04 ——Precision
0.3 Recall

0.2
0.1

3 45 6 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25
Hamming Distance

Figure 3: Precision and Recall for Hamming distance. SimHash
fingerprints are generated from raw texts of tweets

Next, we study if various text preprocessing methods may im-
prove the precision or recall of SimHash distance measure for mi-
croblogs. We first normalize the text by (a) changing all text to
lowercase, (b) removing extra white spaces between words, and (c)
removing non-alphanumeric characters (such as *, —, +, /, etc.).
Figure 4 plots the precision and recall after we apply the normal-
ization. We see that this graph achieves higher precision and recall
values than the original analysis in Figure 3. We also see that the
the two lines cross for distance = 18, which achieves precision
= 0.96 and recall = 0.95.Hence, we use A\ = 18 as the default
content distance threshold in the experiments in Section 6.

We also tried other methods of text preprocessing such as ex-
panding shortened URLs (URLSs in tweets are shortened by Twit-
ter), varying the weights of user mentions and hashtags (by creat-
ing artificial copies), and expanding abbreviations. However, these
methods had no significant impact to the precision and recall.

For completeness, we compared the effectiveness of SimHash to
that of cosine similarity (which is much slower as discussed above)
in terms of detecting posts with near-duplicate content (redundant).
We tried different cosine threshold values and found that the preci-
sion and recall lines across at cosine similarity 0.7, where all posts
with cosine similarity above 0.7 are marked as redundant. This
achieves precision and recall of 0.96 and 0.95 respectively, which
is the same as what we achieved using SimHash above. This means
that, for detecting near-duplicate in our dataset, SimHash achieves
effectiveness similar to cosine similarity. Hence, given the time
performance advantage of SimHash, it is the best choice for our
problem.

The high threshold value of A\. = 18 for SimHash precludes the
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Figure 4: Precision and Recall for Hamming distance. SimHash
fingerprints are generated from normalized texts of tweets

use of the efficient SimHash index proposed in [11] which relies
on building several copies of the SimHash values table for several
permutations of the bits, since the number of these copies is expo-
nential in A, (which was only 3 in [11]). Hence, as we discuss in
Section 4, other indexing and searching techniques are required.

4. ALGORITHMS FOR SPSD

In this section, we describe our algorithmic solutions for the

SPSD problem. As explained earlier in Section 3, due to the high
Hamming distance threshold we are unable to use existing SimHash
indexing techniques, and we must rely on comparing the SimHash
value of each new post with those of all the previous ones, leading
inevitably to linear time complexity per post in the worst case. We
reduce the number of these comparisons by leveraging the other
two dimensions, time and author. We first discuss how we han-
dle time diversity, which is simpler, and then we present various
approaches for handling author diversity.
Handling Time Diversity. According to the diversity model, at
the arrival of a post P; it can only be covered by the previous posts
within a \; time distance. Thus, it is sufficient to store only the
posts from previous A; time in memory for checking the coverage
of a new post. One possible implementation is that we could store
the posts in a circular array. We track two post indices for the oldest
post within a \; distance to current time (a) and the most recent
post (b). At the arrival of each post P;, we compare it to the posts
from most recent post to the oldest (i.e., from index b to a). If we
encouter a post P; with t; — ¢; > A, we update a to be index of
the post right after P;. And we insert a non-redundant post to the
array with index (b + 1) and update b = b + 1.

Now that we have discussed how to handle time diversity, we
focus on the author diversity among the posts in the last \; time
units. The author similarity relations between all authors form an



author similarity graph G, which as we discussed above may be
periodically precomputed. There is an edge between two authors
in G if their distance is below the threshold \,. For each user u;
who subscribes to a set A of authors, we define GG; as the subgraph
of G that contains all the A authors and the edges among them. In
this section, we assume there is only one user (hence, one GG;) and
in Section 5 we assume multiple users (and G;’s).

4.1 UniBin

Our first method to solve SPSD, which we refer as UniBin, works
as follows: At the arrival of each post P; in P, we sequentially
(from the most recent post to the older ones) compare P; to each
post in the past A; time range in the diversified sub-stream Z. For
each post P;, we check whether P; meets both: (1) Hamming
distance between S; and S; (SimHash fingerprints of P; and P;,
respectively) < ¢, and (2) distq(P;, P;) < A,, which can be
achieved by checking whether author(P;) and author(P;) are
the same or neighbors in G. If no post from the past \; time range
meets the above two conditions (i.e., P; is not covered by Z), then
we add P; to Z. Otherwise we do not include P; in Z.

We denote this method as UniBin indicating that the posts from
all authors are stored in a single post bin (e.g., a circular array as
described earlier). We illustrate UniBin with an example. In Fig-
ure 5a, each node represents an author. Two authors are connected
by an edge if they are similar to each other (i.e., the author distance
< MXa). Figure 5b shows the posts from these authors with post
distance information in terms of all three diversity dimensions.

‘We show the update of a post bin for UniBin in Figure 6a. When
P, arrives, there is no posts in the bin yet. Thus P; is not covered
hence is added to the bin. P is also added as it is not covered by P;
(the Hamming distance between S1 and Sa, dist.(P1, P2), is larger
than the threshold A.). For Ps, the algorithm first compares it to P
which does not cover P (because dist.(Ps, P3) > A.). However,
it is covered by P; because in all three diversity dimensions they
are within the distance thresholds (or above similarity threshold).
Thus, Ps is not added. So forth, Py is not covered by either P; and
P> and is included in the bin. However, we note that P, and Ps3
cover each other. Finally, Ps is covered by Pix.

4.2 NeighborBin

UniBin has to compare a new post (both its author and content
SimHash) to all posts in the last A; time units. This aggregated
time may be considerable given the high frequency of posts, even
if the author similarity graph G; and the post bin are maintained in
memory.

To improve this, we partition the posts by their authors such that
for a new post P; we only check its coverage by comparing with
the posts from author(P;) or from author(P;)’s similar authors.
Specifically, we create a post bin for each author.and when a new
post P; comes, the algorithm sequentially checks posts in the bin
identified by author(P;) but not other posts. However, we must
note that posts from the authors that are neighbors of author(P;)
in G; can potentially cover P;. Hence, the post bin of an author
also includes the posts of similar authors (neighbors in G;). Thus,
we add P; to all bins of author(P;)’s neighbors in addition to the
bin of author(P;), if P; is detected as a non-redundant post. We
denote this method as NeighborBin.

Figure 6b depicts the execution of NeighborBin for the data shown
in Figure 5. P; is added not only to the bin of its author al, but also
to the bins of a2 and a3, because they are neighbors of al, as shown
in Figure 5a. To check the coverage of P», only the post bin of
a2 is accessed where P, does not cover P». After that, P is also
added to the post bins of al, a2 and a3. NeighborBin checks the
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coverage of P3 by iterating posts in the bin of a3 where P; covers
P3. When P4 comes, a4’s post bin is blank and thus Py is added
to the post bins of a3 and a4 without incurring any post compar-
isons. Finally, Ps is detected as redundant by checking the bin of
a3 (author(Ps) = a3) where Py covers Ps.

4.3 CliqueBin

In NeighborBin, we index the posts by author aiming to reduce
the pairwise post comparisons. But the tradeoff is memory con-
sumption: we have multiple copies of a post in different authors’
post bins.

To reduce the overhead on memory consumption incurred by
NeighborBin, we identify groups (cliques) of authors that are sim-
ilar to each other and assign a single bin to them, such that a post
generated by any of these authors is only stored in that bin. Specit-
ically we find a clique edge cover of G, that is a collection of
cliques whose union contains all edges of ;. We maintain a post
bin per clique (e.g., a map from clique ID to a list of posts). Only
the posts from authors in a same clique as author(P;) can possi-
bly cover post P;. Thus, at the arrival of post P;, we check whether
it is covered by sequentially comparing it to the posts from only
the cliques that contain author(P;). Thus a post P; in Z is stored
once for every clique that contains author(P;) — instead of once
for each neighbor of author(P;) in NeighborBin. Note that this
approach guarantees that the coverage requirement for posts is sat-
isfied: when a new post P; authored by a; appears, and P; is not
similar to earlier posts of a; or its neighbors then P; will be added
to the cliques involving a;, because a;’s edges are covered by the
cliques.

Considering the space consumption, our objective should be to
minimize the sum of the sizes of cliques, i.e., the average number
of cliques per author is minimized and thus number of copies per
post is reduced. This is an NP-hard problem, and hence we have
decided to use a simple greedy heuristic. It starts by picking an
edge in G; to form an initial clique. Then it extends the clique by
adding nodes that are neighbors to all the nodes in the clique. When
there is no such node, the clique is saved and the algorithm picks
another edge not yet included in any found cliques and repeats the
above process. We stop when all edges are covered.

Upon a new post P;, we use a hashmap (Author2Cliques) to
get all the cliques that contains author(FP;), and then we check
the posts in the corresponding bins. Recall that NeighborBin and
UniBin load the author similarity graph G; in memory. We can
make the same assumption that Author2Cliques is loaded in mem-
ory for applying CliqueBin. Similar to the computation of author
similarity graph, we assume the clique partition of GG; and the Au-
thor2Cliques mapping are computed offline. We denote this algo-
rithm as CliqueBin.

The update of a post bin by CliqueBin is depicted in Figure 6c.
Cliques CO and C1 together cover all the edges in the graph. We
can see that P is only stored once in CO’s bin (because al is in C0)
instead of saving 3 copies in NeighborBin as Figure 6b. The same
applies to P». Since a3 is in both CO and C1, during the processing
of P3 CliqueBin may check both bins of CO and C1. P, will only
be compared with the bin of C1 because a4 belongs to only CI.
Again, CliqueBin checks the coverage of Ps by iterating both bins
of CO and C1. This example illustrates how CliqueBin can reduce
space requirements compared to NeighborBin.

We note that in some cases CliqueBin may have to do a larger
number of pairwise post comparisons than NeighborBin. Suppose
that after Ps in the above example author a3 posts Ps and then au-
thor a4 posts P7. If Ps and Pr are not redundant to any other posts,
then Ps should be added to all four post bins in NeighborBin, and
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Figure 6: Running example for the three algorithms for SPSD.

to both post bins in CliqueBin. For P7, NeighborBin only accesses
the bin of a4 and thus only needs to do two comparisons (with Py
and Ps). In contrast, CliqueBin has to do 5 comparisons: with
Py, P>, P; and twice with Ps (once in post bin of each clique). We
study this experimentally in Section 6.

4.4 Performance Analysis

In this section we show an estimate of the time and space com-
plexity of our algorithms, attempting to capture their performance
on realistic data, rather than the worst-case performance. Rigorous
derivation of such estimates is challenging, because the behavior
of these algorithms heavily depends on the specifics of the data
sets, including the topology of the social network. Instead, we pro-
vide informal derivations based on several reasonable assumptions
about the data set and the graph’s topology.

Suppose there are m subscribed authors, and the total number of
posts from these m authors in a A; time range is n. We assume a
ratio of r (< 1) posts left after diversification, that is, r - » non-
redundant posts per \; time. We also assume that the each author
generates the same number of > posts with = left after diver-
sification. Further we assume in the author similarity graph, each
author has d neighbors and is in ¢ (< d) cliques. We denote s as
the average number of authors in a clique.

Note that cliques may have overlaps. If we define ¢ as the num-
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ber of edges in G over the total number of edges in ¢ cliques from

G, we have ™¢ = —md__ where both sides compute the num-

s s-(s—1)-q
ber of distinct cliques.(Thu>s we can expect ¢ - (s — 1) - ¢ = d with
0<¢g<1.

Recall that UniBin puts posts from all authors in Z into a single
post bin. Thus, the total bin size is - n in UniBin. Each new post is
sequentially compared to each post in the bin and thus the number
of post comparisons per new post is 7 - n. Each non-redundant post
incurs one insertion into the bin.

NeighborBin maintains a set of per-author bins with each bin
storing posts from an author and her similar authors. Roughly, each
per-author bin stores % -r-n posts. Thus the total number of post
copies stored in memory is (d 4+ 1) - r - n. At the arrival of a new
post P;, the number of post comparisons made by NeighborBin is
4L . (compare P; to all posts in author(P;)’s post bin). Each
non-redundant post incurs a total of (d+ 1) insertions into the bins.

In CliqueBin, for each non-redundant post P; we store its c copies:
one copy in the bin of each clique containing author(P;). Thus,
the total size of the clique bins is ¢ - r - n. CliqueBin compares
each new post P; to posts in the bins of ¢ cliques that contain
author(P;), which leads to a total of *< - r - n comparisons. Each
non-redundant post incurs a total of ¢ insertions into the bins.

Table 2 summarizes the performance analysis. We can see that

all these results contain the same component 7 - n. Obviously, all




Table 2: Performance estimation of the algorithms for SPSD

UniBin | NeighborBin | CliqueBin
RAM r-n | (d+1)-rn| cr-n
Comparisons in \; | r-n° % ron? 2Ly n?
Insertions in \; rn |(d+1)-r-n| cr-n

three diversity thresholds effects the ratio of non-redundant post r.
The value of n is affected by several factors, such as the frequency
of the post stream P and the setting of time diversity threshold A;.

An important factor that affects the performance of the algo-
rithms, especially NeighborBin and CliqueBin, is the topology of
the author similarity graph G. In the above estimates, we use pa-
rameters d, ¢, s and m to capture the topology properties. We note
that the values of the ratios of d, ¢, s to m are functions of the au-
thor diversity threshold \,. Given a set of subscribed authors (i.e.,
with m fixed), the larger )\, the denser G is (in terms of the number
of edges). Thus, the number of neighbors per author (d) increases
with Ao, which means the performance of NeighborBin will drop if
all other settings remain unchanged. We also argue that c and c - s
increase with the graph’s density, and hence we expect CliqueBin
to perform better for smaller A\qs. In Section 6, we confirm this
through experiments on real data set.

In Section 6 we will summarize the use cases for each algorithm
based on this theoretical analysis combined with our experimental
results.

4.5 Summary

We summarize the characteristics of the three algorithms in Ta-
ble 3. In terms of data structure, UniBin and NeighborBin need
the author similarity graph, while CliqueBin needs the mapping of
each author to the set of cliques containing the author. As we men-
tioned, we assume that all these data structures are maintained in
memory.

We can see that UniBin requires the least RAM. NeighborBin
reduces the post comparisons compared to UniBin, but has high
RAM consumption because it maintains multiple copies of a post.
CliqueBin outperforms NieghborBin in terms of RAM consump-
tion, by reducing the number of copies per post (and thus insertions
per post), but it incurs more post comparisons. Since CliqueBin
still maintains multiple copies of a post, it requires more insertions
and higher RAM consumption than UniBin. Also, since CliqueBin
does not compare posts from non-similar authors, we expect the
number of comparisons in CliqueBin to be lower than in UniBin.

5. ALGORITHMS FOR MULTIPLE-USERS
SPSD (M-SPSD)

In this section, we extend our ideas to solving M-SPSD. When
we move from applying the diversity model for one user to multiple
users, the crucial question is whether it is possible to reuse the com-
putation performed for diversifying one user’s stream to diversify
the other users’ streams.

A simple way to solve M-SPSD is to process the post stream
for each user individually. That is, we can apply the algorithm for
SPSD on each user’s post stream separately. We denote the corre-
sponding algorithms for M-SPSD as M_UniBin, M_NeighborBin
and M_CliqueBin respectively, to distinguish them from the al-
gorithms for SPSD. In this section, we present variations of these
algorithms to optimize the diversification process by reusing com-
putations for multiple users who share subscriptions.

If two users do not share any common subscriptions, then their

23

post streams are disjoint and thus the computation of diversifying
one’s stream cannot be reused for diversifying the other users’ post
streams. Hence we only consider the cases for optimization when
users share the same subset of subscriptions.

(@) Gy

(b) G2

Figure 7: Author similarity graphs of two users u; and wuo.

However, we notice several limitations to reusing the diversifi-
cation computation across multiple users, even if they share some
subscriptions. We use examples to illustrate this. Figure 7 shows
two users, w1 and wug, sharing a set of subscriptions {al, a2, a4,
a6}.

We notice that after diversification u1 may see a different subset
of the posts from a4 as uz. ug subscribes to a5 which is a similar
author to a4. Thus, it is possible that some posts from a4 are shown
to w1 but not to us if they are covered by a5’s posts.

However, the same diversified set of posts from {al, a2, a6} will
be shown to u1 and uz. The three authors form a connected compo-
nent (denoted as g1 in Figure 7) in both G1 and G2. That is, in both
(1 and G there are no other authors similar to any author in {al,
a2, a6}. Hence, posts from other subscribed authors can not cover
the posts from {al, a2, a6}. Thus, the diversification processes on
the posts from {al, a2, a6} are exactly the same for v, and u2. This
means that we can reuse the data structures and computation across
w1 and us for diversifying the post stream from {al, a2, a6}.

Based on these observations, we can optimize the diversifica-
tion process for multiple users if they subscribe to a same set of
authors that form a connected component. We can then consider
a post stream (a subset of P) of each connected component sepa-
rately, apply the diversification algorithm on it, and then merge the
diversified post streams together.

For this, we first process the author similarity graph G; of each
user u; to compute all connected components of all G;s. (Since
different ;s may overlap, some nodes may appear in several com-
ponents.) For each distinct connected component g;, we run one of
the proposed algorithms for SPSD on the post stream by the authors
in g;. User u;’s post stream consists of the union of the diversified
post streams from all connected components in G;.

For example, as shown in Figure 8b, we can apply the UniBin
algorithm for three distinct connected components (g1, g2 and g3),
that is, we maintain a single post bin for each of the three compo-
nents. Then the posts shown to u; is the union of the two diversified
post streams from gl and g2. We refer this algorithm as S_UniBin.
For comparison, we show the example for M_UniBin in Figure 8a.
M_UniBin maintains a post bin for each user seperately. To extend
NeighborBin, we maintain a per-author post bin for each author in
a distinct connected component g;. To extend CliqueBin, we do the
clique partition for each g;, then maintain a per-clique post bin as
described earlier.

We denote the three algorithms with the above optimization as
S_UniBin, S_NeighborBin and S_CliqueBin respectively.



Table 3: Differences between the three algorithms for SPSD

UniBin

NeighborBin CliqueBin

(1) Author similarity graph
(2) A single post bin storing

Data Structures
posts from all authors.

(1) Author similarity graph
(2) A post bin per author stor-
ing posts from the author and

(I) Author clique mapping
(2) A post bin per clique storing
posts from all the authors in the

her neighbors. clique.
RAM Low High Moderate
Properties | Comparisons High Low Moderate
Insertions Low High Moderate
Bin for g1 |Non—redundant posts from {a1, a2, a6} |
Bin for uilNon—redumdant posts from {al, a2, a4, a6} | Bins for u,
Bin for g2|Non—redundant posts from {a4} |
Bin for u, |Nonfredundant posts from {al, a2, a4, a5, ab} | Bins for u,

(a) M_UniBin

Bin for g3|Non—redundant posts from {a4, a5} |

(b) S_UniBin

Figure 8: Example of M_UniBin and S_UniBin.

6. EXPERIMENTAL EVALUATION
6.1 Data Set and Experimental Settings

We conducted our experiments on Twitter data. The authors
in [22] published a Twitter social graph dataset consisting of more
than 660,000 Twitter authors (accounts). Computing the author
similarity graph for the whole data set would be prohibitive, as it re-
quires comparing all pairs of authors. Instead, we used a subgraph
of 20,150 authors obtained by randomly picking an initial author,
and adding authors that are reachable through Breadth First Search
on the follower-followee graph.

We computed all pairwise author similarity for these 20,150 Twit-
ter authors. The author similarity distribution is depicted in Fig-
ure 9, where the x-axis shows the author similarity value and y-axis
shows the fraction of author pairs with similarity values larger than
the value indicated by x-axis. It shows that 2.3% author pairs are
with similarity > 0.2 and 0.6% pairs are with similarity > 0.3.

Further, we crawled the tweets of these twitter authors using
Twitter REST API” for one day. The tweets data set contains 233,311
tweets, which means these Twitter authors post slightly over 10
tweets per author per day. After we removed some short tweets
that have less than two words or only contain meaningless tokens,
there are 213,175 tweets left.

We implemented all algorithms in Java. We ran our experi-
ments on machines with Quad Core Intel(R) Xeon(R) E3-1230
v2@3.30GHz CPU and 16GB RAM.

6.2 Performance of the algorithms for SPSD

In this section, we evaluate the performance of the three algo-
rithms for SPSD. We assume that a user follows all the Twitter
authors in our dataset, and we run the algorithms on the user’s post
stream which consists of 213,175 posts in one day.

First, we study the effect of the three diversity dimensions: time,
content and author. Figure 10 shows the number of tweets left af-
ter diversification under different settings by removing diversity di-
mensions and varying diversity thresholds. Incorporating all three
diversity dimensions with reasonable diversity thresholds, the di-

“https://dev.twitter.com/overview/documentation
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Figure 9: Author similarity distribution in our data set

versification model prunes about 10% redundant posts. We no-
tice that incorporating only some of these dimensions will largely
change the size of diversified stream. It means that all three dimen-
sions play an important role in diversifying tweet data.

6.2.1 Performance of the algorithms under different
diversity settings

The analysis in Section 4.4 indicates that the performance of the
three algorithms for SPSD is effected by several factors such as
the diversity thresholds and the post stream throughput. These di-
versity settings could change the relative performance between the
three algorithms. In this section, we study the performance of each
algorithm under different settings and we experimentally show that
each algorithm outperforms the other two in certain settings. Sup-
ported by former analysis and experimental results, we will sum-
marize use cases for each algorithm.
Varying time diversity threshold )\:. In Figure 11, we present
the performance of UniBin, NeighborBin and CliqueBin under dif-
ferent time diversity thresholds (\:). In this experiment, we set
Ae = 18 (according to the results in Figure 4) and A\, = 0.7 (i.e.,
we consider two authors are similar if the cosine similarity between
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Figure 10: Number of tweets left after applying diversification in
our data set

their followee vector is > 0.3 and thus distance is < 0.7). The run-
ning time shows the execution time for an algorithm to ingest the
213,175 posts.

In Figure 11a we can see that the running time of all three al-
gorithms decreases with smaller \;s. The reason is that with a
smaller \;, the algorithms perform fewer pairwise post compar-
isons (depicted in Figure 11c). NeighborBin and CliqueBin outper-
form UniBin in terms of running time. We also notice that Clique-
Bin is more efficient than NeighborBin when A; is small (e.g., <
10 minutes). This gives us evidence for the summarization of use
cases in Table 4 for NeighborBin and CliqueBin.

Smaller A; also reduces the RAM consumption because the algo-
rithms store shorter history of Z in post bins. As expected, Neigh-
borBin requires more memory than UniBin and CliqueBin.
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Figure 11: Performance of the three algorithms under different time
diversity thresholds A:.

Varying content diversity threshold \.. We also study the per-
formance of the three algorithms by varying A.. For this, we set
A+ = 30 mins and A\, = 0.7 and we vary the A, from 9 to 18.
Figure 12 depicts the results. It shows that, for all the three algo-
rithms, the change of content diversity threshold only slightly af-
fects the performance. The reason is that SimHash can effectively
detect tweets with near-duplicate content for A. > 9 as we can see
in Figure 4. With A, changing from 9 to 18, the precision is already
stable. The recall is lower with smaller A., which means more posts
will be detected as non-redundant. But this increase in number of
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non-redundant posts is slight, and thus the increase in the number
of comparisons and insertions does not affect the overall efficiency

significantly.
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Figure 12: Performance of the three algorithms under different con-
tent diversity thresholds A..
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Figure 13: Performance of the three algorithms under different au-
thor diversity thresholds A,.

Varying author diversity threshold )\,. Further, we study the
performance by varying A,. The results are presented in Figure 13
where we set Ay = 30 mins and A\, = 18.

We observe that the author diversity threshold A, significantly
affects the overall performance of NeighborBin and CliqueBin but
not UniBin. When A, increases, the author similarity graph gets
denser and thus the number of neighbors per author and the number
of cliques per author both increase. For instance, when A\, = 0.7
the number of neighbors per author (d) is 113.7, the number of
cliques per author (c) is 29 and the average size of a clique (s) is
20 in our data set. They change to 437.3, 106 and 38 correspond-
ingly with A, = 0.8. Hence, the number of copies per post in
NeighborBin and CliqueBin increases. This explains that in Fig-
ure 13 the memory consumption by NeighborBin and CliqueBin
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Figure 14: Performance of the three algorithms under different post
rates.

increases sharply with larger A,s. However, the number of non-
duplicate posts does not vary much with different A,s in our data
set; thus the performance of UniBin is stable.

We note that when )\, is large the performance of NeighborBin

and CliqueBin (in terms of both memory consumption and running
time) is significantly worse than UniBin. Hence, we expect UniBin
is the best choice among these three algorithms in use cases where
Aq 18 large, as we summarize in Table 4.
Varying post stream throughputs. We also study the performance
of the algorithms under different post stream throughputs. We test
this in two ways: (i) varying subscriptions’ post rate, and (ii) vary-
ing the number of subscriptions. For both, we keep A\ = 30 mins,
Ao = 0.7 and )\ = 18.

Varying post generation rate. For this, we randomly sample the
posts from the 21,050 authors and solve SPSD on the sampled post
stream. We conduct experiments for the sample ratio 25%, 5% and
1% and present the results in Figure 14. The results show that when
the throughput is low (the same ratio is low) UniBin outperforms
the other two algorithms. We can also see that CliqueBin performs
better than NeighborBin with a moderate or small post generation
rate.

Varying the number of subscribed authors. The results shown
above are for the case of one user subscribing (following) all Twit-
ter authors in our dataset. In this experiment, we randomly sample
Twitter authors in our dataset with different sample sizes. We as-
sume that a user subscribes to all authors in one sample and we
run the algorithms on the user’s post stream. The results in Fig-
ure 15 show that UniBin slightly outperforms the other two when
the number of subscriptions is small.

To summarize, UniBin delivers better performance than Neigh-
borBin and CliqueBin when the stream throughput is low. This is
consistent with our analysis in Section 4.4 — see also Table 4.

6.2.2 Discussion

Through extensive experiments, we observe that each algorithm
outperforms the other two in certain cases. In Table 4 we summa-
rize the best choice of algorithm in different use cases based on our
analysis and experimental study.

UniBin is the most memory efficient among the three algorithms.
Thus in applications with limited RAM UniBin should be consid-
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Figure 15: Performance of the three algorithms varying the number
of subscribed authors.

ered. Further, when the stream throughput is low (we tested it
with small number of subscriptions and low post generation rate),
UniBin performs better than the other two. According to the analy-
sis in Table 2, we expect that the number of comparisons increases
super-linearly with n (the number of posts in a \; time range), how-
ever the number of insertions increases sub-linearly with n. With
a lower stream throughput (smaller n) the overhead of insertions
in NeighborBin and CliqueBin is a large contribution to the total
running time. When n is small enough, the overhead on insertions
becomes larger than the saving on comparisons for NeighborBin
and CliqueBin compared with UniBin. The similar reasoning can
be applied to explain why UniBin is the best choice when A is very
small. To clarify, in Figure 11 we did not include the results by set-
ting At = 1 min where UniBin performs best among the three
algorithms. We argued that with a larger )\, both d (number of
neighbors per author) and ¢ (number of cliques per author) increase
and thus NeighborBin and CliqueBin both have higher number of
comparisons and insertions. Thus we can see UniBin is preferable
when A, is set large. One example use case for UniBin is News
RSS Feed reader, where the author similarity graph is dense. Gen-
erally, news agents form clusters (e.g., by their political views) such
that in each cluster the news agents are similar to each other from
a user’s perspective. Another use case could be Google Scholar
where the post (scientific publication) throughput is low.

In other cases, CliqueBin or NeighborBin will be the better choice.
They both perform well in cases with a high or moderate stream
throughput, which is very common for online social networks. The
tie breaker between them is the time diversity threshold \;, as we
analyzed )\ determines the tradeoffs between costs of comparisons
and insertions. CliqueBin is a better choice if \; is set moderately.
For example, in Twitter information is time sensitive and thus peo-
ple may be interested in reading posts with related content but with
time distance larger than, say, minutes. For applications where the
value of A; could be in hours or even days, NeighborBin can be
applied. For example, Twitch® is a platform on which people can
watch and share video game shows. Users may not be interested
in watching the video record of the same match that posted at dif-
ferent time. Even in Twitter some users may prefer to customize
the \; to a larger value, in order to reduce the post volume if they

3http://www.twitch.tv/



Table 4: Use cases of the three algorithms for SPSD

Conditions

Algorithm choice

Example use case

Very small A,

OR low stream throughput

OR large )\, (dense G3)

OR RAM is a critical limitation

UniBin
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Figure 16: Performance of the algorithms for M-SPSD.

follow a large number of authors.

6.3 Performance of the algorithms for M-SPSD

We consider now the scenario where each Twitter author is also
a user. Each user subscribes to (follows) a set of authors which we
can get from the original follower-followee social graph. Then we
run the algorithms solving M-SPSD for these 21,050 users in our
data set. For the experiments in this section, we set A = 30 mins,
Ae = 0.7and Ac = 18.

The average number of subscriptions in our sampled user data
set is 443.6 and the median is 187. Since we only crawled the
posts and computed the author similarity graph for the set of 21,050
authors, we ignored the subscriptions that are not in this set. Then
the average number of subscriptions per user drops to 130 and the
median is 20. We should note that this reduces the probability of
different users sharing common subscriptions.

Figure 16 presents the performance of the algorithms. It shows
that the proposed optimization (reusing computation and data struc-
ture across multiple users described in Section 5) improves time ef-
ficiency as well as memory consumption. Specifically, S_UniBin
uses 43% less running time and 27% less memory than M_UniBin.
In the S_UniBin method, posts are stored separately by connected
components. This reduces the number of comparisons significantly
over M_UniBin. We also observe tthat S_NeighborBin reduces the
running time of M_NeighborBin by 8% while S_CliqueBin im-
proves M_NeighborBin by 4% in running time.

S_UniBin achieves superior performance. We also notice that
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S_NeighborBin requires fewer post comparisons than S_UniBin
but many more insertions. We think that S_UniBin outperforms
S_NeighborBin and S_CliqueBin also because its post access pat-
tern is sequential while in the other two are not (each post bin is a
map).

7. RELATED WORK

Time Aware Diversity. The authors of [7] solve the problem of
maintaining the k£ most diverse results in a sliding window over a
stream. MaxMin semantics is used. They maintain a data structure
called the cover tree and show how to incrementally add new and
remove expired results from this tree. The cover tree cannot be used
for our diversity semantics because it cannot handle simultaneous
similarity in three dimensions: time, content and author.

Diversification on Microblogging Posts. The work of [4] stud-
ies the problem of diversifying posts in microblogging systems.
In their problem setting, users subscribe several queries (topics).
However, in practice users are more often subscribing to authors,
which is the setting of the problem we studied in this paper. In [4]
they apply strict coverage semantics similar to ours, but limited
only to time and content diversity. Unlike in our model, in [4] the
content diversity is guided by the inputted queries where no inter-
post content similarity is considered. They also studied the stream
variation of their problem in which they allow a lag upon a new
post to decide whether it should be outputted. In our problem, the
diversity model is required to make the decision immediately at the
arrival of a post.

Document Stream Summarization. The authors of [20] work
on the problem of summarizing a Twitter stream. They model the
summarization problem as a facility location problem. Give a bud-
get of k, they aim to select k tweets that maximize the similarity to
the whole tweets set. They incorporate the time factor to measure
the document similarity of two posts. But unlike in our problem,
instead of using a hard (boolean) threshold, they consider an ex-
ponential decay to the content similarity based on their timestamp
difference. In the work of [13], the authors apply clustering tech-
niques for Twitter stream summarization. Tweets are clustered ac-
cording to content similarity. For each cluster, they build a word
graph or phrase graph and pick frequent sentences (“paths” in the
graph) to construct a summary. The sentences in the summary may
not be in any original tweet. The authors of [18] propose a one-pass
online clustering algorithm to cluster tweets, and then they gener-
ate online summaries by selecting k tweets (one from each cluster)
that have high LexRank [8] score. In [16], the authors apply topic
modeling for personalized time-aware tweet summarization. How-
ever, all these work do not consider author similarity to measure
the similarity between tweets.

Detecting Duplicate Tweets. In [21], the authors propose to use
machine learning methods to detect near-duplicates in tweets. For



this, they construct a rich set of syntactic, semantic and contextual
features. They aim to distinguish different levels of near-duplicates,
e.g. exact copy, strong near-duplicate, or weak near-duplicate.

8. CONCLUSION

In this paper, we studied the novel problem of diversifying so-
cial post streams by incorporating diversity in three dimensions:
content, time and author. We illustrated the challenges of solving
the problem and proposed various algorithms to efficiently handle
these challenges. We showed the tradeoffs between our proposed
algorithms and argued the use cases for them. We also studied the
problem of applying the proposed diversification model for mul-
tiple users in a social system. Extensive experiments proved the
effectiveness of our model and efficiency of proposed algorithms.
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ABSTRACT

Social content such as blogs, tweets, news etc. is a rich source
of interconnected information. We identify a set of requirements
for the meaningful exploitation of such rich content, and present
a new data model, called S3, which is the first to satisfy them.
S3 captures social relationships between users, and between users
and content, but also the structure present in rich social content, as
well as its semantics. We provide the first top-k keyword search
algorithm taking into account the social, structured, and semantic
dimensions and formally establish its termination and correctness.
Experiments on real social networks demonstrate the efficiency and
qualitative advantage of our algorithm through the joint exploita-
tion of the social, structured, and semantic dimensions of S3.

1. INTRODUCTION

The World Wide Web (or Web, in short) was designed for users
to interact with each other by means of pages interconnected with
hyperlinks. Thus, the Web is the earliest inception of an online
social network (whereas “real-life” social networks have a much
longer history in social sciences). However, the technologies and
tools enabling large-scale online social exchange have only become
available recently. A popular model of such exchanges features:
social network users, who may be connected to one another, data
items, and the possibility for users to fag data items, i.e., to attach to
an item an annotation expressing the user’s view or classification of
the item. Variants of this “user-item-tag” (UIT) model can be found
e.g., in [18, 21, 30]. In such contexts, a user, called seeker, may
ask a query, typically as a set of keywords. The problem then is to
find the best query answers, taking into account both the relevance
of items to the query, and the social proximity between the seeker
and the items, based also on tags. Today’s major social networks
e.g., Facebook [7], all implement some UIT variant. We identify a
set of basic requirements which UIT meets:

RO. UIT models explicit social connections between users, e.g.,
w1 is a friend of ug in Figure 1, to which we refer throughout this
paper unless stated otherwise. It also captures user endorsement
(tags) of data items, as UIT search algorithms exploit both the user
endorsement and the social connections to return items most likely
to interest the seeker, given his social and tagging behavior.
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Figure 1: Motivating example.
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To fully exploit the content shared in social settings, we argue
that the model used for such data (and, accordingly, the query model)
must also satisfy the requirements below:

R1. The current wealth of publishing modes (through social
networks, blogs, interlinked Web pages etc.) allows many differ-
ent relations between items. For example, document d; replies to
document dj (think for instance of opposite-viewpoint articles in a
heated debate), while document d2 comments on the paragraph of
dyo identified by the URI dj.3.2. The model must capture relations
between items, in particular since they may lead to implicit re-
lations between users, according to their manipulations of items.
For instance, the fact that us posted d; as a reply to do, posted by
uo, entails that us at least read do, and thus some form of exchange
has taken place between uo and u2; if one looked for explicit social
connections only, we would wrongly believe that uo and us have
no relation to each other.

R2. Items shared in social media often have a rich structured
content. For instance, the article do comprises many sections, and
paragraphs, such as the one identified by the URI do.3.2. Document
structure must be reflected in the model in order to return useful
document fragments as query results, instead of a very large docu-
ment or a very small snippet of a few words (e.g., exactly the search
keywords). Document structure also helps discern when users have
really interacted through content. For instance, u3 has interacted
with uo, since u3 comments on the fragment do.3.2 of ug’s article
do. In contrast, when user u4 tags with “university” the fragment
do.5.1 of do, disjoint from dp.3.2, ua may not even have read the
same text as us, thus the two likely did not interact.

R3. Item and tag semantics must be modelled. Social Web
data encapsulates users’ knowledge on a multitude of topics; on-
tologies, either general such as DBPedia or Google’s Knowledge
Base, or application-specific, can be leveraged to give query an-
swers which cannot be found without relying on semantics. For
instance, assume 1 looks for information about university gradu-
ates: document d; states that u2 holds a M.S. degree. Assume a
knowledge base specifies that a M.S. is a degree and that someone

10.5441/002/edbt .2016.06
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U URIs | L literals K keywords | Ext(k) extension of k

Qusers | D documents | T tags I graph instance

Table 1: Main data model notations.

having a degree is a graduate. The ability to return as result the
snippet of d; most relevant to the query is directly conditioned by
the ability to exploit the ontology (and the content-based intercon-
nections along the path: u; friend of uo, uo posted do, d1 replied
to dp).

R4. In many contexts, tagging may apply to tags themselves,
e.g., in annotated corpora, where an annotation (tag) obtained from
an analysis can further be annotated with provenance details (when
and how the annotation was made) or analyzed in its turn. Infor-
mation from higher-level annotations is obviously still related to
the original document. The model should allow expressing higher-
level tags, to exploit their information for query answering.

RS. The data model and queries should have well-defined se-
mantics, to precisely characterize computed results, ensure cor-
rectness of the implementation, and allow for optimization.

R6. The model should be generic (not tied to a particular social
network model), extensible (it should allow easy extension or cus-
tomization, as social networks and applications have diverse and
rapidly evolving needs), and interoperable, i.e., it should be pos-
sible to get richer / more complete answers by integrating different
sources of social connections, facts, semantics, or documents. This
ensures in particular independence from any proprietary social net-
work viewpoint, usefulness in a variety of settings, and a desirable
form of “monotonicity”: the more content is added to the network,
the more its information value increases.

This work makes the following contributions.

1. We present S3, a novel data model for structured, semantic-rich
content exchanged in social applications; it is the first model to
meet the requirements R0 to R6 above.

2. We revisit top-k social search for keyword queries, to retrieve
the most relevant document fragments w.r.t. the social, structural,
and semantical aspects captured by S3. We identify a set of desir-
able properties of the score function used to rank results, provide a
novel query evaluation algorithm called S 3y, and formally establish
its termination and correctness; the algorithm intelligently exploits
the score properties to stop as early as possible, to return answers
fast, with little evaluation effort. S3j is the first to formally guar-
antee a specific result in a structured, social, and semantic setting.
3. We implemented S3; based on a concrete score function (ex-
tending traditional ones from XML keyword search) and experi-
mented with three real social datasets. We demonstrate the feasi-
bility of our algorithm, and its qualitative advantage over existing
approaches: it finds relevant results that would be missed by ignor-
ing any dimension of the graph.

An S3 instance can be exploited in many other ways: through
structured XML and/or RDF queries as in [9], searching for users,
or focusing on annotations as in [4]; one could also apply graph
mining etc. In this paper, we first describe the data model, and
then revisit the top-k document search problem, since it is the most
widely used (and studied) in social settings.

In the sequel, Section 2 presents the S3 data model, while Sec-
tion 3 introduces a notion of generic score and instantiates it through
a concrete score. Section 4 describes S 3y, we present experiments
in Section 5, then discuss related works in Section 6 and conclude.

2. DATA MODEL

We now describe our model integrating social, structured, and
semantic-rich content into a single weighted RDF graph, and based
on a small set of S3-specific RDF classes and properties. We
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[ Constructor [ Triple [ Relational notation ]
Class assertion stypeo | o(s)
Property assertion | s p o p(s,0)
[ Constructor [ Triple [ Relational notation |
Subclass constraint s <sc 0 | sCo
Subproperty constraint s <sp o|sCo
Domain typing constraint | s <24 0 | Hdomain(s) C o
Range typing constraint s < 0 | Iiange(s) C o

Figure 2: RDF (top) and RDFS (bottom) statements.

present weighted RDF graphs in Section 2.1, and show how they
model social networks in Section 2.2. We add to our model struc-
tured documents in Section 2.3, and tags and user-document inter-
actions in Section 2.4; Section 2.5 introduces our notion of social
paths. Table 1 recaps the main notations of our data model.

URIs and literals We assume given a set U of Uniform Resource
Identifiers (URIs, in short), as defined by the standard [28], and a
set of literals (constants) denoted L, disjoint from U.

Keywords We denote by K the set of all possible keywords: it con-
tains all the URIs, plus the stemmed version of all literals. For
instance, stemming replaces “graduation” with “graduate”.

2.1 RDF

An RDF graph (or graph, in short) is a set of triples of the
form s p o, stating that the subject s has the property p and the
value of that property is the object o. In relational notation (Fig-
ure 2), s p o corresponds to the tuple (s, o) in the binary relation p,
e.g., ui hasFriend up corresponds to hasFriend(u1,u0). We con-
sider every triple is well-formed [27]: its subject belongs to U, its
property belongs to U, and its object belongs to K.

Notations We use s, p, o to denote a subject, property, and re-
spectively, object in a triple. Strings between quotes as in “string”
denote literals.

RDF types and schema The property type built in the RDF stan-
dard is used to specify to which classes a resource belongs. This
can be seen as a form of resource typing.

A valuable feature of RDF is RDF Schema (RDFS), which al-
lows enhancing the resource descriptions provided by RDF graphs.
An RDF Schema declares semantic constraints between the classes
and the properties used in these graphs, through the use of four RDF

built-in properties. These constraints can model:
e subclass relationships, which we denote by < s.; for instance,

any M.S.Degree is also a Degree;

e subproperty relationships, denoted <,; for instance, work-
ing With someone also means being acquaintedWith him;

e typing of the first attribute (or domain) of a property, denoted
<4, €.g., the domain of hasDegreeFrom is a Graduate;

e typing of the second attribute (or range) of a property, de-

noted <, e.g., the range of hasDegreeFrom is an University.
Figure 2 shows the constraints we use, and how to express them.

In this figure, domain and range denote respectively the first and
second attributes of a property. The figure also shows the relational
notation for these constraints, which in RDF are interpreted under
the open-world assumption [1], i.e., as deductive constraints. For
instance, if a graph includes the triples hasFriend <=4 Person
and u; hasFriend uo, then the triple u; type Person holds in this
graph even if it is not explicitly present. This implicit triple is due
to the <—4 constraint in Figure 2.

Saturation RDF entailment is the RDF reasoning mechanism that
allows making explicit all the implicit triples that hold in an RDF
graph G. It amounts to repeatedly applying a set of normative im-
mediate entailment rules (denoted Fipr) on G: given some triples



explicitly present in G, a rule adds some triples that directly follow
from them. For instance, continuing the previous example,

u; hasFriend uo, hasFriend <, Person Fipr
up type Person

Applying immediate entailment F4pp repeatedly until no new
triple can be derived is known to lead to a unique, finite fixpoint
graph, known as the saturation (a.k.a. closure) of G. RDF entail-
ment is part of the RDF standard itself: the answers to a query on G
must take into account all triples in its saturation, since the seman-
tics of an RDF graph is its saturation [27].

In the following, we assume, without loss of generality, that all
RDF graphs are saturated; many saturation algorithms are known,
including incremental [10] or massively parallel ones [26].

Weighted RDF graph Relationships between documents, docu-
ment fragments, comments, users, keywords etc. naturally form a
graph. We encode each edge from this graph by a weighted RDF
triple of the form (s,p,o0,w), where (s,p,0) is a regular RDF
triple, and w € [0, 1] is termed the weight of the triple. Any triple
whose weight is not specified is assumed to be of weight 1.

We define the saturation of a weighted RDF graph as the satura-
tion derived only from its triples whose weight is 1. Any entailment
rule of the form a, b Fipp c applies only if the weight of @ and b
is 1; in this case, the entailed triple c also has the weight 1. We re-
strict inference in this fashion to distinguish triples which certainly
hold (such as: “a M.S. is a degree”, “u; is a friend of up”) from
others whose weight is computed, and carries a more quantitative
meaning, such as “the similarity between do and d; is 0.5”".

Graph instance I and S3 namespace We use I to designate the
weighted RDF instance we work with. The RDF Schema state-
ments in I allow a semantic interpretation of keywords, as follows:

DEFINITION 2.1 (KEYWORD EXTENSION). Given an S3
instance 1 and a keyword k € IC, the extension of k, denoted
Ext(k), is defined as follows:

o k€ Ext(k)

e for any triple of the form b type k, b <sc korb <s kin
I, we have b € Ext(k).

For example, given the keyword degree, and assuming that
M.S. < degree holds in I, we have M.S. € Ext(degree). The
extension of k does not generalize it, in particular it does not intro-
duce any loss of precision: whenever k' is in the extension of k,
the RDF schema in I ensures that k' is an instance, or a specializa-
tion (particular case) of k. This is in coherence with the principles
behind the RDF schema language®.

For our modeling purposes, we define below a small set of RDF
classes and properties used in I; these are shown prefixed with the
S3 namespace. The next sections show how I is populated with
triples derived from the users, documents and their interactions.

2.2 Social network

We consider a set of social network users €2 C U, i.e., each user
is identified by a URI. We introduce the special RDF class S3:user,
and for each user u € €2, we add: u type S3:user € 1.

'One could generalize this to support inference over triples of any
weight, leading to e.g., “uy is of type Person with a weight of 0.5”,
in the style of probabilistic databases.

2One could also allow a keyword k' € FEwt(k) which is
only close to (but not a specialization of) k, e.g., “student” in
Ext(“graduate”), at the cost of a loss of precision in query re-
sults. We do not pursue this alternative here, as we chose to follow
standard RDF semantics.
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To model the relationships between users, such as “friend”, “co-
worker” etc., we introduce the special property S3:social, and
model any concrete relationship between two users by a triple whose
property specializes S3:social. Alternatively, one may see S3:social
as the generalization of all social network relationships.

Weights are used to encode the strength w of each relationship

going from a user u; to a user uz: u; S3:socialug w € 1. As
customary in social network data models, the higher the weight,
the closer we consider the two users to be.
Extensibility Depending on the application, it may be desirable to
consider that two users satisfying some condition are involved in a
social interaction. For instance, if two people have worked the same
year for a company of less than 10 employees (such information
may be in the RDF part of our instance), they must have worked to-
gether, which could be a social relationship. This is easily achieved
with a query that retrieves all such user pairs (in SPARQL or in a
more elaborate language [9] if the condition also carries over the
documents), and builds a u workedWith u’ triple for each such
pair of users. Then it suffices to add these triples to the instance,
together with the triple: workedWith s, S3:social.

2.3 Documents and fragments

We consider that content is created under the form of structured,
tree-shaped documents, e.g., XML, JSON, etc. A document is an
unranked, ordered tree of nodes. Let N be a set of node names
(for instance, the set of allowed XML element and attribute names,
or the set of node names allowed in JSON). Any node has a URI.
We denote by D C U the set of all node URIs. Further, each
node has a name from N, and a content, which we view as a set of
keywords from K: we consider each text appearing in a document
has been broken into words, stop words have been removed, and
the remaining words have been stemmed to obtain our version of
the node’s text content. For example, in Figure 1, the text of d
might become {“M.S.”, “UAlberta”, “2012”}.

We term any subtree rooted at a node in document d a fragment
of d, implicitly defined by the URI of its root node. The set of
fragments (nodes) of a document d is denoted Frag(d). We may
use f to refer interchangeably to a fragment or its URL If f is a
fragment of d, we say d is an ancestor of f.

To simplify, we use document and fragment interchangeably;
both are identified by the URI of their unique root node.
Document-derived triples We capture the structural relationships
between documents, fragments and keywords through a set of RDF
statements using S3-specific properties. We introduce the RDF
class S3:doc corresponding to the documents, and we translate:

e cachd € D into the I triple d type S3:doc;

e each document d € D and fragment rooted in a node n of d
into n S3:partOf d;

e cach node n and keyword k appearing in the content of n into
n S3:contains k;

e cach node n whose name is m, into n S3:nodeName m.
EXAMPLE 2.1. Based on the sample document shown in Fig-
ure 1, the following triples are part of 1:

d0A3A2 S3:part0f doAg d1 S3:contains “NLS.’7
do.3 S3:partOf dg d1 S3:nodeName text

The following constraints, part of I, model the natural relation-
ships between the S3:doc class and the properties introduced above:

S3:partOf <=4 S3:doc S3:partOf —, S3:doc
S3:contains <—4 S3:doc S3:nodeName <—4 S3:doc



which read: the relationship S3:partOf connects pairs of frag-
ments (or documents); S3:contains describes the content of a frag-
ment; and S3:nodeName associates names to fragments.

Fragment position We will need to assess how closely related
a given fragment is to one of its ancestor fragments. For that,
we use a function pos(d, f) which returns the posirion of frag-
ment f within document d. Concretely, pos can be implemented
for instance by assigning Dewey-style IDs to document nodes, as
in [19, 22]. Then, pos(d, f) returns the list of integers (i1, . . ., in)
such that the path starting from d’s root, then moving to its i;-th
child, then to this node’s i2-th child etc. ends in the root of the frag-
ment f. For instance, in Figure 1, pos(do.3.2, do) may be (3, 2).

2.4 Relations between structure, semantics, users
We now show how dedicated S3 classes and properties are used

Class

S3:user
S3:doc
S3:related To

Semantics

the users (the set of its instances is €2)

the documents (the set of its instances is D)
generalization of item “tagging” with keywords (the
set of all instances of this class is 7": the set of tags)

Semantics

connects users to the documents they posted
connects a comment with the document it is about
connects a fragment to its parent nodes

connects a document with the keyword(s) it contains
asserts the name of the root node of document
specifies the subject (document or tag) of a tag
specifies the keyword of a tag

specifies the poster of a tag

generalization of social relationships in the network

Property
S3:postedBy
S3:commentsOn
S3:partOf
S3:contains
S3:nodeName
S3:hasSubject
S3:hasKeyword
S3:hasAuthor
S3:social

Table 2: Classes and properties in the S3 namespace.

. . S3:postedBy, 1 S3:social, 0.5
to encode all kinds of connections between users, content, and se- —— ——
- >
mantics in a single S 1psta_nce. ) . . . S3:postedBy, 1 S3:social, 0.3
Tags A typical user action in a social setting is to tag a data item, S3ipartOf. 1 Smocial 0.5
. . . . Do-patiiils o S3:social, 0.5
reflecting the user’s opinon that the item is related to some con- §3:partOf, 1 Saisocial, 0.7
cept or keyword used in the tag. We introduce the special class S3:commentsOn, 1 S3:postedBy, 1
S3:relatedTo to account for the multiple ways in which a user may UrI0.0 | /S3partOf,1  UmO.1 unil u_lj
; : —
consider that a fragment is related to a keyword. We denote by T’ $3:Zommont0n, 1 $3:powedny, 1
S3icontai S3:contains,
the set of all tags. . . . s3 cont% o1 contains
For example, in Figure 1, u4 tags do.5.1 with the keyword “uni- T A
Versity", 1eading to the triples: S3:hasSubject, 1 S3:hasAuthor, 1
ur10.0.0 ao

a S3:hasSubject do.5.1
a S3:hasAuthor uy

a type S3:relatedTo
a S3:hasKeyword “university”

In this example, a is a tag (or annotation) resource, encapsulating
the various tag properties: its content, who made it, and on what.
The tag subject (the value of its S3:hasSubject property) is either
a document or another tag. The latter allows to express higher-level
annotations, when an annotation (tag) can itself be tagged.

A tag may lack a keyword, i.e., it may have no S3:hasKeyword
property. Such no-keyword tags model endorsement (support), such
as 1ike on Facebook, retweet on Twitter, or +1 on Google+.

Tagging may differ significantly from one social setting to an-
other. For instance, star-based rating of restaurants is a form of
tagging, topic-based annotation of text by expert human users is an-
other, and similarly a natural language processing (NLP) tool may
tag a text snippet as being about some entity. Just like the S3:social
property can be specialized to model arbitrary social connections
between users, subclasses of S3:relatedTo can be used to model
different kinds of tags. For instance, assuming as is a tag produced
by a NLP software, this leads to the I triples:

ag type NLP:recognize
NLP:recognize <. S3:relatedTo

User actions on documents Users post (or author, or publish) con-
tent, modeled by the dedicated property S3:postedBy. Some of
this content may be comments on (or replies / answers to) other
fragments; this is encoded via the property S3:commentsOn.

EXAMPLE 2.2. In Figure 1, d2 is posted by us, as a comment
on do.3.2, leading to the following 1 triples:

d2 S3:postedBy us ds S3:commentsOn dg 3.2

As before, we view any concrete relation between documents
e.g., answers to, retweets, comments on, is an old version of etc.
as a specialization (sub-property) of S3:commentsOn; the corre-
sponding connections lead to implicit S3:commentsOn triples, as
explained in Section 2.1. Similarly, forms of authorship connecting
users to their content are modeled by specializing S3:postedBy.

S3:hasSubject, 1 S3:hasAuthor, 1

S3:hasK¢yword, 1

Figure 3: Sample S3 instance I.

This allows integrating (querying together) many social networks
over partially overlapping sets of URISs, users and keywords.
Inverse properties As syntactic sugar, to simplify the traversal of
connections between users and documents, we introduce a set of in-
verse properties, denoted respectively S3:postedBy, S3:commentsOn,
S3:hasSubject and S3:hasAuthor, with the straightforward semantics:
spo € liffops €I where p is the inverse property of p. For in-
stance, ug S3:friend uy in Figure 1.

Table 2 summarises the above S3 classes and properties, while
Figure 3 illustrates an I instance.

2.5 Social paths

We define here social paths on I, established either through ex-
plicit social links or through user interactions. We call network
edges those I edges encapsulating quantitative information on the
links between user, documents and tags, i.e., edges whose proper-
ties are in the namespace S3 other than S3:partOf, and whose sub-
jects and objects are either users, documents, or tags. For instance,
in Figure 3, u; S3:social us 0.5 and Ur10 S3:postedBy u; are net-
work edges; Ur10.0 S3:contains ko and uri0.1 S3:partOf uri0
are not. The intuition behind the exclusion of S3:partOf is that
structural relations between fragments, or between fragments and
keywords, merely describe data content and not an interaction.
However, if two users comment on the same fragment, or one com-
ments on a fragment of a document posted by the other (e.g., us
and uo in Figure 1), this is form of social interaction.

When two users interact with unrelated fragments of a same doc-
ument, such as u3z and u4 on disjoint subtrees of dg in Figure 1, this
does not establish a social link between u3 and w4, since they may
not even have read the same text’. We introduce:

*To make such interactions count as social paths would only re-
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DEFINITION 2.2 (DOCUMENT VERTICAL NEIGHBORHOOD).
Two documents are vertical neighbors if one of them is a fragment
of the other. The function neigh: U — 2Y returns the set of verti-
cal neighbors of an URIL

In Figure 3, uriO and ur10.0.0 are vertical neighbors, so are
URI0 and UR10.1, but UrR10.0.0 and UR10.1 are not. In the sequel,
due to the strong connections between nodes in the same vertical
neighborhood, we consider (when describing and exploiting so-
cial paths) that a path entering through any of them can exit
through any other; a vertical neighborhood acts like a single node
only and exactly from the perspective of a social path?. We can
now define social paths:

DEFINITION 2.3 (SOCIAL PATH). A social path (or simply a
path) in I is a chain of network edges such that the end of each
edge and the beginning of the next one are either the same node, or
vertical neighbors.

We may also designate a path simply by the list of nodes it tra-
verses, when the edges taken along the path are clear. In Figure 3,

ug S3:hasAuthor ag 1 ag S3:hasSubject URI0.0.0 1
U ao uri0.0.0

URIO S3:postedBy ug 1

--» URIO uo is an example of such a path
(the dashed line: Ur10.0.0 --» URIO, is not an edge in the path but
a connection between vertical neighbors, ur10.0.0 been the end
of an edge and URIO the begining of the next edge). Also, in this
Figure, there is no social path going from s to u1 avoiding ug, be-
cause it is not possible to move from Ur10.1 to ur10.0.0 through a
vertical neighborhood.

Social path notations The set of all social paths from a node x
(or one of its vertical neigbours) to a node y (or one of its vertical
neighbors) is denoted = ~ y. The length of a path p is denoted |p|.
The restriction of x ~» y to paths of length exactly n is denoted
T~y y, While  ~» <, y holds the paths of at most n edges.

Path normalization To harmonize the weight of each edge in a
path depending on its importance, we introduce path normalization,
which modifies the weights of a path’s edge as follows. Let n be
the ending point of a social edge in a path, and e be the next edge in
this path. The normalized weight of e for this path, denoted e.n_w,
is defined as:

en_w= 6.’LU/ Ze’Eout(neigh(n)) el'w
where e.w is the weight of e, and out(neigh(n)) the set of network
edges outgoing from any vertical neighbor of n. This normalizes
the weight of e w.r.t. the weight of edges outgoing from any ver-
tical neighbor of n. Observe that e.n_w depends on n, however e
does not necessarily start in n, but in any of its vertical neighbors.
Therefore, e.n_w indeed depends on the path (which determines
the vertical neighbor n of e’s entry point).
In the following, we assume all social paths are normalized.

EXAMPLE 2.3. In Figure 3, consider the path:
ug S3:postedBy URIO 1

URrIO --»

URIO0.0.0 S3:hasSubject ag 1
uRr10.0.0 ! ao

Its first edge is normalized by the edges leaving uo: one leading
to UR10 (weight 1) and the other leading to us (weight 0.3). Thus,
its normalised weight is 1/(1 4+ 0/3) = 0.77.

Its second edge exits ur10.0.0 after a vertical neighborhood
traversal UR10 --» URI10.0.0. It is normalized by the edges leav-
ing neigh(uri0), i.e., all the edges leaving a fragment of ur10. Its
normalised weight is 1/(1 +1+ 1+ 1) = 0.25.

quire simple changes to the path normalization introduced below.

“In other contexts, e.g., to determine their relevance w.r.t. a query,
vertical neigbors are considered separately.

p="1uo
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S3 meets the requirements from Section 1, as follows. Gener-
icity, extensibility and interoperability (R6) are guaranteed by the
reliance on the Web standards RDF (Section 2.1) and XML/JSON
(Section 2.3). These enable specializing the S3 classes and proper-
ties, e.g., through application-dependent queries (see Extensibility
in Section 2.2). Our document model (Section 2.3) meets require-
ment R2; the usage of RDF (Section 2.1) ensures R3, while the
relationships introduced in Section 2.4 satisfy R1 as well as R4
(higher-level tags). For what concerns R5 (formal semantics), the
data model has been described above; we consider queries next.

3. QUERYING AN s3 INSTANCE

Users can search S3 instances through keyword queries; the an-
swer consists of the k top-score fragments, according to a joint
structural, social, and semantic score. Section 3.1, defines queries
and their answers. After some preliminaries, we introduce a generic
score, which can be instantiated in many ways, and a set of feasibil-
ity conditions on the score, which suffice to ensure the termination
and correctness of our query answering algorithm (Section 3.3).
We present our concrete score function in Section 3.4.

3.1 Queries

S3 instances are queried as follows:

DEFINITION 3.1 (QUERY). A query is a pair (u, ¢) where u
is a user and ¢ is a set of keywords.

We call u the seeker. We define the top-k answers to a query
as the k& documents or fragments thereof with the highest scores,
further satisfying the following constraint: the presence of a docu-
ment or fragment at a given rank precludes the inclusion of its ver-
tical neighbors at lower ranks in the results’. As customary, top-k
answers are ranked using a score function s(g, d) that returns for a
document d and query ¢ a value in R, based on the graph 1.

DEFINITION 3.2 (QUERY ANSWER). A top-k answer fo the
query q using the score s, denoted Ty, s(q), is recursively defined
as a top-k—1 answer, plus a document with the best score among
those which are neither fragments nor ancestors of the documents
in the top-k—1 answer:

Observe that a query answer may not be unique. This happens
as soon as several documents have equal scores for the query, and
this score happens to be among the k highest.

3.2 Connecting query keywords and documents

Answering queries over I requires finding best-scoring docu-
ments, based on the direct and indirect connections between doc-
uments, the seeker, and search keywords. The connection can be
direct, for instance, when the document contains the keyword, or
indirect, when a document is connected by a chain of relationships
to a search keyword k, or to some keyword from £’s extension.

We denote the set of direct and indirect connections between
a document d and a keyword & by con(d, k). It is a set of three-
tuples (type, frag, src) such that:

e type € {S3:contains, S3:relatedTo, S3:commentsOn} is
the type of the connection,

e f € Frag(d) is the fragment of d (possibly d itself) due to
which d is involved in this connection,

e src € QU D (users or documents) is the source (origin) of
this connection (see below).

>This assumption is standard in XML keyword search, e.g., [6].



Below we describe the possible situations which create connec-
tions. Let d,d’ be documents or tags, and f, f' be fragments of
d and d’, respectively®. Further, let k, k&’ be keywords such that
k' € Ext(k), and src € QU D be a user or a document.

Documents connected to the keywords of their fragments If the
fragment f contains a keyword k, then:
(S3:contains, f,d) € con(d, k)

which reads: “d is connected to k through a S3:contains relation-
ship due to f”. This connection holds even if f contains not k itself,
but some k' € Ext(k). For example, in Figure 1, if the keyword
“university” appears in the fragment whose URI is da2.7.5, then
con(da, “university”) includes (S3:contains, d2.7.5, d2).
Observe that a given k&’ and f may lead to many connections, if
k' specializes several keywords and/or if f has many ancestors.

Connections due to tags For every tag a of the form

a type S3:relatedTo a S3:hasSubject f
a S3:hasAuthor src  a S3:hasKeyword k’

con(d, k) includes (S3:relatedTo, f, src). In other words, when-
ever a fragment f of d is tagged by a source src with a special-
ization of the keyword k, this leads to a S3:relatedTo connection
between d and k due to f, whose source is the tag author src.
For instance, the tag a of u4 in Figure 1 creates the connection
(S3:relatedTo, do.5.1, ua) between do and “university”.

More generally, if a tag a on fragment f has any type of connec-
tion (not just S3:hasKeyword) to a keyword k due to source src,
this leads to a connection (S3:relatedTo, f, src) between d and k.
The intuition is that the tag adds its connections to the tagged frag-
ment and, transitively, to its ancestors. (As the next section shows,
the importance given to such connections decreases as the distance
between d and f increases.)

If the tag a on f is a simple endorsement (it has no keyword), the
tag inherits d’s connections, as follows. Assume d has a connection
of type type to a keyword k: then, a also has a type connection to
k, whose source is src, the tag author. The intuition is that when
src endorses (1ikes, +1s) a fragment, src agrees with its content,
and thus connects the tag, to the keywords related to that fragment
and its ancestors. For example, if a user us endorsed do in Figure 1
through a no-keyword tag as, the latter tag is related to “university”
through: (S3:relatedTo, do.5.1, us).

Connections due to comments When a comment on f is con-
nected to a keyword, this also connects any ancestor d of f to that
keyword; the connection source carries over, while the type of d’s
connection is S3:commentsOn. For instance, in Figure 1, since d2
is connected to “university” through (S3:contains, d2.7.5,d2) and
since dp is a comment on do 3.2, it follows that dy is also related to
“university” through (S3:commentsOn, do.3.2, d2).

3.3 Generic score model

We introduce a set of proximity notions, based on which we state
the conditions to be met by a score function, for our query evalua-
tion algorithm to compute a top-k query answer.

Path proximity We consider a measure of proximity along one
path, denoted ;m, between 0 and 1 for any path, such that:
e prot(()) = 1, i.e., the proximity is maximal on an empty
path (in other words, from a node to itself),
e for any two paths p; and p2, such that the start point of ps is
in the vertical neighborhood of the end point of p;:

prod(pi||p2) < min(prod(p1), pro¢(pz)),

®We here slightly extend notations, since tags do not have frag-
ments: if d is a tag, we consider that its only fragment is d.
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where || denotes path concatenation. This follows the in-
tuition that proximity along a concatenation of two paths is
at most the one along each of these two components paths:
proximity can only decrease as the path gets longer.

Social proximity associates to two vertices connected by at least
one social path, a comprehensive measure over all the paths be-
tween them. We introduce such a global proximity notion, because
different paths traverse different nodes, users, documents and re-
lationships, all of which may impact the relation between the two
vertices. Considering all the paths gives a qualitative advantage
to our algorithm, since it enlarges its knowledge to the types and
strength of all connections between two nodes.

DEFINITION 3.3 (SOCIAL PROXIMITY). The social proxim-
ity measure prox : (QU D UT)? — [0,1], is an aggregation
along all possible paths between two users, documents or tags, as
follows:

proz(a,b) = ®pan ({(pToE(p), [p]), p € a~ b}),

where |.| is the number of vertices in a path and @pqth is a function
aggregating a set of values from [0, 1] x N into a single scalar value.

Observe that the set of all paths between two nodes may be
infinite, if the graph has cycles; this is often the case in social
graphs. For instance, in Figure 3, a cycle can be closed between
(uo, Ur1O0, up). Thus, in theory, the score is computed over a po-
tentially infinite set of paths. However, in practice, our algorithm
works with bounded social proximity values, relying only on paths
of a bounded length:

proz="(a,b) = Gpaen({(Fro£(p), [p]), p € a~r<n b})

Based on the proximity measure, and the connections between
keywords and documents introduced in Section 3.2, we define:

DEFINITION 3.4 (GENERIC SCORE). Given a document d and
a query q = (u, @), the score of d for q is:

score(d, (U, d))) = 6995” ({(k7 type? pOS(d, f)a prox(u, ST'C))
|k € ¢, (type, f, src) € con(d, k)})

where @gyen is a function aggregating a set of (keyword, relation-
ship type, importance of fragment f in d, social proximity) tuples
into a value from [0, 1].

Importantly, the above score reflects the semantics, structure,
and social content of the S3 instance, as follows.

First, @4en aggregates over the keywords in ¢. Recall that tuples
from con(d, k) account not only for & but also for keywords k' €
Ext(k). This is how semantics is injected into the score.

Second, the score of d takes into account the relationships be-
tween fragments f of d, and keywords k, or k' € Eaxt(k), by
using the sequence pos(d, f) (Section 2.3) as an indication of the
structural importance of the fragment within the document. If the
sequence is short, the fragment is likely a large part of the docu-
ment. Document structure is therefore taken into account here both
directly through pos, and indirectly, since the con tuples also prop-
agate relationships from fragments to their ancestors (Section 3.2).

Third, the score takes into account the social component of the
graph through prox: this accounts for the relationships between
the seeker u, and the various parties (users, documents and tags),
denoted src, due to which f may be relevant for k.

Feasibility properties For our query answering algorithm to con-
verge, the generic score model must have some properties which
we describe below.

1. Relationship with path proximity This refers to the relation-
ship between path proximity and score. First, the score should only



increase if one adds more paths between a seeker and a data item.
Second, the contribution of the paths of length n € N to the social
proximity can be expressed using the contributions of shorter “pre-
fixes” of these paths, as follows. We denote by ppSet™(a, b) the set
of the path proximity values for all paths from a to b of length n:

ppSet™(a,b) = {prot(p) | p € a ~n b}

Then, the first property is that there exists a function Uy, With
values in [0, 1], taking as input (¢) the bounded social proximity for
path of length at most n — 1, (¢¢) the proximity along paths of
length n, and (4¢¢) the length n, and such that:

= proz="""(a,b)

+ Uproa (promsn* 1 (a,b),ppSet™ (a,b),n)

proz="(a,b)

2. Long paths attenuation The influence of social paths should
decreases as they get longer; intuitively, the farther away two items
are, the weaker their connection and thus their influence on the
score. More precisely, there exists a bound B, tending to 0
as n grows, and such that:

<
Bys. > prox — prox="

3. Score soundness The score of a document should be positively
correlated with the social proximity from the seeker to the docu-
ment fragments that are relevant for the query.

Denoting score(q) the score where the proximity function prox
is replaced by a continuous function g having the same domain
(QUDUT)?, g score[g must be monotonically increasing
and continuous for the uniform norm.

4. Score convergence

This property bounds the score of a document and shows how
it relates to the social proximity. It requires the existence of a
function Bscore Which takes a query ¢ = (u, ¢) and a number
B > 0, known to be an upper bound on the social proximity
between the seeker and any source: for any d, query keyword k,
and (type, f, src) € con(d, k), we know that prox(u, src) < B.
Bscore must be positive, and satisfy, for any ¢:

e for any document d, score(d, q) < Bscore(q, B);

e limp_,0(Bscore(q, B)) = 0 (tends to 0 like B).

We describe a concrete feasible score, i.e., having the above
properties, in the next section.

3.4 Concrete score

We start by instantiating pro%, prox and score.
Social proximity Given a path p, we define pro(p) as the prod-
uct of the normalized weights (recall Section 2.5) found along the
edges of p. We define our concrete social proximity function
prox(a, b) as a weighted sum over all paths from a to b:
S prot(p)

[Pl
pEa~b v

proz(a,b) = Cy X

where y > 1 is a scalar coefficient, and C., = 2= is introduced to
ensure that prox < 1. Recall that by Definition 3.3, prox requires
a @patn aggregation over the (social proximity, length) pairs of the
paths between the two nodes. Hence, this concrete social proximity
corresponds to choosing:

@path(s) - C’y X

len

(sp,len)eS v
where (sp, len) is a (social proximity, length) pair from its input.

EXAMPLE 3.1. Social proximity Let us consider in Figure 3
the social proximity from ug to URIO, using the ;m and @patn
previously introduced. An edge connects ug directly to ur10, lead-
ing to the normalized path p:
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ug S3:postedBy URIO ﬁ

uri0

p=uo
which accounts for a partial social proximity:

prox="(ug, Uri0) = ’ﬁ@) = 1/(140.5)

= AT

This social proximity generalizes Katz distance [17]; other com-
mon distances may be used, e.g., SimRank [14].

Score function We define a simple concrete S3 score function
which, for a document d, is the product of the scores of each query
keyword in d. The score of a keyword is summed over all the con-
nections between the keyword and the document. The weight for
a given connection and keyword only depends on the social dis-
tance between the seeker and the sources of the keyword, and the
structural distance between the fragment involved in this relation
and d, namely the length of pos(d, f). Both distances decrease
exponentially as the path length grows. Formally:

DEFINITION 3.5 (S3j SCORE). Givena query (u, ¢), the S3j
score of a document d for the query is defined as:

score(d, (u, @)) = H (Z POl 5 prox(u, src))

ke (type, f,src) € con(d,k)

for some damping factor n < 1.

Recall from Definition 3.4 that an aggregation function @gen
combines the contributions of (keyword, relationship type, impor-
tance, social proximity) tuples in the score. The above definition
corresponds to the following @, aggregator:

Bgen(9) =[] ( anTe” X prox )

keo rel,prox
Jtype,(k,type,rel,prox)ES

Note that if we ignore the social aspects and restrict ourselves to
top-k search on documents (which amounts to prox = 1), Bgen
gives the best score to the lowest common ancestor (LCA) of the
nodes containing the query keywords. Thus, our score extends typ-
ical XML IR works, e.g., [6] (see also Section 6).

Obviously, there are many possible ways to define @ge, and
®path, depending on the application. In particular, different types
of connections may not be accounted for equally; our algorithm
only requires a feasible score (with the feasibility properties).

THEOREM 3.1 (SCORE FEASIBILITY). The S3j score func-
tion (Definition 3.5) has the feasibility properties (Section 3.3).

The proof appears in our technical report [3].

4. QUERY ANSWERING ALGORITHM

In this section, we describe our Top-k algorithm called S3p,
which computes the answer to a query over an S3 instance using
our S3y score, and formally state its correctness.

4.1 Algorithm

The main idea, outlined in Algorithm 1, is the following. The
instance is explored starting from the seeker and going to other
vertices (users, documents, or resources) at increasing distance. At
the n-th iteration, the I vertices explored are those connected to the
seeker by at least a path of length at most n. We term exploration
border the set of graph nodes reachable by the seeker through a
path of length exactly n. Clearly, the border changes as n grows.

During the exploration, documents are collected in a set of can-
didate answers. For each candidate ¢, we maintain a score interval:
its currently known lowest possible score, denoted c.lower, and its



Algorithm 1: S3; — Top-k algorithm.

Algorithm 3: Algorithm ExploreStep

Input :aquery g = (u, )

Output: the best k answers to ¢ aver an S3 instance I, T}, 5(q)
candidates < ] // initially empty list
2 discarded < ()

border Path < []

-

w

1 8ulv] = 1 ifv=u

4 allProx < 6y T )10 otherwise

5 threshold < oo /I Best possible score of a document not yet
explored, updated in ComputeCandidatesBounds

6 n<+0

7 while not StopCondition(candidates) do

8 n<<n-+1

9 ExploreStep()

10 ComputeCandidatesBounds()

u CleanCandidatesList()

12 return candidates[0, k — 1]

= (u,$) Query: seeker u and keyword set ¢

q
k Result size
n Number of iterations of the main loop of the algorithm

candidates Set of documents and/or fragments which are candidate query
answers at a given moment
discarded Set of documents and/or fragments which have been ruled out of

the query answer

border Path[v] | Paths from u to v explored at the last iteration (a ~,, v)

allProx[v] Bounded social proximity (proz=") between the seeker u and a
node v, taking into account all the paths from « to v known so far
connect|c| Connections  between the seeker and the candidate

[ connect|c] = {(k, type, pos(d, f), src)|k €
8, (type, f, src) € con(c,k)}

threshold Upper bound on the score of the documents not visited yet

Table 3: Main variables used in our algorithms.

Algorithm 2: Algorithm StopCondition

Input : candidates set
Output: t rue if candidates[0, k — 1] is Ty, 5(q), false otherwise
if 3d, d’ € candidates|0,. ..,k — 1], d € neigh(d’) then

| return false

D=

w

min_topk_lower < oo
foreach ¢ € candidates|0,. ..,k — 1] do
L min_topk_lower < min(min_topk_lower, c.lower)

[N

£

maz_non_topk_upper + candidates|k].upper
return max (max_non_topk_upper, threshold) <
min_topk_lower

=

// Boolean result

highest possible score, denoted c.upper. These scores are updated
as new paths between the seeker and the candidates are found. Can-
didates are kept sorted by their highest possible score; the k first
are the answer to the query when the algorithm stops, i.e., when no
candidate document outside the current first £ can have an upper
bound above the minimum lower bound within the top k ranks.
Further, the search algorithm relies on three tables:
e borderPath is a table storing, for a node v in I, the set of
paths of length n between u (the seeker) and v, where n is
the current distance from w that the algorithm has traversed.

e allProx is a table storing, for a node v in I, the proximity
between u and v taking into account all the paths known so
far from w to v. Initially, its value is O for any v # w.

e connect is a table storing for a candidate c the set of connec-
tions (Section 3.2) discovered so far between the seeker and ¢
These tables are updated during the search. While they are de-
fined on all the I nodes, we only compute them gradually, for the
nodes on the exploration border.

Termination condition Of course, search should not explore the
whole graph, but instead stop as early as possible, while returning

36

Update: border Path and all Prox
1 if n = 1 then
2 | borderPath < out({u})

3 else
foreach v € I do
| newBorderPath[v] < 0

(LIS

6 foreach p € border Path do

7 foreach network edge e in out(neigh(p.end)) do
8 m < e.target

9 if m is a document or a tag then

10 | GetDocuments(m)

1 newBorder Path[m].add(p||e)

12 border Path <— newBorder Path

13 foreach v € I do

14 newAllProz[v] < allProx[v] + Upros (allProxz[v],
15 | {prot(p), p € border Path[v]},n)

16 allProx < newAllProx

the correct result. To this aim, we maintain during the search an
upper bound on the score of score of all documents unexplored so
far, named threshold. Observe that we do not need to return the
exact score of our results, and indeed we may never narrow down
the (lower bound, upper bound) intervals to single numbers; we
just need to make sure that no document unexplored so far is in
among the top k. Algorithm 2 outlines the procedure to decide
whether the search is complete: when (z) the candidate set does
not contain documents such that one is a fragment of another, and
(i%) no document can have a better score than the current top k.

Any-time termination Alternatively, the algorithm can be stopped
at any time (e.g., after exhausting a time budget) by making it return
the k best candidates based on their current upper bound score.

Graph exploration Algorithm 3 describes one search step (itera-
tion), which visits nodes at a social distance n from the seeker. For
the ones that are documents or tags, the GetDocuments algorithm
(see hereafter) looks for related documents that can also be candi-
date answers (these are added to candidates); discarded keeps
track of related documents with scores too low for them to be can-
didates. The all Prox table is also updated using the Upyroq func-
tion, whose existence follows from the first score feasibility prop-
erty (Section 3.3), to reflect the knowledge acquired from the new
exploration border (border Path). Observe that Algorithm 3 com-
putes proz=<" (u, src) iteratively using the first feasibility property;
at iteration n, all Prox[src] = proz="(u, src).

Computing candidate bounds The ComputeCandidateBounds
algorithm (shown in [3]) maintains during the search the lower and
upper bounds of the candidates, as well as threshold. A candi-
date’s lower bound is computed as its score where its social prox-
imity to the user’ is approximated by its bounded version, based
only on the paths explored so far:

Dgen ({(kw, type, pos(d, f), allProzx[src]) | kw € ¢,
(type, f, src) € con(d, kw)})

This is a lower bound because, during exploration, a candidate
can only get closer to the seeker (as more paths are discovered).

A candidate’s upper bound is computed as its score, where the
social proximity to the user is replaced by the sum between the
bounded proximity and the function B;,T}m(u, src), whose exis-
tence follows from the long path attenuation property (Section 3.3).

"The actual (exact) social proximity requires a complete traversal
of the graph; our algorithms work with approximations thereof.



The latter is guaranteed to offset the difference between the bounded
and actual social proximity:

Bgen ({(kw, type, pos(d, f), allProzx[src] + B;T”OI (u, src)) |
kw € ¢, (type, f, src) € con(d, kw)})

The above bounds rely on con(d, k), the set of all connections
between a candidate d and a query keyword k (Section 3.2); clearly,
the set is not completely known when the search starts. Rather,
connections accumulate gradually in the connect table (Algorithm
GetDocuments), whose tuples are used as approximate (partial)
con(d, k) information in ComputeCandidateBounds.

Finally, ComputeCandidateBounds updates the relevance thresh-

old using the known bounds on score and prox. The new bound
estimates the best possible score of the unexplored documents.

Cleaning the candidate set Algorithm CleanCandidateList re-
moves from candidates documents that cannot be in the answer,
i.e., those for which k candidates with better scores are sure to ex-
ist, as well as those having a candidate neighbor with a better score.
The algorithm is delegated to [3].

Getting candidate documents Given a candidate document or tag
x, Algorithm GetDocument s checks whether some documents un-
explored so far, reachable from z through a chain of S3:partOf,
S3:commentsOn, S3:hasSubject, or
S3:hasSubject edges, are candidate answers. If yes, they are added
to candidates and the information necessary to estimate their score
is recorded in connect. The algorithm is detailed in [3].

S3:commentsOn,

4.2 Correctness of the algorithm

The theorems below state the correctness of our algorithm for
any score function with the feasibility properties identified in Sec-
tion 3.3. The proofs are quite involved, and they are delegated
to [3]. The core of the proofs is showing how the score feasibil-
ity properties entail a set of useful properties, in particular related
to early termination (convergence).

THEOREM 4.1 (STOP CORRECTNESS). When a stop condi-
tion is met, the first k elements in candidates are a query answer.

We say the tie of two equal-score documents d, d’ is breakable if
examining a set of paths of bounded length suffices to decide their
scores are equal. (In terms of our score feasibility properties, this
amounts to B;.Zz = 0 for some n). Our generic score function
(Definition 3.5) does not guarantee all ties are breakable. How-
ever, any finite-precision number representation eventually brings
the lower and upper bounds on d and d’s scores too close to be
distinguished, de facto breaking ties.

THEOREM 4.2 (CORRECTNESS WITH BREAKABLE TIES).
If there exists a query answer of size k and all ties are breakable
then Algorithm 1 returns a query answer of size k.

THEOREM 4.3 (ANYTIME CORRECTNESS). Using anytime
termination, Algorithm 1 eventually returns a query answer.

In our experiments (Section 5), the threshold-based termination
condition was always met, thus we never needed to wait for con-
vergence of the lower and upper bound scores.

S. IMPLEMENTATION & EXPERIMENTS

We describe experiments creating and querying S3 instances.
We present the datasets in Section 5.1, while Section 5.2 outlines
our implementation and some optimizations we brought to the search
algorithm. We report query processing times in Section 5.3, study
the quality of our returned results in Section 5.4, then we conclude.
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I; (Twitter)

Users 492,244
S3:social edges 17 544 347
Documents 467,710
Fragments (non-root) 1,273,800
Tags 609,476
Keywords 28,126,940
Tweets 999,370
Retweets 85%
Reply to users’ status 6.9%
String-keyword associations extracted from DBpedia 3,301,425
S3:social edges per user having any (average) 317
Nodes (without keywords) 2972 560
Edges (without keywords) 24 554 029
I> (Vodkaster) I3 (Yelp)
Tsers 5328 Users - 366,715
S3:social edges (vdk-follow) 94,155 | | S3isocial edges | 3,868,771
Documents (movie comments) 330,520 (yelp:friend)
Documents 2,064,371
Fragments (non-root) 529,432 (reviews)
Soywords e [Reywords 59,614,201
’ Businesses 61,184

Figure 4: Statistics on our instances.
5.1 Datasets, queries, and systems

Datasets We built three datasets, I, I, and I3, based respectively
on content from Twitter, Vodkaster and Yelp.

The instance I; was constructed starting from tweets obtained
through the public streaming Twitter API. Over a one-day interval
(from May 2nd 2014 16h44 GMT to May 3rd 2014 12h44 GMT),
we gathered roughly one million tweets. From every tweet that is
not a retweet, we created a document having three nodes (¢) a text
node: from the text field of the tweet, we extracted named entities
and words (using the Twitter NLP tools library [20]) and matched
them against a general-purpose ontology we created from DBpedia
(see below); (it) a date node, and (i27) a geo node: if the tweet
included a human readable location, we inserted it in this node.
The RDF graph of our instance was built from DBPedia datasets,
namely: Mapping-based Types, Mapping-based Properties, Per-
sondata and Lexicalizations Dataset. These were chosen as they
were the most likely to contain concepts (names, entities etc.) oc-
curring in tweets. Tweet text was semantically enriched (connected
to the RDF graph) as follows: within the text fields, we replaced
each word w for which a triple of the form u foaf:name w holds
in the DBPedia knowledge base, by the respective URI w.

When a tweet ¢’ authored by user w is a retweet of another tweet
t, for each hashtag h introduced by t', we added to I; the triples:
a type S3:relatedTo, a S3:hasSubject t, a S3:hasKeyword h
and a S3:hasAuthor u. If a tweet t'" was a reply to another tweet
t, we considered ¢ a comment on t. Whenever ¢ was present in
our dataset®, we added the corresponding S3:commentsOn triple
in I,. The set of users €1; corresponds to the set of user IDs
having posted tweets, and we created links between users as fol-
lows. We assigned to every pair of users (a, b) a value u~(a,b) =
t-jsi(a,b) + (1 —t) - jsa2(a,b), where jsi, js2 give the Jac-
card similarities of the sets of keywords appearing in each user’s
posts, respectively, in each user’s comments. Whenever this sim-
ilarity was above a threshold, we created an edge of weight u~
between the two users. Through experiments on this dataset, we
set the threshold to 0.1.

The instance I uses data from Vodkaster, a French social net-
work dedicated to movies. The data comprises follower relations
between the users and a list of comments on the movies, in French,
along with their author. Whenever user u follows user v we in-

8The corpus may contain a re-tweet of a tweet we do not capture;
this is unavoidable unless one has access to the full Twitter history.



cluded u vdk:follow v 1 in I, where vdk:follow is a custom sub-
property of S3:social. We translate the first comment on each film
into a document; each additional comment was then considered a
comment on the first. The text of each comment was stemmed, then
each stemmed sentence was made a fragment of the comment.

The instance I3 is based on Yelp [29], a crowd-sourced reviews
website about businesses. This dataset contains a list of textual re-
views of businesses, and the friend list of each user. As for Iz, we
considered that the first review of a business is commented on by
the subsequent reviews of the same business. For each user u friend
with user v, we added u yelp:friend v 1 to I3, where yelp:friend
is a S3:social subproperty modeling social Yelp connections. Re-
views were also semantically enriched using DBPedia.

Table 4 shows the main features of the three quite different data
instances. I; is by far the largest. I was not matched with a knowl-
edge base since its content is in French; I and I3 have no tags.

Queries For each instance we created workloads of 100 queries,
based on three independent parameters:
e f, the keyword frequency: either rare, denoted ‘—’ (among
the 25% least frequent in the document set), or common, de-
noted ‘+’ (among the 25% most frequent)

e [, the number of keywords in the query: 1 or 5

e [, the expected number of results: 5 or 10
This lead to a total of 8 workloads, identified by gsety ; i, for
each dataset. To further analyze the impact of varying k, we added
10 more workloads for I, where f € {+,—},1 = 1, and k €
[1,5,10,50] (used in Figure 7). We stress here that injecting se-
mantics in our workload queries, by means of keyword extensions
(Definition 2.1), increased their size on average by 50%.

Systems Our algorithms were fully implemented in Python 2.7; the
code has about 6K lines. We stored some data tables in PostgreSQL
9.3, while others were built in memory, as we explain shortly. All
our experiments were performed on a 4 cores Intel Xeon E3-1230
V2 @3.30GHz with 16Go of RAM, running Debian 8.1.

No existing system directly compares with ours, as we are the
first to consider fine-granularity content search with semantics in a
social network. To get at least a rough performance comparison,
we used the Java-based code provided by the authors of the top-%
social search system described in [18], based on the UIT (user, item
tag) model, and referred to as TopkS from now on. The data model
of TopksS is rather basic, since its documents (items) have no inter-
nal structure nor semantics and tags have no semantic connection
between them. Further, (user, user, weight) tuples reflect weighted
links between users. TopkS computes a social score and a content-
based score for each item; the overall item score is then avx social
score +(1 — a) X content score, where « is a parameter of TopkS.

We adapted our instances into TopkS’s simpler data model. From
Iy, we created I} as follows: (¢) the relations between users were
kept with their weight; (i¢) every tweet was merged with all its
retweets and replies into a single item, and (¢¢¢) every keyword &
in the content of a tweet that is represented by item ¢ posted by
user u led to introducing the (user, item, tag) triple (u,,k). To
obtain I and I}, each movie or business becomes an item, each
word extracted from a review leads to a (user, item, tag) tuple.

5.2 Implementation and optimizations

We briefly discuss our implementation, focusing on optimiza-
tions w.r.t. the conceptual description in Section 4.

The first optimization concerns the computation of prox, re-
quired for the score (Definition 3.5). While the score involves
connections between documents and keywords found on any path,
in practice S3j explores paths (and nodes) increasingly far from
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the seeker, and stores such paths in border Path, which may grow
very large and hurt performance. To avoid storing border Path,
we compute for each explored vertex v the weighted sum over all
paths of length n from the seeker to this vertex:

border Proxz(v,n) =Y

and compute prox directly based on this value.

Furthermore, Algorithm GetDocuments considers documents
reachable from z through edges labeled S3:partOf, S3:commentsOn,
S3:commentsOn,S3:hasSubject or S3:hasSubject. Reachability
by such edges defines a partition of the documents into connected
components. Further, by construction of con tuples (Section 3.2),
connections carry over from one fragment to another, across such
edges. Thus, a fragment matches the query keywords iff its com-
ponent matches it, leading to an efficient pruning procedure: we
compute and store the partitions, and test that each keyword (or
extension thereof) is present in every component (instead of frag-
ment). Partition maintenance is easy when documents and tags are
added, and more expensive for deletions, but luckily these are rarer.

The query answering algorithm creates in RAM the all Prox ta-
ble and two sparse matrices, computed only once: distance, en-
coding the graph of network edges in I (accounting for the verti-
cal neighborhood), and component, storing the component of each
fragment or tag. Thus, Algorithm 3, which computes all Prox and
finds new components to explore, relies on efficient matrix and vec-
tor operations. For instance, the new distance vector border Prox
w.r.t. the seeker at step n + 1 is obtained by multiplying the dis-
tance matrix with the previous distance vector from step n. The
documents and the RDF graph, on the other hand are not stored in
RAM, and are queried using a PostgreSQL database.

The search algorithm can be parallelized in two ways. First,
within an iteration, we discover new documents in different compo-
nents in parallel. Second, when border Prox is available in the cur-
rent iteration, we can start computing the next border Prox using
the distance matrix. More precisely, Algorithm 3 (ExploreStep)
can be seen as consisting of two main blocks: (¢) computing the
new border Proz using the (fixed) distance matrix and the previ-
ous borderProx (lines 1-12 except line 10); (i¢) computing
all Prox using the new border Prox and the previous all Prox
(lines 13-16) plus the call to GetDocuments (line 10). The lat-
ter algorithm consists of two parts: (¢¢) identifying the newly dis-
covered components, respectively (iv) testing the documents they
contain. We used 8 concurrent threads, each running a task of one
of the forms (z)-(iv), above, and synchronized them with a custom

prod(p)

pEu~w,|p|=n v
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scheduler. This reduced the query answering time on average by a
factor of 2.

5.3 Query answering times

Figures 5 and 6 show the running times of S3; on the I; and
I3 instances; the results on the smaller instance I are similar [3].
We used different values of the - social proximity damping factor
(Section 3.4) and the o parameter of TopkS. For each workload, we
plot the average time (over its 100 queries). All runs terminated by
reaching the threshold-based stop condition (Algorithm 2).

A first thing to notice is that while all running times are com-
parable, TopkS runs consistently faster. This is mostly due to the
different proximity functions: our prox, computed from all possi-
ble paths, has a much broader scope than TopkS, which explores
and uses only one (shortest) path. In turn, as we show later, we
return a significantly different set of results, due to proz’s broader
scope and to considering document structure and semantics.

Decreasing the « in S3j, reduces the running time. This is ex-
pected, as ~y gives more weight to nodes far from the seeker, whose
exploration is costly. Similarly, increasing « in TopkS forces to
look further in the graph, and affects negatively its performance.

The influence of k£ is more subtle. When the number of candi-
dates is low and the exploration of the graph is not too costly, higher
k values allow to include most candidates among the k highest-
scoring ones. This reduces the exploration needed to refine their
bounds enough to clarify their relative ranking. In contrast, if the
number of candidates is important and the exploration costly, a
small k value significantly simplifies the work. This can be seen
in Figure 7 where, with frequent keywords, increasing k£ does not
affect the 3 fastest quartiles but significantly slows down the slow-
est quartile, since the algorithm has to look further in the graph.

The same figure also shows that rare-keyword workloads (whose
labels start by —) are faster to evaluate than the frequent-keyword
ones (workload labels starting with +). This is because finding rare
keywords tends to require exploring longer paths. Social damping
at the end of such paths is high, allowing to decide that possible
matches found even farther from the seeker will not make it into
the top-k. In contrast, matches for frequent keywords are found
soon, while it is still possible that nearby exploration may signif-
icantly change their relative scores. In this case, more search and
computations are needed before the top-k elements are identified.
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Figure 7: Query answering times on I; when varying k.

Measure \ Instance I, I, I3
Graph reachability 12% 23% | 41%
Semantic reachability 83% | 100% | 78%
Ly 8% 10% 4%
Intersection size 13.7% | 18.4% | 5.6%

Figure 8: Relations between S3; and TopkS answers.

5.4 Qualitative comparison

We compare now the answers of our S3j, algorithm and those of
TopkS from a qualitative angle. S3j follows links between doc-
uments to access further content, while TopkS does not; we term
graph reachability the fraction of candidates reached by our algo-
rithm which are not reachable by the TopkS search. Further, while
S 3}, takes into account semantics by means of semantic extension
(Definition 2.1), TopkS only relies on the query keywords. We call
semantic reachability the ratio between the number of candidates
examined by an algorithm without expanding the query, and the
number of candidates examined with query expansion. Observe
that some S 3 candidates may be ignored by TopkS due to the lat-
ter’s lack of support for both semantics and connections between
documents. Finally, we report two measures of distance between
the results of the two algorithms. The first is the intersection size
i.e., the fraction of S3j, results that TopkS also returned. The sec-
ond, L1, is based on Spearman’s well-known foot rule distance be-
tween lists, defined as:

Li(ri,m2) = 2(k—|n N2 |) (k+1)+>_ |71 (i) — m2(i)[— 32 7(4)
1E€ETINT2 Te{r1,m2}
ieT\(T1N72)
where 7; (i) is the rank of item ¢ in the list 7;.

The averages of these 4 measures over the 8 workloads on each
instance appear in Figure 8. The ratios are low, and show that dif-
ferent candidates translate in different answers (the low L; stands
witness for this). Few S3j results can be attained by an algo-
rithm such as TopkS, which ignores semantics and relies only on
the shortest path between the seeker and a given candidate.

5.5 Experiment conclusion

Our experiments have demonstrated first the ability of the S3
data model to capture very different social applications, and to
query them meaningfully, accounting for their structure and en-
riching them with semantics. Second, we have shown that S3j
query answering can be quite efficient, even though considering all
paths between the seeker and a candidate answer slows it down



w.r.t. simpler algorithms, which rely on a shortest-path model.
We have experimentally verified the expected impact of the social
damping factor v and of the result size k£ on running time. Third,
and most importantly, we have shown that taking into account in
the relevance model the social, structured, and semantic aspects of
the instance bring a qualitative gain, enabling meaningful results
that would not have been reachable otherwise.

6. RELATED WORK

Prior work on keyword search in databases spreads over different
research directions:
Top-k search in a social environment uses UIT models [18, 21,
30] we outlined in Section 1. Top-k query results are found based
on a score function accounting for the presence of each keyword in
the tags of a candidate item, and a simple social distance based on
the length of the social edge paths; query answering algorithms are
inspired from the general top-k framework of [8]. As documents
are considered atomic, and relations between them are ignored, re-
quirements R1, R2 and R4 are not met. Further, the lack of seman-
tics also prevents RS. Recent developments tend to focus on per-
formance and scalability, or the integration of more attributes such
as locality or temporality [7, 16], without meeting the abovemen-
tioned requirements. Location and time can be added to generic
scores but this is outside of the scope of this paper.

Semi-structured document retrieval based on keywords relies
mostly on the Least Common Ancestors approach, by which a set
of XML nodes containing the requested keywords are resolved into
one result item, their common ancestor node [6, 23]. This field pio-
neered by [11], encompassed by our model, generalizes LCA con-
straints but lacks both social and semantics, and thus meets only
R2. Other recent developments in this area, including more flex-
ible and comprehensive reasoning patterns, have been presented
in [2] but have the same limitations. IR-style search in relational
databases [12, 13] considers key-foreign key relationships between
items, but ignores text structure, semantics, and social aspects.

Semantic search on full-text documents, either via RDF [15, 25]
or a semantic similarity measure [24], allows to query intercon-
nected, semantic rich unstructured textual documents or entities,
thus meeting R1, RS and R6. Efforts to consider XML structure in
such semantics-rich models [9] also enable R2.

Personalized IR in a social context adapts the answers to a user’s
query, taking into account her interests and those of her direct and
indirect social connections [5]; this meets R1 but not R2 nor R3.

All the aforementioned models can be seen as partial views over
the S3 model we devised, and they could easily be transcribed into
it modulo some minor variations; for instance, Facebook’s Graph-
Search [7] is a restricted form of SPARQL query one could ask
over an S3 instance. Slight adaptations may be needed for social
contexts tolerating similarity between keywords that goes beyond
the strict specialization relation (in RDF sense) we consider. We
have hinted in Section 2 how this could be included.

7. CONCLUSION

We devised the S3 data model for structured, semantic-rich con-
tent exchanged in social applications. We also provided the S3j
top-k keyword search algorithm, which takes into account the so-
cial, structural and semantical aspects of S3. Finally, we demon-
strated the practical interest of our approach through experiments

on three real social networks.
Next, we plan to extend S3j, to a massively parallel in-memory
computing model to make it scale further. We also consider gen-
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erating user-centric knowledge bases to be used in S3y, to further
adapt results to the user’s semantic perspective.
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ABSTRACT

Subgraph/supergraph queries although central to graph an-
alytics, are costly as they entail the NP-Complete problem
of subgraph isomorphism. We present a fresh solution, the
novel principle of which is to acquire and utilize knowledge
from the results of previously executed queries. Our ap-
proach, iGQ, encompasses two component subindexes to
identify if a new query is a subgraph/supergraph of pre-
viously executed queries and stores related key informa-
tion. iGQ comes with novel query processing and index
space management algorithms, including graph replacement
policies. The end result is a system that leads to signifi-
cant reduction in the number of required subgraph isomor-
phism tests and speedups in query processing time. {GQ can
be incorporated into any sub/supergraph query processing
method and help improve performance. In fact, it is the only
contribution that can speedup significantly both subgraph
and supergraph query processing. We establish the princi-
ples of i{GQ and formally prove its correctness. We have im-
plemented iGQ and have incorporated it within three popu-
lar recent state of the art index-based graph query process-
ing solutions. We evaluated its performance using real-world
and synthetic graph datasets with different characteristics,
and a number of query workloads, showcasing its benefits.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

General Terms

Design, Performance

Keywords

Graph query processing, indexing, query result caching

INTRODUCTION

Graph structured data are prevalent in many modern big
data applications, ranging from chemical, bioinformatics,
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and other scientific datasets to social networking and social-
based applications (such as recommendation systems). In
biology, for example, there is a great need to model “struc-
tured interaction networks”. These abound when studying
species, proteins, drugs, genes, and molecular and chemical
compounds, etc. In these graphs, nodes can model species,
genes, etc. and edges reflect relationships between them.
Molecular compounds, consisting of atoms and their bonds,
are naturally modeled as graphs. Ditto for social networks,
where nodes refer to people and edges to their relationships.

Developing systems and algorithms that can store, man-
age, and provide analysis over large numbers of (potentially
large) graphs is a formidable challenge. Already, there exist
several very large graph datasets. For instance, the Pub-
Chem|[34] chemical compound dataset contains more than
35 million graphs and ChEBI[11] (Chemical Entities of Bi-
ological Interest) dataset contains more than half a million
graphs. Further applications extend to software develop-
ment and debugging[27] and to similarity searching in med-
ical datasets[32]. As a result, a large number of graph
data management systems, optimised for handling graph
data, have emerged (e.g., Neo4J[4], InifiteGraph[20]). This
is in addition to graph management systems designed by
big data companies for their own purposes (e.g., Twitter’s
FlockDB([38], Google’s Pregel[28]) and the list is continu-
ously expanding. Hence, the demand for high performance
data analytics in graph data systems is steadily increasing.

Central to graph analytics, is the need to locate patterns
in dataset graphs. Informally, given a query graph, the sys-
tem is called to identify which of the stored graphs in its
dataset contain it (subgraph matching), or are contained in
it (supergraph matching). This is a very costly operation
as it entails the NP-Complete[14] problem of subgraph iso-
morphism and even its most popular solutions [9, 25, 39]
are computationally very expensive. This problem is exac-
erbated when dealing with datasets storing large numbers
of graphs, as the number of required subgraph isomorphism
tests grows. Furthermore, performance deteriorates signifi-
cantly with increasing graph sizes.

The key driver of our work is the realization that in many
applications, it is natural to expect that queries submit-
ted in the past share subgraph or supergraph relationships
with queries of the future. As one example, consider chem-
ical graph datasets, where queries use the graph represen-
tation of chemical entities. Such queries are naturally hi-
erarchical: At the base, we see chemical elements. Then,
there are graphs depicting chemical compounds (consisting
of chemical elements), while there are also techniques to

10.5441/002/edbt.2016.07
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create chemical compound clusters out of similar chemical
compounds[34]. Similarly, in protein datasets there is also
a hierarchy of queries for aminoacids, proteins, protein mix-
tures, proteins of uni-cell bacteria, all the way to those of
multi-cell organisms. Finally, typical tools for social net-
work analysis (SNA — e.g., Pajek[10]) provide the ability to
produce graphs by filtering nodes and/or edges from other
graphs. Using such graphs as queries in exploratory interac-
tive SNA induces again the previous characteristic. For in-
stance, consider the (query) graphs for analyzing friendship
networks: such networks within the USA are subgraphs of
friendship networks within North America, which in turn are
subgraphs of the complete friendship network graph. The
conclusion is that, in many applications, any query can itself
be a subgraph or supergraph of a previously issued query.
Up to now, this natural subgraph/supergraph relationship
among queries has not been exploited.

2. PERSPECTIVES AND RELATED WORK

The problem of subgraph/supergraph query processing
has been extensively studied. A prominent paradigm in the
literature is the filter then verify paradigm. Essentially, this
is an index-based class of methods. During indexing, the
dataset graphs are reduced to their features (a feature being
any substructure of a graph, be it path, tree, cycle, or arbi-
trary subgraph), which are inserted into an index structure
(e.g., tree, trie, hash table, etc.). Given a query graph g,
g is also decomposed into its features, following the same
process as for dataset graphs. Then the index is searched
for g’s features; for subgraph queries, the set of graphs that
contain all of said features are returned, whereas for super-
graph queries the returned set consists of graphs all of whose
features are contained in g’s features. This set is called the
candidate set and producing it constitutes the filtering stage
of query processing.

All known algorithms guarantee that there will be no false
negatives; that is, for subgraph (resp. supergraph) queries,
all graphs in the dataset that can possibly contain (resp.
are contained in) the query graph will be included in the
candidate set. However, false positives are possible — not
all graphs in the candidate set contain (resp. are contained
in) the query graph. And herein lies the primary source
of problems, since a subgraph subgraph isomorphism test
must be performed against each graph in the candidate set,
during the verification stage of query processing. The ma-
jor focus of related work then is how to reduce the number
of false positives, i.e., the number of unnecessary subgraph
isomorphism tests.

Approaches in the literature can be classified along two
dimensions: whether they employ (frequent) mining tech-
niques or an exhaustive enumeration for the production of
features, and based on the type of features of the dataset
graphs they index (e.g., paths, trees, subgraphs). Note that
exhaustive enumeration can yield huge indices and may take
a prohibitively long time to do so. For this reason, all ex-
haustive enumeration approaches limit the size of features
to a typically fairly small number of edges (i.e., 10 or less).

Mining-based approaches, both for supergraph queries ([5,
51, 46, 6, 52]) and subgraph queries (e.g., [41, 7, 52]) uti-
lize techniques to mine for frequent (or discriminating, in
[6]) (sub)graphs among the dataset graphs that are then
indexed. Other mining-based approaches, like Tree+A[49]
and TreePi[45] mine for and index frequent trees. Last, Lin-
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dex[43] and LWindex[44] utilize the frequent mining algo-
rithms of previous approaches, and are thus able to index
and query several feature types. Typically such approaches
tend to mine for more complex structures, which presents a
trade-off between the complexity and time required for the
indexing process vis-a-vis the potential for higher pruning
power during query processing. However, numerous related
performance studies [21, 12, 15, 17, 22] have shown that
feature-mining approaches tend to be comparatively worse
performers.

On the other hand, SING[12], GraphGrep[16] and Graph-
GrepSX[3] perform exhaustive enumeration, listing all paths
of dataset graphs up to a certain path length. Similarly,
CT-Index([22] indexes trees and cycles, whereas Grapes[15]
indexes paths along with location information.

A different approach, which does not index features as
above, is presented in gCode[53]. For each graph G in the
graph dataset, gCode computes a signature per vertex of G
(essentially reflecting the vertex’s neighbourhood) and then
computes a signature for G itself. The latter is a tree struc-
ture combining the signatures of all its vertices.

With respect to the verification stage, approaches also dif-
fer on how this is performed. In some works, verification is
performed by applying any (exact) subgraph isomorphism
algorithm of choice (see [25] for a detailed insightful com-
parative evaluation) after the filtering stage. Indeed, this
can be the default choice for all approaches and there is a
large variety of subgraph isomorphism algorithms available.
Most such algorithms are influenced by Ullman’s early work
[39]. Arguably, the algorithm that is now the most widely
used is the VF2[9] algorithm. Last, several approaches store
and utilize location information in their index to achieve
further filtering ([45, 12, 15]).

Recent performance studies [17, 21] have shown that CT-
Index[22] and Grapes[15] are high performing approaches.
CT-Index[22] is based on deriving canonical forms for the
(tree, cycle) features of a graph G, to the fact that for trees
and cycles finding string-based canonical forms can be done
in linear time (unlike general graphs). These string represen-
tations of a graph’s features are then hashed into a bitmap
structure per graph G. Checking whether a query graph g
can possibly be a subgraph of a graph GG, can be done with
simple bitwise operators between the bitmap of g and that of
G (as supergraphs must contain all features of a subgraph).
Last, its verification stage is then based on VF2.

Grapes[15] is designed to exploit parallelism available in
multi-core machines. It exhaustively enumerates all paths
(up to a maximum length), which are then inserted into a
trie with their location information. This operation is per-
formed in parallel by several threads, each of which works
on a portion of the graph, producing its own trie, and subse-
quently all tries are merged together to form the path index
of a graph. Grapes then computes (typically) small con-
nected components of graphs in the candidate set, on which
the verification (subgraph isomorphism test) is performed.

An insightful discussion and comparative performance eval-
uation of several indexing techniques for subgraph query
processing (published prior to 2010) can be found in [17].
Furthermore, in [21] we presented a systematic performance
and scalability study of several older as well as current state-
of-the-art index-based approaches for subgraph query pro-
cessing. We are not aware of similar in-depth studies of
solutions to supergraph query processing; however, [44] pro-



vides a concise overview of related approaches.

On arelated note, recent work also deals with graph query-
ing against historical graphs, identifying subgraphs enduring
graph mutations over time [35], which can be viewed as a
variation whereby graph snapshots in time can be viewed as
different graphs. Also, the research community has recently
started looking into subgraph queries against a single, very
large graph consisting of possibly billions of nodes[36]. To
accelerate the query processing, SPath[48] proposes a path-
at-a-time fashion, which proves to be more efficient than tra-
ditional vertex-at-a-time methods, whereas [36] makes use of
a memory cloud and [33, 1, 24] exploit MapReduce. In this
subgraph querying problem for the single large graph set-
ting, the goal is to expedite the subgraph isomorphism itself,
whereas in the setting with many dataset graphs, the target
of subgraph querying problem is to minimize the number
of isomorphism tests that need to be performed. Our work
focuses on the latter setting and leaves for future work the
application of our ideas to the former setting.

There has also been considerable work on approximate
graph pattern matching. Relevant techniques (e.g., [22, 18,
37, 40, 42, 47, 50, 33, 13]) perform subgraph matching with
support for wildcards and/or approximate matches. These
solutions are not directly related to our work, as we expedite
exact index-based subgraph/supergraph query processing.

Caching of the results of path/tree queries has been ex-
plored in XML databases[26, 2, 29]. The problem we focus
on is considerably different, as the queries we deal with are
in the form of graphs (not just paths/trees), thus entailing
the NP-Complete problem of subgraph isomorphism. Fur-
thermore, in our setting queries retrieve stored graphs that
contain the query graph (subgraph queries) or are contained
in it (supergraph queries), and we exploit both supergraph
and subgraph relationships among queries themselves, as op-
posed to only subsumption (i.e., supergraph) relationships.
Moreover, our graph replacement policy also takes into ac-
count the subgraph isomorphism costs, as opposed to just
the size or popularity of cached queries.

Last, [23] presents a cache for targeted historical queries
against a large social graph. In this case, each query is
centered around a uniquely identified node in the social
graph, and the objective is to avoid maintaining and/or
reconstructing complete snapshots of the social graph, but
to instead use a set of static “views” — i.e., snapshots of
neighborhoods of nodes — to rewrite incoming queries. [23]
does not deal with subgraph/supergraph query processing;
rather, the nature of the queries means that containment can
be decided by simply measuring the distance of the central
query node to the center of each view, while also taking into
account the diameter of these two graphs. Furthermore, the
authors do not provide a cache replacement strategy, but
rather an algorithm to compute the optimal cache contents
given a set of queries. {GQ could well be used to both gen-
eralise and expedite query processing in [23].

2.1 The iGQ Perspective

In this work we offer a new perspective and a strategy
for improving subgraph/supergraph query processing per-
formance and scalability. Our approach rests on the follow-
ing three observations: First, in related works there exists
an implicit assumption that graph queries will be similarly
structured to the dataset graphs. In general this is not guar-
anteed to hold (e.g., in exploratory analytics), and when
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query graphs have no match in the dataset graphs, query
processing cannot benefit at all from indexes that are solely
constructed on dataset graphs. Second, even when query
graphs have matches against dataset graphs, the system per-
forms expensive computations during query processing and
simply throws away all (painstakingly and laboriously) de-
rived knowledge (i.e.,previous querying result). Third, the
success of known approaches depends on and exploits the
fact that dataset graphs share features (e.g., when mining
for frequent features) and/or that dataset graph features
contain or are contained in other graph features (e.g., when
using tries to index dataset graph features). However, they
completely fail to investigate and exploit such similarities
between query graphs.

As mentioned, it is natural in many applications for new
queries to bear subgraph /supergraph relationships with pre-
viously issued queries. Our efforts in this work centre on
exploiting this characteristic to further improve the per-
formance of query processing. Therefore, instead of “min-
ing” only the stored graphs and creating relevant indexes
on them, we also “mine” query graphs and accumulate the
knowledge produced by the system when running queries,
creating a query index in addition to the dataset index. Our
insights identify which is the relevant accumulated knowl-
edge and how to exploit it during query processing in order
to further reduce the number of subgraph isomorphism tests.
1GQ can accommodate any proposed index for sub or super-
graph query processing and help expedite both query types.

2.2 Contributions

The contributions of this work are that we:

e Provide a new perspective to the problem of subgraph/
supergraph query processing, with insights as to how
the work performed by the system when executing
queries can be appropriately managed to improve the
performance of future queries.

e Detail the iGQ approach, based on a query index struc-
ture and associated query processing algorithms, which
can reduce the number of isomorphism tests performed
during query processing.

e Present the iGQ framework, showing how to incorpo-
rate i{GQ within existing approaches, and the two iGQ
components: a subgraph query index and a supergraph
query index. The subgraph index of iGQ can be based
on any existing subgraph index (over query graphs, not
dataset graphs). The supergraph index on the other
hand is a new index to swiftly determine supergraph
status between new and previous queries.

e Address the issue of index space management, provid-
ing mechanisms for index updates and a graph replace-
ment policy, deciding contents of query index.

e Implement iGQ, incorporate it within three popular
approaches for graph query processing, and provide
experimental results using real-world datasets and a
number of query workloads, showcasing iGQ’s benefits
against competitive state of the art methods.

3. PROBLEM FORMULATION

We consider undirected labeled graphs. For simplicity, we
assume that only vertices have labels; all our results straight-
forwardly generalize to graphs with edge labels.

DEFINITION 1. A labeled graph G = (V, E,l) consists of
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a set of vertices V(G) and edges E(G) = {(u,v),u € V,v €
V}, and a function 1 : V — U, where U is the label set,
defining the domain of labels of vertices.

A sequence of vertices (vo,...,vn) s.t. I(vs,vit1) € E,
constitutes a path of length n. A simple path is a path where
no vertices are repeated. A cycle is a path of length n > 1,
where vg = v,. A simple cycle is a cycle with no repeated
vertices (other than vy and v,). A connected graph is one
where there exists a path between any pair of its vertices.

DEFINITION 2. A graph G; = (V;, E;,l;) is subgraph-iso-
morphic to a graph G; = (Vj, Ej,1;), (by abuse of notation)
denoted by G; C G;, when there exists an injection ¢ : V; —
Vj, such that ¥Y(u,v) € E;j,u,v € Vi,= (¢(u),p(v)) € E;
and Yu € Vi, li(u) = 1;(¢(u)).

Informally, there is a subgraph isomorphism G; C G; if G;
contains a subgraph that is isomorphic to G;. In this case,
we say that G; is a subgraph of (or contained in) Gj, or
inversely that G; is a supergraph of (contains) G; (denoted
by G; 2 G;).

DEFINITION 3. The subgraph querying problem entails a
set D = {G1,...,Gn} containing n graphs, and a query
graph g, and determines all graphs G; € D such that g C G;.

DEFINITION 4. The supergraph querying problem entails
a set D = {G1,...,Gn} containing n graphs, and a query
graph g, and determines all graphs G; € D such that g O G;.

The iGQ index, I, will be called to index the features of
query graphs; then we shall say that query graph g is indexed
by iGQ and (by abuse of notation) denote it by g € I. We
denote with I,,5(g) all query graphs currently contained in I
that are supergraphs of g (answers to g, if g was a subgraph
query); i.e., Iuw(g) = {G| G €I Ag C G}. Similarly, we
denote with Isyper(g) all query graphs currently contained in
I that are subgraphs of g (answers to g, if g was a supergraph
query); i.e., Lsuper(9) = {G| Ge€lng DG}

4. iGQ PRINCIPLES

We firstly discuss our findings from experiments we ran
regarding the major performance obstacles we need to over-
come if we are to bring about further query processing time
reductions. Subsequently, we present the iGQ framework,
followed by an explanation of how the components of iGQ
are utilized for further performance improvements, and re-
lated formal proofs of correctness. As mentioned, so far re-
lated work has not considered benefiting from the execution
of previous queries. Thus, despite devoting a lot of resources
to such queries, the results derived cannot be put to good
use to improve performance of future subgraph queries.
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4.1 Insights

We report on the fundamentals of the performance of
three state of the art approaches, GraphGrepSX|[3] (GGSX),
Grapes[15], and CT-Index[22], over three real datasets and
one synthetic dataset with different characteristics. These
characteristics will be presented in detail in the experimen-
tal evaluation section. Briefly, AIDS represents a graph DB
consisting of 40,000 very small, sparse graphs, while PDBS
is a graph dataset containing 600 large graphs. Please note
that the way the queries were generated is standard among
related work [15, 22].

Subgraph Query Performance: Where Does Time Go?

There are two key components of the overall query process-
ing time: filtering time (to process the index and produce
the candidate set) and verification time (to perform the ver-
ification of all candidate graphs). Fig. 1 shows what per-
centage of the total query processing time is attributed to
each component.

The dominance of the verification step is clear. This holds
across the three different approaches that employ different
indexing methods and utilize different strategies for cutting
down the cost of subgraph isomorphism. Recall that sub-
graph isomorphism performance is highly sensitive to the
size of both the input graph and the stored graph. Hence,
we would expect that for smaller stored graphs (as in the
AIDS dataset) the verification step would be much faster.
Notably, however, even when graphs are very small, the
verification step is the biggest performance inhibitor and
as graphs become larger (e.g., PDBS) the verification step
becomes increasingly responsible for nearly the total query
processing time. Of course, given the NP-Completeness of
subgraph isomorphism, one would expect that verification
would dominate, especially for large graphs. But the fact
that even with very small graphs this holds is noteworthy.

Filtering Power: Is It Good Enough?

The second fundamental point pertains to how one can re-
duce the verification cost. Related works highlight that their
approaches prove to be very powerful in terms of filtering out
the vast majority of DB graphs. In Figures 2 and 3 we show
our results with respect to the average size of candidate sets
and of the answer set, as well as the average number of false
positives for the AIDS and PDBS datasets.

First, note that different algorithms behave differently
in different datasets (e.g., Grapes significantly outperforms
CT-Index in PDBS while the reverse holds for AIDS). Sec-
ond, note that despite the powerful filtering of an approach,
when the DB contains a large number of graphs (see Figure
2) in absolute numbers, there is a very large number of un-
necessary subgraph isomorphism tests (i.e., false positives)
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that is required. The above two combined imply that even
the best algorithm will suffer from a large number of unnec-
essary subgraph isomorphism tests under some datasets.

Turning our attention to Figure 3 we see that for DBs with
medium to small number of graphs, the high filtering power
can indeed result in requiring only a relatively small number
of subgraph isomorphism tests. However, considerable per-
centages of false positives can appear in the candidate sets of
even top-performing algorithms; e.g., CT-Index, which ex-
hibited the best filtering in the AIDS dataset, has an almost
50% false positive ratio in the PDBS dataset. Furthermore,
not all subgraph isomorphism tests for the graphs in the
candidate set are equally costly. As the cost of subgraph
isomorphism testing depends on the size of the graph, the
larger graphs in the candidate set contribute a much greater
proportion of the total cost of the verification step. Note
that, naturally, false positive graphs tend to be the largest
graphs in the DB, since these have a higher probability to
contain all features of query graphs.

Note that we placed emphasis on the number of unneces-
sary subgraph isomorphism tests (i.e., the false positives),
as we can improve filtering further by reducing this number.
However, this is not the only source of possible improve-
ments. As we shall show later, iGQ can improve on the
number of subgraph isomorphism tests even beyond this, by
exploiting knowledge gathered during query execution.

The insights that can be drawn are as follows:

e Despite the fact that state of the art techniques (based
on indexing features of DB graphs) can enjoy high fil-
tering capacity, there is still large room for improve-
ment, as even the best approaches may perform large
numbers of unnecessary subgraph isomorphism tests.

e Improving further the filtering power of approaches
can significantly improve query processing time, as this
will reduce the number of subgraph isomorphism tests,
which dominates the overall querying time.

e Even approaches that are purported to enjoy great fil-
tering powers, can behave much more poorly under
different datasets.

e Unnecessary subgraph isomorphism tests are not solely
caused by false positives; even graphs in the candidate
set that are true positives can be unnecessarily tested
if the system fails to exploit this knowledge (accrued
by previous query executions).

4.2 The iGQ Framework

i1GQ aims to augment the functionality and benefits of-
fered by any one of the subgraph and/or supergraph index-
ing methods in the literature. Let us call the chosen method
M. The iGQ framework consists of method M and the two
components of I, I, and Isyper. For the sake of simplicity,
we shall first describe the operation of iGQ when M is a
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method for subgraph query processing (denoted Msysp). Ini-
tially, method My, builds its graph dataset index as per
usual. The ¢GQ index, I, starts off empty; it is then popu-
lated as queries arrive and are executed by Myp.

Upon the arrival of a query g, the query processing process
is parallelized. One thread uses method Mj,’s algorithms
and indexing structure to breakdown the query graph into
its features, and uses its index to produce a candidate set of
graphs, C'S(g), as usual. Additionally, I will obtain as many
of the intermediate and final results from method M’s execu-
tion as possible; e.g., it will obtain the features of the query
graph, to be compared to those stored in I (from previously-
executed queries). At this point, two separate threads will
be created: one will check whether the query graph is a
subgraph of previous query graphs and the other will check
whether it is a supergraph of previous query graphs. These
cases yield different opportunities for optimization and are
discussed separately below.

In the following we proceed to describe the function of
each component of the {GQ framework and how it is all
brought together. For the formal proofs of correctness that
follow, for simplicity, we make the following assumptions.

Assumptions. The iGQ index components, L5, and Isuper
work correctly. That is:

and

G € Lsuper(9) = g2 G

(2)

We will prove that these assumptions hold in sections 6.1
and 6.2.

4.2.1 The Subgraph Case: Iy,

This case occurs when a new query g is a subgraph of a
previous query GG. When G was executed by the system, the
Is4p component of iGQ indexed G’s features. Additionally,
1GQ stored the results computed by M, for G.

Fig. 4 depicts an example for the subgraph case of iGQ.
A new query g is “sent” to method M,;’s graph index, pro-
ducing a candidate set, C'S(g), which in this case contains
the four graphs {g1, g2, 93, g4}. Similarly, g is “sent” to the
1GQ subgraph component, I5,p, from where it is determined
that there exists a previous query G, such that g C G. iGQ
then retrieves the answer set, Answer(G) (previously pro-
duced by method M, and indexed by Isus); in this case,
Answer(G) = {g1, g2}. The reasoning then proceeds as
follows. Consider graph g1 € C'S(g). Since from Iy it has
been concluded that g C G and from the answer set of G we
know that G C ¢, it necessarily follows that g C g;. Simi-
larly, we conclude that g C g2. Hence, there is no point in
testing g for subgraph isomorphism against g1 or gz, as the
answer is already known. Therefore, one can safely subtract
graphs g1, g2 from M,,p’s candidate set, and test only the
remaining graphs (reducing the number of subgraph isomor-
phism tests in this example by 50%). After the verification
stage, g1, g2 are added to the final answer set.

In the general case, g may be a subgraph of multiple previ-
ous query graphs G; in I;,5. Following the above reasoning,
we can safely remove from CS(g) all graphs appearing in
the answer sets of all query graphs G, as they are bound to
be supergraphs of g; that is, the set of graphs submitted by
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Answer(g) = Answer U {g1, g2}
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index (SUB)

iGQ for subgraph isomorphism testing is given by:
CSsun(g) =CS(g) \ U Answer(G;)

Gi€lsup(9)

®3)

Finally, if Answersus(g) is the subset of graphs in C'Ssus(g)
verified to be containing g through subgraph isomorphism
testing, the final answer set for query g will be:

U Answer(G;) (4)

Gi€lsup(9)

Answer(g) = Answersuy(g) U

LEMMA 1. The itGQ answer in the subgraph case does not
contain false positives.

PRrROOF. Assume that a false positive was produced by
1GQ; particularly, consider the first ever false positive pro-
duced by IL,u, ie., for some query g, 3Grp such that g ¢
Grp and Grp € Answer(g). Note that Grpp cannot be in
Answersyp(g), as the latter contains only those graphs from
CSsub(g) that have been verified to be supergraphs of g af-
ter passing the subgraph subgraph isomorphism test, and
hence g 1¢_ Grp = Grp & Answersy(g). Therefore, by
formula (4), Grp € Answer(g) = 3G such that G € Lsus(g)
and Grp € Answer(G). But (by formula (1)) G € L (g)
= g C G, and Grp € Answer(G) = G C Gpp. Thus
g C Grp (a contradiction). []

LEMMA 2. iGQ in the subgraph case does mot introduce
false negatives.

PRrROOF. Assume that a false negative was produced by
1GQ; particularly, consider the first ever false negative pro-
duced by Isyus, i.e., for some query g, 3Grn such that g C
Grn and Grn ¢ Answer(g). As method M,y is assumed
to be correct, it cannot produce any false negatives when
processing query g, hence ¢ C Gpy = Grpn € CS(g).
Then, the only possibility for error is that Gy was removed
using formula (3); i.e., Grn ¢ CSsub(g). That implies that
3G such that G € Liuw(g) and Grpn € Answer(G). But
then, by formula (4), Grny will be added to Answers,y(g)
and thus Grny € Answer(g) (a contradiction). [J

THEOREM 1. The iGQ answer in the subgraph case of
query processing s correct.

PROOF. There are only two possibilities for error; iGQ
can produce false negatives or false positives. The theorem
then follows straightforwardly from Lemmas 1 and 2. []

4.2.2  The Supergraph Case: Isyper

This case occurs when a new query g is a supergraph of
a previous query G. Fig. 5 depicts an example for the su-
pergraph case of iGQ. Again, the subgraph query processing
method M, produces a candidate set, C'S(g) that, say, con-
tains four graphs {g1, g2, g3, g4}. Running g through Isyper,
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it is determined that there exists a previous query graph G
such that G C g. Also Lsuper supplies the stored answer set
for G, Answer(G) = {g1,920}-

The reasoning then proceeds as follows. Consider graph
g2 € CS(g). We know from Isyper that g2 ¢ Answer(G).
Now, if g C g2 were to indeed be true, since G C g, then it
must also hold that G C go; that is, Answer(G) would have
to contain g2 as well, which is a contradiction. Therefore,
it is safe to conclude that g € g2 and thus g2 can be safely
removed from CS(g). Similarly, we can also safely remove
graphs g3, g4 from CS(g), reducing in this case the number
of required subgraph isomorphism tests by 75%. Thus, only
g1 needs to be isomorphism-tested in this example.

In the general case, g may be a supergraph of multiple
previous query graphs G; in Isyuper. By the above reasoning,
only those graphs appearing in the answer sets of all queries
G; may actually be supergraphs of g; thus the set of graphs
submitted by iGQ for subgraph isomorphism testing is:

M

Gi€lsuper (9)

Cssuper(g) = C’S(g) N A’I’LS'LU@T(Gi)

()

The final answer produced for query g by iGQ, Answer(g),
will be the subset of graphs in C'Ssuper(g) that have been
verified by the subgraph isomorphism test.

LEMMA 3. The iGQ answer in the supergraph case does
not contain false positives.

ProOF. This trivially follows by construction as all graphs
in Answer(g) have passed through subgraph isomorphism
testing at the final stage of processing. []

LEMMA 4. The iGQ answer in the supergraph case does
not introduce false negatives.

PROOF. Assume false negatives are possible and consider
the first ever false negative produced by Isyper; i-€., for some
query g, 3Gpn such that ¢ C Gpy and Grny ¢ Answer(g).
Method M., does not produce in its candidate set any false
negatives (as will be formally proven shortly), hence Grn €
CS(g). Then, the only possibility for error is for iGQ to
have removed graph Grn from CSsuper(g) with formula (5).
This implies that 3G such that G € Isuper(9) and Grn ¢
Answer(G). But since G € Lsuper(g), by equation (2), G C
g, and then ¢ C Gry = G C Gpn = Grn € Answer(Q)
(a contradiction). [

THEOREM 2. The iGQ answer in the supergraph case of
query processing is correct.

PRrROOF. There are only two possibilities for error; iGQ
can produce false negatives or false positives. The theorem
then follows straightforwardly from Lemmas 3 and 4. []



4.3 iGQ and Optimal Performance

There are two special cases that warrant further emphasis,
since they introduce the greatest possible benefits.

First, note that iGQ can easily recognize the case where
a new query, g, is exactly the same as a previous query con-
tained in I. Specifically, this holds when 3G € I such that
g C Gorg DG, and g and G have the same number of
nodes and edges. When this holds, since I stores the re-
sult for GG, we can return directly and completely avoid the
subgraph isomorphism testing as the actual result for g is
known! As the subgraph isomorphism test dominates the
query execution time, this is expected to be a large perfor-
mance improvement.

Second, consider the supergraph part of iGQ. If 3G €
Tsuper(g) such that G C g and Answer(G) = 0, then we can
completely omit the verification stage again: If there were a
dataset graph G’ such that g C G’, since G C g we would
conclude that G C G’, which necessarily implies that G’ €
Answer(G), which contradicts the fact that Answer(G) =
(). Thus, no such graph G’ can exist and it is safe to stop
query processing at this stage.

4.4 iGQ and Supergraph Query Processing

As mentioned earlier, iGQ can expedite both subgraph
and supergraph query processing. In the latter case, the
components of iGQ (Lsub, Isuper) remain unchanged, but
the handling of the return answer sets is the exact inverse
of what happens for subgraph queries. Briefly, given a su-
pergraph query processing method Myper and a supergraph
query g, the union of the answer sets of graphs in Lsuper(g)
are removed from CSsuper(g) and added to Answerguper(g)
to produce the final answer, and the graphs not appearing
in the intersection of the answer sets of graphs in Is.(g) are
completely subtracted from CSs,p(g). Also, the first opti-
mal case mentioned above still holds, but the second opti-
mal case is inversed with the processing terminating when
3G € L (g) such that Answer(G) = (. The intuition be-
hind this design and the proof of correctness of iGQ for
supergraph query processing, follow the same reasoning as
above and are omitted for space reasons. The elegance af-
forded by the double use of {GQ is unique.

5. iGQ INDEX SPACE MANAGEMENT

As queries arrive continuously and the space to store I is
finite, :GQ requires methods for (i) efficiently handling this
space and (ii) ensuring that it is best utilized, keeping those
query graphs that increase its performance impact.

5.1 iGQ Graph Replacement Policy

Our replacement policy differs fundamentally from stan-
dard replacement policies: Unlike traditional cache replace-
ment, whereby replacing a page or a file block saves one
10, different graphs in I bring about different benefits, as is
shown below. We identify three key principles.

Increase the use of iGQ index. 1 should contain popular

graphs; this is typical of all replacement algorithms. We
define the popularity of a graph g as P(g) = Z((Z)), where

H(g) is the number of times a graph g € T has been found
to be a subgraph or supergraph of query graphs (hit), and
M (g) is the total number of all queries processed since g was
added to the iGQ index. In essence, this models the fraction
of queries affected over time by ¢ being in I.
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Reduce the number of subgraph isomorphism tests.
Ideal graphs for 1 are graphs that bring about the great-
est possible reductions in the number of executed subgraph
isomorphism tests. Let R(g) be the total number of graphs
removed from the candidate sets of incoming queries because
of g being in I. Then this component is computed as g((z 3 -
the per-hit average number of subgraph isomorphism tests
alleviated by g.

Reduce the cost of each subgraph isomorphism test.
A graph g € I is more desirable if it helps avoid subgraph
isomorphism tests on the biggest graphs from M’s C'S. This
is so since we also wish to remove from CS graphs with
expensive subgraph isomorphism tests. We denote by C(g)
the total cost of the subgraph subgraph isomorphism tests
alleviated as a result of g being in . In order to estimate this
value, we extend the asymptotic complexity analysis of [8] to
the case of subgraph isomorphism. Specifically, given graphs
with L labels, graph g’ with n nodes, and graph G; with
N; > n nodes, the cost c(g’, G;) of subgraph isomorphism of
g’ against G is given by:

o9, Gi) = T v
C(g) is then computed as the sum over all ¢(g’, G;), for all

g’ whose C'S(g’) was reduced by removing G; as a result of

C(g)
R(g)

g being in [, and
alleviated test.

Ideal graphs for I are those that could help future queries
as much as possible. To quantify such a contribution, we
introduce the notion of graph utility, U(g), defined as:

U(9) = 75 X (5 X 7 = w1

That is, the utility of a graph g in {GQ is equal to the
probability of g being used for an incoming query (i.e., be-
ing hit), times the average savings in number of subgraph
isomorphism tests per such hit, times the average cost for a
single subgraph isomorphism test. The replacement policy
is then based on this, with the graph with the smallest U(g)
being evicted.

5.2 iGQ Index Maintenance Policy

For all graphs in I we maintain the metadata mentioned
above (i.e., C(g),M(g)). Additionally, we store the actual
query graphs that are indexed by I in a separate store coined
Igraphs. To facilitate index updates without interfering with
query processing performance, we employ the concepts of
query window size, W, and cache size,C, with W < C.
As new graph queries arrive, they are processed as outlined
above, update the metadata for graphs in I, and are inserted
into a temporary storage Iiemp. When W new queries have
been processed, we consult the metadata to locate the W
graphs in [ with the lowest utility values. The graph data
for those graphs is removed from Igrqpns and replaced by the
graphs in l¢emp. The latter is then emptied, and a “shadow”
index, Ishadow, is built over graphs in Igrqpns. Incoming
queries keep being served by I and updating its metadata.
When the shadow indexing is over, Ishadow replaces I (with
a pointer swap). Finally, metadata for graphs removed from
I is also removed from the metadata store (C'(g), M(g)).

gives the average cost reduction per

6. iGQALGORITHMS AND STRUCTURES

The proofs of correctness provided by the previous section,
assume that Iy, and Isyper provide correct results (recall
formulas (1) and (2)). We shall now discuss the associated
mechanisms and prove that they hold.



Algorithm 1 The Supergraph Index in iGQ

Algorithm 2 Supergraph Query Processing in iGQ

: Input: Set Q of (previous) queries g1,92,.-.,9n
Output: Supergraph index of previous queries Lsyper

Initialize Isyper to an empty TRIE
for all g; € Q do
Extract all features of g; and insert them in set F'(g;)
NF[g:] = |F(g:)l
for all features f € F(g;) do
o = number of occurrences of f in g;
HS“PCT'insert(.ﬁ {917 O})
end for
: end for
: return Lyper

6.1 Finding Supergraphs in L.,

This case represents a microcosm of our original problem,
where instead of indexing and querying dataset graphs, we
index and query previous query graphs. Hence, any ap-
proach from the related works can be adapted for this pur-
pose. Actually, as i{GQ can complement any existing ap-
proach, Mg,,, we can utilize M,,’s method for subgraph
query processing for the subgraph case of iGQ, or any other
method appropriate for iGQ’s special characteristics (i.e.,
relatively small set of small graphs). Note that the assumed
correct method M, precludes false negatives and subgraph
isomorphism testing of all candidates precludes false posi-
tives. Hence, formula (1)’s assumption is trivially satisfied.

6.2 Finding Subgraphs in I,

The problem of supergraph query processing has also re-
ceived some attention (e.g., in [5, 44, 46, 6, 51]). In principle,
any of these algorithms can be utilized for the task at hand
within {GQ. However, we choose to propose a new approach,
which is efficient yet simple and avoids the complexities and
overheads involved in the above general approaches. The
point is that we want a method for supergraph query pro-
cessing that can easily fit within the framework of i{GQ and
perform both subgraph and supergraph query indexing and
processing. Algorithm 1 shows how Iyper is created. Briefly,
Isuper is a trie, storing features of queries. For each feature f
it stores a pair {gi, o} for each graph g; in which f appears,
where o is its number of occurrences in g;. For each g; it also
stores the number of distinct features (INF'[g;]) it contains.

Algorithm 2 illustrates how Lgyper identifies candidates C'S
that are potential subgraphs of query g. The idea is to
find those graphs that contain only features included in the
query graph g (lines 19-22; the check for count(g;) on line
20, ensures that all individual features of g; are contained
in g), and where for each such graph g; a feature f occurs
at most as many times as f occurs in g (line 12). Last, the
graphs in C'S are isomorphically tested to verify that g; C g.

It is straightforward to see that no false negatives can exist
in CS. Assume there is a false negative g; such that g; C g
and g; ¢ CS. Since g; C g, any feature f in g; appears no
more times than f appears in g, thus g; would be added to G
on every execution of line 12. As g; C g, all of g;’s features
must appear in g. Thus, g; would pass the if-clause at line
20 and be added to C'S (contradiction). Moreover, subgraph
isomorphism testing of all members of C'S precludes false
positives. Hence, formula (2)’s assumption holds.
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Input: Query graph g and Lsuper
Output: Candidate set C'S of potential subgraphs of g

Initialize multiset G = )
Extract all features of query graph g, F(g)
for all features f € F(g) do

O[f, g] = number of occurrences of f in g
end for
for all features f € F(g) do

if f € Lsuper then

for all {g;,0} € Lsuper.get(f) do
if 0 < O[f, g] then
G.insert(g;)
end if
end for

end if
: end for
: for all graphs g, € G do
count(g;) = number of occurrences of g; in G
if count(g;) == NF|[g;] then

CS.add(g:)
end if
: end for
: return CS

6.3 iGQ System Operation

Fig. 6 depicts the complete iGQ system operation when
used to expedite a subgraph query processing method M.
Please keep in mind, though, that iGQ can be integrated
with any subgraph and/or supergraph querying method.
Given a new subgraph query g:

1. The query is sent to three separate processing threads

in parallel and also stored in the query window.

2. In the first thread, My, uses its Dataset Graph Index
to filter the dataset graphs and produce the candidate
set CS(g), as usual.

3. The remaining two threads perform filtering along the
subgraph (section 4.2.1) and supergraph path (section
4.2.2). Their results are combined to prune CS(g),
based on formulae (3) and (5).

4. The resulting candidate set, C'S;gq(g), undergoes sub-
graph isomorphism testing to produce Ansigq(g).

5. Since this is for a subgraph query, the graphs pruned
during processing along the subgraph path in step 3
are added to Ansigq(g) to produce the final answer
set, Answer(g) (see formula (4)).

6. Metadata maintained throughout the processing of g,
including Answer(g) and its subgraphs/supergraphs
detected during step 3, are added to the metadata
store, Stat(iGQ_Graph).

7. If the query window is full, the system uses the above
metadata to select appropriate cached graphs to evict.
Said graphs are replaced by the graphs in the window.

8. Finally, the ¢GQ index is updated to reflect the new
contents of the cache (section 5.2 details the mainte-
nance of the iGQ index).

7. PERFORMANCE EVALUATION

We have implemented the {GQ algorithms and report on
experiments evaluating its performance on the savings of
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Figure 6: Operation of :GQ on Top of a Subgraph Query Processing Method M

subgraph query processing time (supergraph query process-
ing time is omitted for space reason) and on the number of
subgraph isomorphism tests.

7.1 Experimental Setup

Experiments were run on a Dell R920 system (4 Intel
Xeon(R) CPUs (15 cores each), 512GB RAM, 1TB disk),
and on a cluster of four Dell R720’s (each with 2 Intel
Xeon(R) CPUs (8 cores each), 64GB RAM, 1TB disk).

Algorithms. In addition to our implementation of iGQ
query processing, we also secured access to implementations
of three recent high performing subgraph query processing
methods, GraphGrepSX|[3] (GGSX), Grapes[15], and CT-
Index[22]. In addition to their competitive performance,
these three methods represent interesting design decisions.
GGSX indexes paths (up to a certain maximum length,
equal to 4 in these experiments) and uses the VF2 subgraph
isomorphism algorithm for its verification stage. Grapes,
like GGSX, also indexes paths (of up to length of 4), but
utilizes location information in the filtering stage to expe-
dite the verification stage, essentially focusing only on con-
nected components of the dataset graphs that may contain
the query graph. CT-Index indexes trees (of maximum size
6), and cycles (of maximum size 8) in hash-based bitmap
structures (4096-bit wide), and uses a modified VF2 for its
verification stage.

The implementations for Grapes and GGSX were obtained
from the corresponding project web sites[15, 3]. For Grapes,
we present two alternatives, Grapes and Grapes(6), which
use 1 and 6 threads respectively. For fairness, we altered
the code of Grapes so to stop query processing when the
first match was found, instead of looking for all matches of
a query within each stored graph. For CT-Index we ob-
tained the JAR file from one of the authors, which we then
reverse-engineered to derive its code in Java. Subsequently,
we integrated the iGQ algorithms of Section 4.2.1 within
Grapes, CT-Index, and GGSX, yielding three different ver-
sions of 1GQ, denoted as iGQ_Grapes, iGQ_CT-Index, and
1GQ_GGSX. In this way, (i) we validate our claim that iGQ
can be incorporated into existing approaches, and (ii) we
show that it can introduce significant performance gains dur-
ing subgraph query processing of any of these approaches.

Datasets. We have employed three real-world datasets
and one synthetic dataset with different characteristics, out-
lined in Table 1. AIDS is the Antiviral Screen Dataset of
the National Cancer Institute, containing topological struc-
tures of molecules [30]. PDBS[19] is a dataset of graphs
representing DNA, RNA and proteins. As AIDS and PDBS
contain typical but relatively sparse graphs, we have per-
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unique | graphs | average | num. nodes per graph num. edges per graph
dataset vertex in node
labels | dataset | degree avg | std.dev | max avg std.dev | max
AIDS 62 40,000 2.09 45 22 245 47 23 250
PDBS 10 600 2.13 2,939 3,217 16,431 | 3,064 3,264 16,781
PPT 46 20 9.23 4,943 2,717 10,186 | 26,667 | 26,361 | 89,674
Synthetic 20 1,000 19.52 892 417 7,135 | 7,991 5 8,007

Table 1: Characteristics of Datasets

formed further experiments on dense datasets, including the
PPI dataset and a synthetic dataset. PPI[15] models large
and dense protein interaction networks and consists of 20
graphs. We also used the generator provided by [7] to cre-
ate a much larger number (1,000) of much denser graphs.

Query Workloads. Unfortunately, despite the availabil-
ity of graph datasets, the community does not enjoy well es-
tablished benchmarks and/or real-world query logs for these
datasets. So all related works synthesize queries derived
from components of the dataset graphs. We follow this es-
tablished principle for generating our workloads, whereby
queries are generated from the original dataset graphs as
follows. There are 3 key probability distributions to con-
sider here. The first governs how a graph is selected from
the dataset graphs. The second governs how a node is se-
lected within this graph. Given these, we produce 4 query
workloads: uni—uni, uni—zipf, zipf —uni, and zipf —zipf,
with, e.g., zipf — uni denoting that dataset graphs have a
popularity (probability of being selected) following a Zipf
distribution, while nodes within the selected graph have a
popularity drawn from a uniform distribution. The proba-
bility density function of the Zipf distribution is given by:
p(z) = %, where ( is the Riemann Zeta function[31]. The
default value for o was 1.4 — we have also used o = 1.1 rep-
resenting a much smaller skew and o = 2.0 representing a
stronger skew (as a reference point, web page popularities
follow a Zipf with a = 2.4 [31]). The third governs the size
of each graph query: query sizes are uniformly at random
selected from 4, 8, 12, 16, 20 edges. Once a graph and a
node within this graph have been selected, we then perform
a BFS traversal of the latter’s neighborhood, with unvis-
ited edges of each traversed node included in the generated
graph, until the desired query size is reached.

For AIDS and PDBS, we ran 3,000 queries for each exper-
iment. The first W of these queries were used to warm-up
the index. We then used the remaining queries to measure
the times and candidate set sizes with and without iGQ for
each algorithm. By default we use a cache size C = 500 and a
batch window (and warm-up set) size W = 100 queries — we
have also used C = 1000, W = 200 and C = 1500, W = 300
with a 5,000-query workload to test cache size impact. We
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further tested iGQ against PPI and the synthetic dataset,
in order to examine its performance under larger and denser
graphs. In these cases, queries take 1-2 orders of magnitude
more time to execute, hence for practical reasons we reduced
the query workload to 500 queries. The batch window (and
warm-up set) size were set to W = 20 queries, with cache
sizes of C = 100, 200, 300 and Zipf skew o = 1.4,2.0,2.4.

We report the speedup (reduction) achieved by iGQ, de-
fined as the ratio of the average performance of the tradi-
tional method M over the average performance of iGQ-M,
for the number of subgraph isomorphism tests and the query
processing time.

7.2 Filtering Power Speedup

We first examine the filtering power, reflecting the speedup
in the number of subgraph isomorphism tests performed.
This metric facilitates a qualitative analysis of performance,
independent of implementation and system details. Fig. 7
and 8 depict results for the AIDS and PDBS datasets respec-
tively, across all four query workloads. The reduction in the
number of subgraph isomorphism tests is evident (speedups
of 5x to 11x). Fig. 9 shows how Zipf skew « affects this met-
ric for the PDBS dataset, using one of the fastest methods
(Grapes(6)). Results for the AIDS dataset and the other
algorithms are similar and omitted for space reasons. As
expected, with more skewness come increased benefits by
1GQ.

Fig. 10 focuses on speedup across queries grouped by size
(e.g., Q4 groups queries with 4 edges). As iGQ does not
maintain separate caches per query size, the various query
groups compete for the same space. Thus, some of them may
seem to exhibit a lower speedup for larger cache sizes (e.g.,
the speedup of Q16 drops slightly when going from C =200 to
300); however, the speedup for the whole workload exhibited
a steady rise (2.18, 2.45 and 2.53 for C= 100, 200 and 300
respectively; figure omitted due to space reasons). Last, Fig.
11 depicts the results for the synthetic dataset.

7.3 Query Processing Speedup

Fig. 12 and 13 show the query processing time speedup for
the AIDS/PDBS datasets. Interestingly, juxtaposing Fig.
12 against Fig. 7 (and Fig. 13 against Fig. 8) we see that
reductions in the number of subgraph isomorphism tests do
not directly translate into equal gains in query processing
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times. This is due to some large graphs in the candidate sets
not being pruned away by the current index contents. We
would expect this to be ameliorated as cache sizes increase.
Indeed Fig. 14 shows this for Grapes(6) as cache size varies
from 500 to 1,000 and 1,500 queries. Results for other cases
are similar and omitted for space reasons.

Fig. 15 shows the impact of Zipf skew « on query pro-
cessing speedup for the Grapes(6) algorithms on the PDBS
dataset. Again, with more skewness come greater benefits,
up to impressive levels. Interestingly, juxtaposing Fig. 15
against Fig. 9 tells a different story. We see that reductions
in the number of subgraph isomorphism tests translate into
higher gains in query processing times. This is because of
the replacement algorithm that maintains in the index those
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query graphs g with the higher utility; i.e., which help to
avoid expensive subgraph isomorphism tests against graphs
in the candidate sets. Fig. 16 and Fig. 17 show the speedup
for the query processing time, corresponding to Fig. 10 and
Fig. 11, respectively.

Last, Fig. 18 plots the index size for iGQ for C' =500 graph
queries, versus that of the three algorithms we’ve considered
so far, for the AIDS dataset. In the default configurations,
iGQ adds a negligible space overhead on top of the base
indexes (less than 1%). In addition to the default config-
urations for said algorithms, Fig. 18 also plots the index
sizes for the immediately larger configurations (i.e., for max
path length of 5 for Grapes and GGSX, and for trees of
size 7, cycles of size 9, and 8192 bits per bitmap for CT-
Index). Note that this minimal increase in the feature size
results in almost double the space requirements for the base
indexes. On the other hand, these larger indexes bring a per-
formance improvement of less than 10% in all cases (figure
omitted due to space reasons), which is virtually negligible
when compared to the gains provided by iGQ.

Overall, iGQ is shown to introduce significant to impres-
sive performance gains, against the state of the art methods
in the literature. We have actually conducted a detailed per-
formance evaluation of most related algorithms[21] and se-
lected GGSX, Grapes(1), Grapes(6), and CT-Index as those
showing the best performance. Regardless of the method,
when incorporating iGQ with it, large performance gains
ensue. These gains are robust and are manifested in all four
different query workloads we have presented and, most im-
portantly, with a minimal space overhead.

8. CONCLUSIONS

We have presented a novel perspective and solution to
the graph querying problem, departing from related work
in three ways: First, it constructs query indexes, as op-
posed to simply relying on dataset graph indexes. Second,
it maintains the knowledge the system produced when exe-
cuting previous queries. Third, it can be used to expedite
both subgraph and supergraph queries. We showed how
these can help improve the performance of future queries
and provided formal proof of correctness. The proposed iGQ
framework consists of (i) a subgraph index, (ii) a supergraph
index, (iii) a method for efficiently maintaining the index,
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including a graph replacement policy, and (iv) any popular
method for indexing and processing subgraph or supergraph
queries. We incorporated 1GQ within 3 popular methods
from related work, showcasing its wide applicability. Last,
our performance evaluation on both real-world and synthetic
datasets with various query workloads showed iGQ’s signif-
icant performance gains and negligible space overhead.
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ABSTRACT

Enterprises and researchers often have datasets that can be
represented as graphs (e.g. social networks). The owner
of a large graph may want to scale it down to a smaller
version, e.g. for application development. On the other
hand, the owner of a small graph may want to scale it up to
a larger version, e.g. to test system scalability. This paper
investigates the Graph Scaling Problem (GSP):

Given a directed graph G and positive integers n
and m, generate a similar directed graph G with
n nodes and m edges.

This paper presents a graph scaling algorithm GSCALER
for GSP. Analogous to DNA shotgun sequencing, GSCALER,
decomposes G into small pieces, scales them, then uses the
scaled pieces to construct G. This construction is based on
the indegree/outdegree correlation of nodes and edges.

Extensive tests with real graphs show that GSCALER is
scalable and, for many graph properties, it generates a G
that has greater similarity to G than other state-of-the-art
solutions, like Stochastic Kronecker Graph and UpSizeR.

1. INTRODUCTION

The emergence of online social networks, like Facebook
and Twitter, has attracted considerable research. However,
their enormous sizes make any experiment on the entire
graph impractical. It is therefore often necessary to obtain
a smaller version of the graph for experiments. We call this
the scaling down problem.

At the other end of the scale, a new social network service
provider may have a small graph, but wants to test the scal-
ability of their system. They may therefore want to have
a larger (and necessarily) synthetic version of their current
empirical graph. We call this the scaling up problem.

These two problems arise in other contexts as well, e.g.
where the graph represents router topology or web links.
They illustrate the Graph Scaling Problem (GSP):
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Given a directed graph G and positive integers n
and m, generate a similar directed graph G with
n nodes and m edges.

There are many possible ways to define “similarity”, de-
pending on the context, but we believe the definitions must
all be in terms of graph properties, like indegree distribution,
clustering coefficient, effective diameter, etc.

However, it is impossible for G and G to have exactly
the same properties; e.g. if G and G have the same degree
distributions, then the larger graph must necessarily have
smaller density. One must therefore select the graph prop-
erties that are to be preserved when scaling. GSP facilitates
this selection by allowing n and m to be specified separately.

Related work in the literature have objectives that are
different from GSP. There are many papers on graph sam-
pling, such as gSH, BFS, forest fire and frontier sampling
[1,3,18,21,23,30,35]. They can be viewed as examples of
scaling down, since they produce a G that is a subgraph of
g; this can have data protection issues that do not arise if
G is synthetic. Moreover, graph sampling cannot generate
a G that is larger than G.

Other related work use generative models that can pro-
duce a G that is smaller or larger than G. For example, an
Erdds-Rényi model generates a graph of any size n with a
specified edge probability p [9]; Chung and Lu’s model gen-
erates graphs with a specified degree distribution [4]; and
Stochastic Kronecker Graphs [19,20] are generated from an
initiator by applying Kronecker product. However, these do
not allow a choice of both n and m.

In contrast, we propose GSCALER, a solution to GSP that
deviates from previous work by using a technique that is
analogous to DNA shotgun sequencing [31]. The latter
breaks a long DNA strand into smaller ones that are easier
to sequence, then use these smaller sequences to reconstruct
the sequence in the original strand.

Similarly, GSCALER (i) breaks the given G into two sets
Sin and Sour of small pieces, (ii) scales them by size to Sin
and Soye; (ill) merges these pieces to give a set Sy of larger
pieces, then (iv) assembles G from the pieces in Shi.

This paper makes the following contributions:

1. We present GSCALER, an algorithm for solving GSP.

2. We prove that GSCALER (i) does not generate multiple
edges between two nodes, and (ii) has small degree

distribution error even when the average degree of G
differs from that of G.

10.5441/002/edbt .2016.08
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3. We present experiments that compare GSCALER to 4
other techniques, using 2 real graphs and 7 properties.

‘We begin by surveying related work in Sec. 2. We describe
GSCALER in Sec. 3, and prove that it does not generate mul-
tiple edges between any two nodes. Sec. 4 reviews the graph
properties, state-of-the-art algorithms and datasets that are
used for comparison. Sec. 5 then proves that GSCALER has
small error, and presents the experimental comparison to
other algorithms. We discuss the choice of 7 and m in Sec. 6,
before Sec. 7 concludes with a summary.

2. RELATED WORK

The closest work in graph scaling from the literature are
graph sampling algorithms and generative models.

For graph sampling, the main approaches are node-based
sampling, edge-based sampling and traversal-based sampling
which produce a subgraph of the original graph G.

Nod~e—based sampling selects a set of nodes Vi, from G,
then G is just the induced graph of this set of nodes Vys.
Authors in  [32] pointed out that node-based sampling may
not preserve a power law degree distribution because of bias
induced by high degree nodes.

Similarly, traditional edge-based sampling selects edges
randomly. However, this might result in a sparsely con-
nected graph G [21]. Some other edge-based sampling vari-
ants [1,16,21] sample the graph using edge selection/deletion
and combination with node selection/deletion.

Most graph sampling techniques focus on traversal-based
sampling [14]. Breadth first sampling (BFS) [3,18,35] and
random walk sampling (RW) [12, 30] are the most basic
and well-known algorithms. Similar to BFS, snow ball sam-

pling [13] (SBS) is widely used in sociology studies. Metropolis-

Hastings Random Walk (MHRW) [12,27] is a Markov-Chain
Monte Carlo algorithm which samples unbiased subgraph
in undirected social graphs. However, MHRW suffers from

Notation Description

G(V,E) original graph

G(V,E) scaled graph

n/n number of nodes in G/G

m/m number of edges in G/G

fin/ fin G/ G’s indegree distribution

Sout/ fout G/ G graph’s outdegree distribution

Svi/ foi G/C:Y graph’s bidegree distribution

Seorr/ feorr | G/ G graph’s edge correlation distribution

Sin/Sin set of pieces with incoming edges in G/CNTY

Sout/Sout | set of pieces with outgoing edges in G/G

Sbi set of pieces with incoming and outgoing edges in G

cta count function of the pieces in set A, A can be
Sin, E’; and so on.

I(a")/O(a) total number of available incoming/outgoing edges
for nodes with bidegree o

D(f, f) KS-D statistics of between f and f

Table 1: Notation

recursively multiplies the graph initiator K; through Kro-
necker product, which results in a self-similar graph. SKG
captures most social network properties, such as small di-
ameter and power law degree distribution.

Scaling problem appears in other fields as well. For ex-

ample, UpSizeR is a pioneer tool which synthetically scales
a relational dataset [33]. UpSizeR’s focus is on preserving
correlation among tuples from multiple tables. In relational
terms, GSP requires preservation of correlation among tu-
ples in a single table (for the edges).

For Resource Description Framework (RDF), the AO bench-
mark [8] is the first tool that scales down an RDF dataset.
Later, RBench [29] is proposed to both scale down and up.

sample-rejection problem. Later, rejection-controlled Metropolis- However, these two benchmarks are evaluated with differ-

Hastings (RCMH) [26] is proposed to reduce the sample-
rejection ratio.

Frontier sampling is a multi-dimensional random walk which

results in better estimators for some graph properties [30].
A probabilistic version of SBS, forest fire (F'F') [21,23] cap-
tures some important observations in real social networks,
e.g. small diameter.

Most traversal-based sampling requires random access to
a node’s neighbors, which might not be feasible for large
graphs (that cannot fit into memory). Hence, streaming
graph sampling algorithms are proposed, e.g. induced edge
sampling (ES-i) [2]. As mentioned previously, graph sam-
pling algorithms are limited to scaling down problem.

For generative models, the Erdés-Rényi model generates
a graph of any size n with a specified edge probability p [9].
There are variants of random models that generate graphs
with specific graph properties [4, 28], e.g. the Chung-Lu
model generates graphs with a specified degree distribution.

One group of generative models [5,6,11,17] employ the
strategy of preferential attachment. They obey a simple
rule: a new node u attaches to the graph at each time step,
and adds an edge e, to an existing node v with a probability
p proportional to the degree of the node v.

Another type of generative models is recursive matrix
model [7,19,20], which recursively multiplies the adjacency

matrix. For example, Stochastic Kronecker Graph (SKG) [20]

ent metrics (dataset coherence, relationship specialty, literal
diversity), so it would be unfair to use them for comparison.

3. GRAPH SCALER (GscaLkr)

Given a graph G(V, E), |V| and |E| may need to scale by
different factors to maintain similarity for certain properties
(e.g. density). Hence, GSCALER allows the user to specify
the target n and m. As shown in Fig.1, the scaling has the
following 4 steps:

G DECOMPOS§in \\C\ SCALING \‘\%\\/ /’5—1;;
Sout NV OV Sour

<
”E :
" — 28
. m
G epce Db e g"
SYNTHESIS >< %

Figure 1: The 4 steps in Gscaler.

(GSCALER first decomposes G into 2 sets S;, and Sout. Sin
consists of pieces, where a piece is a node with its incoming
edges (minus the source nodes). Similarly, Sou: consists of



Algorithm 1: GSCALER(G, n, m)

Algorithm 2: SCALING(Sin, n, m)

1 Sin, Souts fois feorr = DECOMPOSE(G)

2 S;, = SCALING!(Sin, 71, )

3 Sout = SCALING (S,ut, 71, )

4 S,; = NODE_SYNTHESIS (Sin, Sout, foi)
5 G = EDGE_SYNTHESIS(Sy;, feorr)

pieces, where a piece is a node with its outgoing edges (minus
the target nodes). Each node in G generates 2 pieces, one
in S;» and one in Sout.

After that, GSCALER scales Si, and S,u: to get the scaled
sets of pieces Sin and d Sout with 7 nodes and m edges.

In node synthesis, Sm and S(;“t are used to form a set sz
of larger pieces. Each new piece has a node with incoming
edges (with no source nodes) and outgoing edges (with no
target nodes); it will generate one node in G.

The last step (edge synthesis) is to link pieces in Sy; which
finally results in G. Edge synthesis is similar to a jigsaw puz-
zle, where you want to fit the small pieces together. Algo. 1
summaries the workflow for GSCALER.

In the following, we will explain each step in detail, and
use a running example to show how G is scaled to Gin Fig.1.
As presented in Fig.l,n=3,n=6,m=3, m=1T1.

3.1 DECOMPOSE

This step is straightforward, and Fig. 1 shows the pieces
in S, and S,y from decomposing G.

3.2 SCALING

To simplify the explanation, we just use S;, for demon-
stration. Let N ={0,1,2,3,...}. We use the count function
ct to denote k pieces in A has property x:

cta(z) =k, ke N (1)

For example, ctg,, () = k means k pieces in S;, have inde-

gree x. For both S;, and Sy, the scaling process takes the
following three steps:

o As
A might not be an integer, we round-off Sin as follows:
(@) = [Az] with probability A, — | Az ]

T AL with probability [A,] — A
For example, if A, = 4.8, then with 0.8 probability,

ct~( ) = 5, and with 0.2 probability, ct v( ) = 4.
Hence, Eq.2 can be rewritten as

e node scaling. For indegree z, let A, = ctg,,, () X

Sin

(2)

Elctg— (2)] = cts,, (z) % (3)

Fig.2 shows the g:; and S,'O\u/t that we get after this scaling.

e node adjustment. Wit
(Eq.2), we may have |S,| # n. If so, |n —

With randomness in node scaling
|Sin|| nodes

VRN S eV V

Figure 2: 3;;, Sout after node scaling for G in Fig.1.
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1 node_scaling(Sin, 1)

2 node,adjustment(g';;, n, Sin)
/* ho/lo is the upper/lower bound where x

varies. By default, ho/lp should be the
highest/lowest degree in the graph. ho/lo
will be further extended if needed. t is the

edge difference threshold where the loop
stops. ct(x) refers to ctz— (x).

3 initialize h = ho,l = lo,t

5 while |} ct(z) x x —m| >t do

*/

6 if [>=h then
7 L l = lo; h = h,o;
8 if m >3 ct(x) x  then
9 if ct(1)>0 then
10 ct(l) — —; ct(h) + +;
11 L4 43 h— —;
12 else | + +;
13 else
14 if ct(h)>0 then
15 ct(l) + +; ct(h) — —;
16 I 4+ h——
17 | else h——;
18 adjust | Y ct(r) x © —m| edges

with random degree are added to or removed from 3::
For GG in Fig. 1, such adjustment is not needed.

edge adjustment. Next, the number of scaled edges
must equal to m, i.e. Y ctg

~(z) x z =m.
If 3, cts— (x) x © < 7, we increase the number of high
degree no&es and decrease the number of low degree
nodes. If 37 ctz—(x) x © > m, we decrease the num-
ber of high degreé nodes, and increase the number of low
degree nodes. The details are shown in Algo. 2.

In our running example, }° ctg—(z) x x =6 <7=m
Hence, we increase the number of high degree nodes (in-
degree=2), and decrease the number of low degree (inde-
gree=1) nodes. Thus, we have 1 node with indegree=2
and 5 nodes with indegree=1 for E; After the edge ad-
justment, the correct 3‘;, 5,’;; are shown in Fig. 1.

3.3 NODE SYNTHESIS

Now we havgv 3; and Sr'o\;, and we match 1 piece in 5‘;
to 1 piece in Soyu+ and merge them to give a larger piece.
This synthesis follows a bidegree distribution fp; : N? —
[0, 1], where fy;(d1,d2) = z means a fraction z of nodes have
bidegree (d1,d2). We say a node u has bidegree (di,d2) if
it has indegree=d; and outdegree=dsz. For G in Fig. 1, the
corresponding fp; is listed in Table 2.

GSCALER loops through fi;(di,d2) to synthesize nodes.
However, for a desired bidegree (d1,d2), E: and §;; may
not have the necessary pieces. Hence, a neighboring (di’, d2")
will be used. GSCALER uses a greedy heuristic that matches
pieces by minimizing the Manhattan distance

[(d1,d2) — (di',d2")||1 = |d1 — di'| + |d2 — do|.



Algorithm 3: NODE SYNTHESIS (S, Sout, foi)

1 while g:; and 5/';; not empty do
for sz’ (dl7 dg) do
while | fyi(d1,d2) x m| >0 do
(di',d2") + Manhattan(di,d2)
Sei ¢ (di’,d2")
update Sin, Sout; fbi(dl,dQ)

S AN

For Table 2, when GSCALER sees fyi(1,0) = %, it will first
generate 1 node with bidegree (1,0), and generate the other
node with bidegree (1,1). Next, GSCALER sees fui(1,1) = %,
two nodes both having bidegree (1,1) are generated. Lastly,
GSCALER sees fpi(1,2) = %, and two nodes with bidegree
(1,2), and (2,2) are generated.

Algo.3 summarizes the node synthesis. The synthesized
pieces for Sy; in G are shown in Fig. 1. Note that each piece
in Sbl maps to a node in G.

3.4 EDGE SYNTHESIS

Now we are almost done with the graph scaling, we only
need to link the edges. This is similar to a jigsaw puzzle,
we only need to make sure that each piece links to another
correctly. When linking the pieces fr9ln Spi, we link 1 out-
going edge from a source Egde vs € Sp; to 1 incoming edge
from a target node v; € Sp;. There are numerous ways of
joining the nodes. GSCALER synthesizes edges based on the
edge correlation function

fcorr : N2

where feorr(as,ar) = z means a fraction z of the edges
have a source node with bidegree as and a target node with
bidegree a;. The feorr for G is listed in Table 3.

Instead of synthesizing edges one by one based on feorr
directly, GSCALER undergoes Correlation Function Scaling

x N? = [0,1],

to scale feorr to fc—;:r for G. After a suitable ]7;:; is found,
GSCALER links edges based on feorr.

3.4.1 Correlation Function Scaling

GSCALER loops through fe.orr to produce )?C—;: For each
feorr(aus, o), it does the following Iterative Correlating:

Manhattan Minimization o

GSCALER chooses the closest (as’, at’) for feorr by minimiz-
ing ||as — a1 + || — @’ ||1. For feorr((1,2),(1,0)) =1/3
in Table 3, GSCALER chooses (1,2) for o’ and (1,0) for o’

Increment Probability Maximization
GSCALER increments feorr(ais’, a’) by p, where p needs to

be the largest number that satisfies the following constraints:

C1. Y2 < fcorr(a57 at)

C2. p< min{22) O‘S Olas’) M}, where I(a;') is the total num-
ber of available mcommg edges for nodes with bidegree o',
and O(as’) is the total number of available outgoing edges
for nodes with bidegree a;’. C2 guarantees incremented
number of edges does not exceed the total available number

of edges of source nodes and target nodes.

ctg— (ozg )xct (a 5]
Cs. ‘

p < — feorr(as’,a¢’). C3 ensures
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Table 2: Bidegree distribution for G in Fig. 1.
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Table 3: Edge Correlation for G in Fig.1.

the total number of edges from source nodes to target nodes
is not more than the maximal number of edges allowed from
source nodes to target nodes (no multiple edges).

For feorr((1,2),(1,0)) =1/3 in Table 3:

By C1, p <1/3.

By C2,p < min{ O((l 2)) 1a, 0))} min{ , 7} = %

((1 2))><6t ((1 0))
By C37 p < 7 fCO’FT(( )v( )) -
2L —0.

7
Hence, the incremental value is p = min{3, 1,1} = 1.
Value Update
Next, G/S_\C/ALER updates tﬁg/distributions:

o feorr(as’ ') < feorr(as’,ad) + p.

e O(as’) + O(as’) —p x m.

o I(ay) « I(a) —pxm.
For feorr((1,2),(1,0)) = 1/3 in Table 3, GSCALER gets
feorr((1,2),(1,0)) = 1/7, O((1,2)) = 1, I((1,0)) = 0. Ta-
ble 4 shows the resulting scaled fw”

After iterative correlating, and due to the no multiple
edges constraint, it is possible that Zf/c:;(asl,at’) < 1,
which we fix by random swapping. This swap first ran-
domly permutes the leftover bidegree from I and O without
violating C3, then takes one element with bidegree ;' from
O and one element with bidegree ~:' from I to swap with
generated feorr(as’, a’).

The idea is to break 1 edge from some source node vs with
bidegree as’ to some target node v; with bidegree o', and
form 2 new edges: 1 edge pointing from some node with
bidegree v’ to the other node with bidegree a;’, and 1 edge
pointing from some node with bidegree asl/g)/ some node

with bidegree ;'

o fcorr(as/,'yt/) — fcorv‘(asly’ytl) + %

o fcorr(73/7at/) — fcorr('}/s/,atl) + %

® f007'7'(a5,7at,) A fcov'r‘(as/70£t,) - %

—_—

. 1
One successful swap thus increases feorr by =

In the worst case (this did not happen in our experiments),

If C3 allows, then update fcorr as follows:

after random swaps, Em(as',at') < 1 might still hold.
We just leave feorr as it is, and we will introduce some

dummy nodes to link these (1— 3" feorr(as’, ') x 7 edges

fco'r’r‘((172)7 1,0
fcorT((171)7(1 2
feorr((1,1), (2

—

=

=
Il

fcorr((17 2)7 (1
fcow‘((27 2) 1

—
—
—
=
Il
NI N=

—
=
|
NN N= N=

Table 4: Edge Correlation for G in Fig. 1.
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Figure 3: Local linking of source and destination.

ffc;-:((zz), (2,2)) =

later in Sec.3.4.2.

3.4.2 Edge Linking

After fc—::r is generated, GSCALER links the p x m edges
locally for each J?c—::r(as',at’) = p. Note that some linking
steps are related, since a5’ might appear in a series of local
linking steps, such as

—

fcor'r‘(as/, (0771 /)

—

:pl, ceey fcorr(asl7atk/) :pk

Hence, one must make sure that after ]7;;(045'7 ay’) =p1is
done, feorr(as’,aty’) = D2, ..., feorr(as’, ar,") = pr are still
possible to be linked with no multiple edges. To emphasize
the importance of this step, we use the following example to
demonstrate both good and bad approaches.

In Fig.3, Spi and fcorr are presented at the top. Sy; has
2 pieces of bidegree (2,2), 2 pieces of bidegree (1,0), and 2
pieces of bidegree (0,1). The dotted edges represent newly
linked edges at each step. If an edge has no source or target
node attached, then it has not linked any two nodes yet.
Example A demonstrates a failed strategy, while example B
demon%tes a successful strategy.

For feorr((0,1),(2,2)) = %, it corresponds to local linking
step (@, which links two edges from (0,1) to (2,2). Both
examples link edges successfully. Example A links all 2 edges
to 1 target node with bidegree (2,2), whereas example B
links 2 edges to 2 different target nodes with bidegree (2, 2).

For fi;;((?, 2),(1,0)) = %, it corresponds to local linking
step @), which links 2 edges from (2,2) to (1,0). Both ex-
amples link edges successfully. Example A links all 2 edges
from 1 source node with bidegree (2,2). Example B links 2
edges from 2 different source nodes with bidegree (2,2).

For fc;;((Q, 2),(2,2)) = 1, it corresponds to local linking
step @), which links edges from (2,2) to (2,2). Example
A produces multiple edges, which is not allowed, whereas
example B successfully produces the graph.

Apart from the multiple edge constraint, the algorithm
must be efficient as well. The naive idea of back tracking
previous edge linking processes is obviously not practical
for large graphs. GSCALER not only generates G with no
multiple edges, it also links edges in linear time (see below).
(GSCALER first selects the proper source nodes Ls and target
nodes L, and then link the edges from L, to L.

Let So,7/Ta, be a queue of the source/target nodes with
bidegree as'/ay' from Sy:. For each 17;;(045'7at') = p,
GSCALER dequeue&enqueue p X m elements from S, s to
L, and dequeue&enqueue p x m elements from 7, to L.
More specifically, whenever one element is dequeued from
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Sa.'/Ta,, it will be put into Ls/L;, and then been enqueued
to Sa,’/Ta, again. For example, if we dequeue&enqueue
7 elements from Sp11y = [1,2,3,4,5] to Ls, then L, =
[1,2,3,4,5,1,2], and S(1,1) = [3,4,5,1,2]. In general,

pXm pXxXm pXm p><m
5,1 sl s 1) L1s
Ls ={u, yene s Ury Uy 7° ,...,ulsa },Vuiesasl
pXm p><m pxXm
1] e L /H [\T /\
Ly = {v, see s Ury N bV € Toy

(4)

where v¥ means v, appears k times in L, and k is called
the multiplicity of v.

rs=pxm mod |S,./|, e =pXm m0d|7’o‘t/|7

After L and L, are generated, GSCALER links edges from
Ls to L. Before that, we prove a theorem for Compound
Multiplicity Reduction; we later use this to show GSCALER
does not generate multiple edges between two nodes.

THEOREM 1. [Compound Multiplicity Reduction]. Given

multisets U= {u]"™, ... uBO LV ={u", ,v;jvgl 1,
D =U=[VI= ) m, (5)
u; €U v, €V
max my, — min m,,, <1, (6)
u; €U wel
and maxm,; — minm,, <1, (7)
v; €V v; €V :

there exists a multiset W = {wy|wy(0) € U, wk(l) eV}

such that U = U{wk )}, V= U{wk (8)

9)

MAaX May,, — MiN My, <1,

wp €W wy €W
Wi
Ywrg € W, my, < ‘ . 10
’ W — |—00 X 01~| ( )
Proor. Reorder U,V to
U= (U, UL, U2,y ey Uy Uhys - - - Uby ),
V:(vl,vg,...,vgl,vl,vg,...,vgl,vl,...).

Construct W as follows: Yw, € W, wi = (U(k),V(k)),
where U(k) means the kth element in U. Therefore, Eq.8
is satisfied. Further, for any w;, let
W, = ((uivw(ci))v (uivv(ci + 1))7 EERE) (ulvv(dl)))

be the sequence of all elements in W containing w; as first
coordinate. Consider V., = (V(¢),V(ei + 1),...,V(ds)),
a sequence of elements in V pairing with u;. Note Vy, is a
periodic sequence with period=0;. Thus, the maximum mul-
tiplicity in V,, is |" ”1‘1 and similarly for W,,,. Hence, the
maximum multlph(:lty of W is

[V, |
max My, = max [—>=—
wy, EW 1<i<8y 04

It is trivial that

(11)

Vi, | = My, Vi, 1 < < o (12)
Moreover, by Eq.6, we will have
Vu; € U,my,; < [| ‘] (13)
Hence, by Eq.11, Eq.12, Eq.13, we will have
[U]
_ Vil o Lol U]
Dnax muy, = max [—g] < [ =T xe ! (W)



Since |U| = |W]|, therefore
W]

wy, < , 1
11}]:2%‘%] m k — [90 X 01 _1 ( 5)
so Eq.10 holds. Similarly, the minimum multiplicity of W is
. . [V, | |W|
= — | >
aniy e = 0 L 2 g ) (19)

Eq.9 follows from Eq.15 and Eq.16. We call such a W a
compound multiset. []

For edge linking between Ls and L:, GSCALER links w1 €
L, to vy € Ly to form one edge (u1,v2) in L. (edge set). By
Eq.4, Ls/L; satisfies U/V in Theorem 1 respectively, and it
is easy to see that L. is the compound W in Theorem 1.

THEOREM 2. Given non-empty Ls(U) dequeued& enqueued
from S,,r, and non-empty L:(V) dequeued& enqueued from
Ta,' > the mazimum multiplicity for edge set Le(W) as de-
scribed in Theorem 1 is 1.

PrOOF. If |Lg| < |S,,./|, then every element in Lg is
unique. Hence, the maximum multiplicity for elements in
Ls is 1, so L. has maximum multiplicity of 1. The case is
similar for |L¢| < |74,|-

If |Ls| > |Sa,| and |Li| > |Ta,|, then L has |7, /| dis-
tinct elements, and L; has |7,/ | distinct elements. By The-
orem 1, the maximum multiplicity of elements in L. is

|Le|
[ ] (17)
|Saerl X |Ta|
Since |Ls| = |Le|, and L. has feorr(as’, ar’) x i elements,

the maximum multiplicity of elements in L. is

(f;;(a;,at') X it

|Saerl X |Ta|
Moreover, by C3 in Sec.3.4.1, we know that

—_

fcorr(as/aat/) X m < |So¢5" X |7th'|7 (18)
|Le| Jeorr (s’ /) x it
so [ 1=1 <1 (19
Saur| X [Tay |Saur] X |Ta,|
|

Hence, by Theorem 2, there are no multiple edges from L

to L;. Therefore, GSCALER successfully produces a graph
without multiple edges.
/Moreover, the generation runs in linear time: For each
feorr(as’, a’), the generation for Ls and Ly is in linear time:
After Ls, L; are generated, the L. is formed by sequentially
matching the elements in Ls and L as described in Theo-
rem 1. Hence, the to/tfixl/edge linking time is linear. Given
the edge correlation feorr in Table 4, GSCALER generates G
as presented in Fig. 1.

Finally, as stated at the end of Sec.3.4.1, there might be
some small possibility that f;r/r(as', at') < 1 holds. This
is the theoretical worst case (which has not happened in
our experiments). To resolve this, GSCALER introduces ¢
dummy nodes into G for the purpose of maintaining de-
gree distribution similarity. After the dummy nodes are in-

troduced, all the 1 — Eﬁ;-(as',at') edges are linked to
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Algorithm 4: EDGE SYNTHESIS(Shi, feorr )

1 f/m\; — correlationjunctiorLscabling(5/”;-7 feorr)

2 while feorr(as’,0¢’) = p do

/* produce the L, and L. x/
3 Ls, Ly < local_set(as', o', p, m)
/* link the edges from L, to L. */

4 G« edge_linking(Ls, L)
5 add dummy nodes to G (if necessary)

these dummy nodes. To avoid multiple edges, we can set
e = maxa{I(a),O()}; this € is obviously not the small-
est possible. However, such an ¢ is already small(negligible)
compared to |G|, and such a scenario is rare. Algo.4 sum-
marizes the edge synthesis.

4. EVALUATION

We first review the graph properties that we use for sim-
ilarity measurement.

4.1 Graph Properties

There are numerous graph properties that can be chosen
as the similarity measurement criteria, e.g. degree distri-
bution, diameter, k-core distribution, etc. We choose the 7
most common graph properties used in the literature. Let
N = {0,1,2,3,...} and consider the following local and
global graph properties:

1. Indegree distribution f;, : N — [0, 1]
fin(d) = z means a portion z of nodes have indegree d.

2. Outdegree distribution fou: : N — [0, 1]
fout(d) = z means a portion z of nodes have outdegree d.

3. Bidegree distribution fy; : N2 — [0, 1]
Defined in Sec 3.3.

4. Ratio of largest strongly connected component
(SCOC)
An SCC of G is a maximal set of nodes such that for ev-
ery node pair v and v, there is a directed path from u to
v and another from v to u. The ratio is the number of
nodes in the SCC divided by |V].

5. Average clustering coefficient (CC)
For node v;, let IN; be the set of its neighbors. The local
clustering coefficient [34] C; for nodes v; is defined by

c - H{(vs, vx) : vj, v € Ny, (vj,01) € E}|
|Na|(IVe] = 1)
> G
The average clustering coefficient [15] C' = %

6. Average shortest path length (ASPL)
For w and v in V, the pairwise distance d(u,v) is the num-
ber of edges in the shortest path from u to v; d(u,v) = oo
iff there is no path from u to v (where oo is some number
greater than |E|). The ASPL is

La(u)<oo ;)
VIx(VI-1)



7. Effective diameter [21]
The effective diameter is the smallest £ € N that is
greater than 90% of all pairwise distances that satisfy
d(u,v) < oco.

4.2 Measuring Similarity

For a scalar graph property «, let ag denote the o value
for G and ag) denote the o value for G constructed with al-
gorithm A® . We can compare A and A® by the absolute
difference \ag) —ag]| or the relative difference \ag) —agl|/ac
These are equivalent since

1 2
0 0’ ~acl _ o ~a|

ag| < \ag) —ag| <=

ag ag

However, an « like effective diameter is an integer, whereas a
property like average clustering coefficient has o < 1. Some
information on a¢ is thus lost if we plot relative differences,
so we will plot absolute differences instead.

For a degree distribution f : N — [0, 1], we follow Leskovec
and Faloutsos [21] and use a Kolmogorov-Smirnov (KS) D-
statistic to measure the difference between distributions fa
and fgz. For d = 1, the statistic is defined as

SgPIFG(l’) — Fg(z)|

where F¢ and Fg are the cumulative distribution functions
(cdf) for fe and fz. For d > 1, defining the cdf is not
straightforward, since there are 2¢ — 1 possibilities. In this
paper, we adopt Fasano and Franceschini’s computationally
efficient variant [10] of the KS D-statistic.

4.3 Algorithms

We compare GSCALER to state-of-art algorithms (for graph
sampling, generative models, and database scaling) that have
been widely used as baselines for comparison.

e In Random Walk with Escaping (RW), a starting node
vo is chosen uniformly at random. Each step in the
random walk samples an unvisited neighbor uniformly
at random, and there is a probability 0.8 (following [21])
that the walk restarts at vg. If the walk reaches a dead
end, the walk restarts with a new vg.

e In Forest Fire (FF) [21], a vo is similarly chosen. At
each step, first choose a positive integer y that is ge-
ometrically distributed with mean py(1 — py), and let
z = [yxc], c €[0,1]. (We follow Leskovec and Falout-
sos and set py = 0.7 and ¢ = 1.) Pick uniformly at
random neighbors wi,...,w, that are not yet sam-
pled, then recursively repeat these steps at each w;.

e In Stochastic Kronecker Graph (SKG) [20], SKG first
trains a N1 by N1 matrix K7, where N is typically set
as 2. Then recursively multiply K; through Kronecker
product. Thus, d multiplication of Kronecker product
results in a graph of N{ nodes. In our experiment, we
use the N{ closest to 7 as the target number 7.

e UpSizeR was designed to synthetically scale a rela-

tional dataset by maintaining the degree distribution [33].

However, UpSizeR does not allow free choice of m. For
our experiments, we transform the graph to relational
tables so UpSizeR can scale it.
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4.4 Datasets

We pick 2 real directed graphs from Stanford’s collection
of networks [24]. They are large enough that it makes sense
for scaling down, but small enough for global properties like
diameter to be determined in reasonable time. These two
graphs were also used by previous authors [20-22, 25].

e Epinions (V| = 75879, |E| = 508837) for the website
Epinions.com, where an edge (z,y) indicates user x
trusts user y.

e Slashdotis a website for technology-related news, where
users tag others as friend or foe. The graph contains
friend/foe links between the users of Slashdot. The
dataset Slashdot0811 (|[V| = 77360, |E| = 828161) was
from November 2008.

Given the space constraint, we choose to compare more
properties for 2 graphs, instead of comparing fewer prop-
erties for more graphs.

5. RESULTS AND DISCUSSION

All experiments are done on a Linux machine with 128GB
memory and AMD Opteron 2.3GHz processor. For SKG,
we use the C++ implementation [24]. For UpSizeR, we
use the authors’ C++ implementation !. For FF, RW and
GSCALER, we implemented them in Java.

These algorithms use the number of nodes n to specify
sample size or scale factor, so we define s = n/n. In our ex-
periments, we set s = é, ) %, ?lﬁ, %, 71'5, % for scaling
down, and s = 2,3,4,5,6 for scaling up.

GSCALER allows the user to specify the number of edges
m. However, an m that is arbitrarily small or arbitrarily
large will make it impossible for G to be similar to G. To
be fair, we choose an m for GSCALER that yields the best
results. We will revisit this issue in Sec.6.

For each s value, we run each algorithm 10 times (using
different seeds) on each dataset. The average of these 10
runs is then plotted as one data point.

5.1 Execution Time

For a fair comparison, we exclude the I/O time for all
algorithms.

Execution time for SKG has two parts: training time
and running time. SKG needs to train the graph initiator
matrix Ki, where K is a 2 by 2 matrix in our case; K;i
can be pre-computed. After K is trained, SKG uses K; to
generate a graph with 2% nodes.

To get a better understanding of SKG’s time complexity,
we plot both training time and running time. SKG-Train
represents the time needed for training K5, while SKG-Run
represents the running time of graph generation given K.

Fig.4 and Fig.5 show the execution time for all algorithms
using log scale.

For both datasets, SKG-Train is very large for training the
graph initiator K1. However, after K is trained, graph gen-
eration is fast (seconds), so SKG-Run is small. That aside,
GSCALER has the smallest execution time, which is faster
than SKG-Train by about 2 orders of magnitude, and faster
than RW, FF,UpSizeR by about 1 order of magnitude.

"http://www.comp.nus.edu.sg/~upsizer/
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Figure 4: Execution time (log scale) for Slashdot.
FF and RW do not work for s > 1.

5.2 Theoretical Bounds of Degree Distribution

Before looking at the similarity comparison, we first show
theoretically that GSCALER performs well on varying m and
n for indegree/outdegree distribution. To save space, we
just consider indegree distribution throughout this section.
The proof for the outdegree distribution is similar.

THEOREM 3. Given original graph G’f indegree distribu-
tion is fin, and GSCALER scales G to G,,iuhere m and n
scale by the same ratio s. Then, E[D(fin, fin)] = 0.

PROOF. As explained in Sec.3.2, GSCALER scales S;,, with
the following criterion: ~
Elctg— (z)] = cts,, (x) x 3
Now, consider the current scaled number of nodes |V| and
number of edges |E|. After node scaling,

E[[V]] =E[> _ctg—(2)] =Y _ Elctg—(x)] =Y cts,, (x) x s

=nXxs=n.

E[|E|] = E[Z ctg— () x 2] = ZE[C%Z; (z) x 2]
= ZE[ctSTn ()] xz= thsm () x s X
:thsi"(x) XITXS$=mXSs=m.

Hence, no edge adjustment is expected in Sec.3.2. Thus,
¥, Bl fin(2) = fin(2)] = 0.
Consequently, E[D( fin, ﬁ;)} =0. O
However, a GSCALER user may want to have a G with av-
erage degree different from G, i.e. m and n scale by different

factors. In this case, GSCALER can still produce a similar de-
gree distribution with small and bounded error.

THEOREM 4. Given an original graph G’s indegree distri-
bution is fin, and GSCALER scales G to G, where n = n X s,
m=mxsX (1+r) andr #0. Then,

E[D(fin, fin)] <

where d* is approzimately the largest degree of G.

PROOF. As shown in the proof of Theorem 3, after node
scaling, E[|[V|] =n x s =7 and E[|E|] = m X s # m.

time (seconds)
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Figure 5: Execution time (log scale) for Epinions.
FF and RW do not work for s > 1.

60

Hence, edge adjustment is needed, as stated in Sec.3.2.
In total, we are expecting m x s X (1 4+ r) edges. Hence,
|m x rs| edges are expected to be added/removed. We refer
to ctg— () as ct(z) if there is no ambiguity.

Consider 7 > 0, so m X rs edges are to be added. This is
done by the edge adjustment operation as stated in Algo.2:
(i) et(l) — —, ct(h) + 4+, (ii) I + +, h — —. The net effect is
to add h — [ edges per adjustment.

Let d,, be the maximum degree of G. We assume [ is
initiated as 0, while A is initialized as d,,.

Case ct(l) > 0 for all the first k& adjustment:
Then GSCALER will add

oy don — 2, de — 4. — [(k—1) mod [%"Hx2 (20)

edges for the first k adjustments. Let T} be the total number
of edges added by first k adjustments, then

Tkz%ﬂxk (21)

Since m X rs edges are expected to be added, the expected
number of adjustments k satisfies

2m X rs
dm

m Xrs

dm
2

k< (22)

Moreover, each edge adjustment changes ﬁ; by

= for some fin(z;), where z; < dT’”

(i) decrementing

| SU-

(ii) incrementing = for some ﬁ;(xj), where z; > %

Thus, the expected total decremental changes made to f;
is % x k. By Eq.22,

1 1

2mr
:ng:x
n n

2m X rs 2m X rs

n X dm

(23)

m sn X dm

Since D(feorr, f/c;;) measures largest difference between the
cumulative function of feorr, feorr. Hence, by Eq.23,

2
LT*7 where d* = dp,

E[D(fcor7"7f607"7')] S nxd

(24)
Case Jlj, ct(l;) = 0. Assume at the ith adjustment, ct(ly) =
0 for some Iy, where ¢ is the smallest.

Then GSCALER shifts [ to lo+1, and try to decrease ct(lo+1).
Assume ct(lgp + 1) > 0, then we can do ct(lp + 1) — —.

1. lop + 1 # h: By Eq.20, the number of edges added at
ith step is dm — [(i — 1) mod [%42]] x 2 — 1. Hence,
T; = Ti—i+dm—[(i—1) mod [4]]x2—1. By Eq.21,

Ti+12d7m><i (25)



ThenaTiZdTmXi—IZ%xi_F(%_l)
SinceTl:dm_lZ%JhEHTiZ%XiWeN

2. lo+ 1 = h: Then [ will be reset to 0, and h will be
reset to d,,, so the number of edges at ith adjustment
is obviously larger than dp, —[(i—1) mod [92]]x2—1.
Hence, Eq.25 will hold as well.

Therefore, during the first k& adjustments, if we encounter
w different lo, l1,...,lw—1, such that ct(l;) = 0,V0 < j < w,
then by mathematical induction, one can still conclude that
dm — W

2

Hence, let d* = d,, —w and follow the proof after Eq.21; then
E[D(fcorr7 fCD’V"I‘)]

TZZ X 1.

2mr
S nxd*?

where d”* is close to d,, in general.

O

The proof for r < 0 is similar

5.3 Experimental Results
All figures in this section (except Figs.7, 9, 11,12) plot the
similarity measures (Sec. 4.2) comparing G and G, where

n.
n

e the horizontal axis is scale factor s = 2;

e the vertical axis is KS D-statistic for indegree, outde-
gree and bidegree distributions;

e the vertical axis is absolute error for the other 5 prop-
erties (effective diameter, largest SCC ratio, etc.);

e the true value for all datasets’ graph properties are
provided above each figure;

e we choose m to give best results for GSCALER; the
other algorithms do not allow a free choice of m.

We first look at scaling down for all the algorithms. As
mentioned in Sec.1, scaling down in GSP has an objective
that is different from graph sampling. However, we use
graph sampling algorithms for comparison because GSP is a
new problem, so there is no other algorithms for comparison
except UpSizeR and SKG.
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Figure 6: KS-D statistics for Indegree Distribution
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Figure 7: Indegree Distribution Plot
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5.3.1 Indegree Distribution

For the indegree distribution, Fig. 6 shows that both GSCALER
and UpSizeR perform very well for Slashdot, with error
< 0.01. For Epinions, UpSizeR has an error of 0.05 on
average, whereas GSCALER again has a small error < 0.01.

For more details, Fig. 7 plots the indegree distribution for
s = 0.2, where the x-axis is the indegree, and the y axis is
the ratio of nodes having that indegree. We only show the
plot up to indegree = 15, which covers more than 87% of
all nodes.

The plot shows that GSCALER and UpSizeR mimics G’s
indegree distribution very well. Although all algorithms pro-
duce power law shaped distributions, only UpSizeR and
GSCALER give a close fit for the empirical distribution.

5.3.2  Outdegree Distribution

For the outdegree distribution, Fig. 8 similarly shows that
both GSCALER and UpSizeR perform very well for Slashdot,
with error < 0.03 on average. For Epinions, UpSizeR has
an error of 0.05 on average, whereas GSCALER still has an
error < 0.01.

The outdegree distributions are plotted in Fig. 9. We ob-
serve that GSCALER and UpSizeR also closely match G’s
outdegree distribution. Again, although all algorithms pro-
duce power law shaped distributions, UpSizeR and GSCALER
give the best fit for the empirical outdegree distribution.

5.3.3 Bidegree Distribution
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Figure 10: KS-D statistics for Bidegree Distribution
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Figure 11: Bidegree distribution for Slashdot
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Figure 12: Bidegree distribution for Epinions

Even though UpSize R matches the empirical indegree and
outdegree distributions, it is not able to capture the bide-
gree distribution that describes the correlation between inde-
gree and outdegree. Such correlation is especially important
for social network graphs. For example, in Epinions, the
number of people he/she trusts and the number of people
who trust him/her are correlated. As shown in Fig.10, only
GSCALER captures such correlation very well.

For a detailed look at the bidegree distributions, we give
2-dimensional plots Fig. 11 and Fig. 12. We transform the
bidegree distribution to a k x k matrix B. Each cell ¢,j
represents the portion of nodes with bidegree (7, 5). In other
words, Bli, j] = fui(¢,7). When visualizing B, we use a gray
scale intensity plot for cell 7, j to indicate B¢, j]. The larger
fvi is, the darker the cell (4, 7) is. In our case, we set k = 50
which covers more than 90% of total nodes.

Fig. 11 and Fig. 12 show indegree is positively correlated
to outdegree. For both Slashdot and Epinions, GSCALER
is the best algorithm in capturing this indegree/outdegree
correlation. We also observe that UpSizeR tends to have in-
degree and outdegree negatively correlated. SKG has very
concentrated and similar-shaped plots for both datasets. We
suspect this is because of the self-similar matrix operation,
Kronecker product. For F'F, it captures the bidegree corre-
lation for Slashdot’s bidegree, but not for Epinions.
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5.3.4  Effective Diameter

Fig. 13 shows that, for Slashdot, GSCALER produces ex-
actly the real effective diameter; for Epinions, it produces
an effective diameter with an absolute error no larger than
1. Overall, GSCALER, F'F', SKG are the best algorithms in
producing similar effective diameters.

5.3.5 Average Clustering Coelfficient

For both datasets, GSCALER significantly reduces the er-
ror for average clustering coefficient. Fig. 14 shows that, for
Slashdot, the average error for the other algorithms are be-
tween 0.03 and 0.045. This corresponds to a relative error
of 60% to 90%. However, GSCALER only has an absolute
error 0.005 on average, which corresponds to a relative error
< 10%. Similarly, for Epinions, GSCALER also improves the
relative error from 70% to 10% on average.

5.3.6 Largest SCC Ratio
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Figure 15: Absolute Error for Largest SCC Ratio
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Figure 16: Absolute Error for ASPL



For largest SCC ratio, Fig. 15 shows that F'F, UpSizeR,
and GSCALER have the best performance for Slashdot. For
FEpinions, SKG is the best performing algorithm, whereas
GSCALER only loses to SKG by an error < 0.01.

Note that, GSCALER and F'F' are the best performing al-
gorithms which produce best similar largest SCC ratio for
both datasets on average.

5.3.7 Average Shortest Path Length

Fig. 16 shows that GSCALER is the best algorithm in pro-
ducing similar ASPL for the scaled graph.

For Slashdot, GSCALER has relative error < 10%, whereas
the second best performing algorithm UpSizeR has the av-
erage relative error 40%

For Epinions, GSCALER is the most stable and accurate
algorithm, with a consistent absolute error < 0.25. RW
performs well for large s, but does badly for small s.

5.3.8 Scaling Up

To save space, Fig.17 plots performance of both Slashdot
and Epinions for each graph property.

Similar to scaling down, GSCALER improves the accuracy
of indegree/outdegree/bidegree distribution significantly. For
effective diameter, GSCALER and SK G are the best perform-
ing algorithms. GSCALER is the best algorithm which pro-
duces the most accurate results for average clustering coef-
ficient, largest SCC ratio, and average shortest path length.

5.3.9 Summary of Comparisons

Slashdot Effective | Largest | ASPL | CC
Diameter SCC
n = 77360 m = 828161 5 0.909 3.74 0.052
n = 4421 m = 32179 5 0.916 3.59 | 0.058
n = 4421 m = 33831 5 0.916 3.52 | 0.053
n = 4421 m = 34399 5 0.916 3.62 | 0.058
n=15472 | m = 141583 5 0.916 3.57 | 0.053
n=15472 | m = 144895 5 0.916 3.51 | 0.060
n=15472 | m = 147849 5 0.916 3.45 | 0.059
n = 154720 | m = 1669903 5 0.917 3.71 | 0.055
n = 154720 | m = 1671288 5 0.917 3.71 0.062
n = 154720 | m = 1672057 5 0.917 3.70 | 0.062
n = 386800 | m = 4182213 5 0.917 3.89 | 0.058
n = 386800 | m = 4186353 5 0.917 3.89 | 0.048
n = 386800 | m = 4190908 5 0.917 3.89 | 0.053

For indegree, outdegree and bidegree distributions, GSCALER

reduces the error from about 0.1 for the other algorithms to
about 0.01. This is expected since GSCALER uses f; to con-
struct é, and agrees with the theoretical bound in Sec. 5.2.

GSCALER only uses Psub = { foi, feorr } to construct é, but
measures similarity to G with a larger set P of both local
and global properties listed in Sec. 4.1. The results show
that enforcing Psup» suffices to induce similarity for P.

6. LIMITATION

Unlike the other algorithms, a user can choose both 7 and
m for GSCALER. Table 5 illustrates GSCALER’s accuracy for
Slashdot, using different m and m.

However, GSCALER cannot guarantee similarity for arbi-
trary choices of n and m — the error bound in Theorem 4
becomes loose for large |r|. For example, if n = 1000 and
m = 5000, but n = 2000 and m 500000, one cannot
expect to find any G similar to G.

There is a Densification Law [23] that says, if G1, G2, Gs, . ..

are snapshots of a growing graph, then

E(G;) x V(G;)* for somel<a <2

If G follows such a law, then (m/m) = (7/n)*. If i = sn
and m = (1 + r)sm, then

m _ (L47)sm
o (sm)e

~m 1+

ne T ope gle-1)?

Therefore, for G to follow the Densification Law, the user

must choose r > 0 for s > 1, and r < 0 for s < 1. In other

words, m > mn/n for n/n > 1, and m < mn/n for n/n < 1.
Note that modeling the evolution of n and m is an inter-

esting problem that is relevant, but orthogonal to GSP.
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Table 5: Gscaler accuracy for different . and m.

7. CONCLUSION

‘We considered the problem of synthetically scaling a given
graph. Our solution GSCALER first breaks G into pieces,
scales them, then merges them using the degree and corre-
lation functions from G.

Different from previous approaches, GSCALER gives user
a choice for m and m. We proved that GSCALER does not
produce multiple edges between two nodes, and has a small
distribution error even when the average degree of GG differs
from the original graph G.

Experiments with 2 well-known real datasets show that
the G constructed by GSCALER is more similar to G for
most properties than random walk, forest fire, UpSizeR and
Stochastic Kronecker Graph.

Our current work aims to extend GSCALER to scale rela-
tional databases by representing the tables as graphs.
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ABSTRACT

The work on large-scale graph analytics to date has largely focused
on the study of static properties of graph snapshots. However, a
static view of interactions between entities is often an oversimplifi-
cation of several complex phenomena like the spread of epidemics,
information diffusion, formation of online communities, and so on.
Being able to find temporal interaction patterns, visualize the evolu-
tion of graph properties, or even simply compare snapshots across
time, adds significant value in reasoning over graphs. However,
due to the lack of underlying data management support, an ana-
lyst today has to manually navigate the added temporal complexity
of dealing with large evolving graphs. In this paper, we present a
system, called Historical Graph Store, that enables users to store
large volumes of historical graph data and to express and run com-
plex temporal graph analytical tasks against that data. It consists of
two key components: (1) a Temporal Graph Index (TGI), that com-
pactly stores large volumes of historical graph evolution data in a
partitioned and distributed fashion — TGI also provides support for
retrieving snapshots of the graph as of any timepoint in the past or
evolution histories of individual nodes or neighborhoods; and (2) a
Temporal Graph Analysis Framework (TAF), for expressing com-
plex temporal analytical tasks and for executing them in an efficient
and scalable manner using Apache Spark. Our experiments demon-
strate our system’s efficient storage, retrieval and analytics across a
wide variety of queries on large volumes of historical graph data.

1. INTRODUCTION

Graphs are useful in capturing behavior involving interactions
between entities. Several processes are naturally represented as
graphs — social interactions between people, financial transactions,
biological interactions among proteins, geospatial proximity of in-
fected livestock, and so on. Many problems based on such graph
models can be solved using well-studied algorithms from graph
theory or network science. Examples include finding driving routes
by computing shortest paths on a network of roads, finding user
communities through dense subgraph identification in a social net-
work, and many others. Numerous graph data management sys-
tems have been developed over the last decade, including special-
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ized graph database systems like Neo4j, Titan, etc., and large-scale
graph processing frameworks such as GraphLab [27], Pregel [29],
Giraph, GraphX [12], GraphChi [24], etc.

However much of the work to date, especially on cloud-scale
graph data management systems, focuses on managing and ana-
lyzing a single (typically, current) static snapshot of the data. In
the real world, however, interactions are a dynamic affair and any
graph that abstracts a real-world process changes over time. For in-
stance, in online social media, the friendship network on Facebook
or the “follows” network on Twitter change steadily over time,
whereas the “mentions” or the “retweet” networks change much
more rapidly. Dynamic cellular networks in biology, evolving cita-
tion networks in publications, dynamic financial transactional net-
works, are few other examples of such data. Lately, we have seen
an increasing merit in dynamic modeling and analysis of network
data to obtain crucial insights in several domains such as cancer
prediction [38], epidemiology [15], organizational sociology [16],
molecular biology [9], information spread on social networks [26]
amongst others.

In this work, our focus is on providing the ability to analyze and
to reason over the entire history of the changes to a graph. There are
many different types of analyses of interest. For example, an an-
alyst may wish to study the evolution of well-studied static graph
properties such as centrality measures, density, conductance, etc.,
over time. Another approach is through the search and discovery of
temporal patterns, where the events that constitute the pattern are
spread out over time. Comparative analysis, such as juxtaposition
of a statistic over time, or perhaps, computing aggregates such as
max or mean over time, possibly gives another style of knowledge
discovery into temporal graphs. Most of all, a primitive notion of
just being able to access past states of the graphs and performing
simple static graph analysis, empowers a data scientist with the ca-
pacity to perform analysis in arbitrary and unconventional patterns.

Supporting such a diverse set of temporal analytics and query-
ing over large volumes of historical graph data requires addressing
several data management challenges. Specifically, there is a want
of techniques for storing the historical information in a compact
manner, while allowing a user to retrieve graph snapshots as of any
time point in the past or the evolution history of a specific node
or a specific neighborhood. Further, the data must be stored and
queried in a distributed fashion to handle the increasing scale of the
data. There is also a need for an expressive, high-level, easy-to-use
programming framework that will allow users to specify complex
temporal graph analysis tasks, while ensuring those tasks can be
executed efficiently in a data-parallel fashion across a cluster.

In this paper, we present a graph data management system, called
Historical Graph Store (HGS), that provides an ecosystem for man-
aging and analyzing large historical traces of graphs. HGS con-

10.5441/002/edbt .2016.09
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sists of two key distinct components. First, the Temporal Graph
Index (TGI), is an index that compactly stores the entire history of
a graph by appropriately partitioning and encoding the differences
over time (called deltas). These deltas are organized to optimize the
retrieval of several temporal graph primitives such as neighborhood
versions, node histories, and graph snapshots. TGI is designed to
use a distributed key-value store to store the partitioned deltas, and
can thus leverage the scalability afforded by those systems (our im-
plementation uses Apache Cassandra! key-value store). TGI is a
tunable index structure, and we investigate the impact of tuning
the different parameters through an extensive empirical evaluation.
TGI builds upon our prior work on DeltaGraph [21], where the
focus was on retrieving individual snapshots efficiently; TGI ex-
tends DeltaGraph to support efficient retrieval of subgraphs instead
of only full snapshots, retrieval of histories of nodes or subgraphs
over past time intervals, and features a highly scalable design over
DeltaGraph.

The second component of HGS is a Temporal Graph Analy-
sis Framework (TAF), which provides an expressive framework to
specify a wide range of temporal graph analysis tasks. TAF is based
on a novel set of temporal graph operands and operators that en-
able parallel execution of the specified tasks at scale in a cluster
environment. The execution engine is implemented on Apache
Spark [40], a large-scale in-memory cluster computing framework.

Outline: The rest of the paper is organized as follows. In Section 2,
we survey the related work on graph data stores, temporal indexing,
and other topics relevant to the scope of the paper. In Section 3,
we provide a sketch of the overall system, including key aspects
of the underlying components. We then present TGI and TAF in
detail in Sections 4 and 5, respectively. In Section 6, we provide an
empirical evaluation, and and conclude with a summary and a list
of future directions in Section 7.

2. RELATED WORK

In the recent years, there has been much work on graph storage
and graph processing systems and numerous systems have been de-
signed to address various aspects of graph data management. Some
examples include Neo4J, Titanz, GBase [19], Pregel [29], Giraph,
GraphX [12], GraphLab [27], and Trinity [36]. These systems use
a variety of different models for representation, storage, and query-
ing, and there is a lack of standardized or widely accepted models
for the same. Most graph querying happens through programmatic
access to graphs in languages such as Java, Python or C++. Graph
libraries such as Blueprints® provide a rich set of implementations
for graph theoretic algorithms. SPARQL [33] is a language used
to search patterns in linked data. It works on an underlying RDF
representation of graphs. T-SPARQL [13] is a temporal extension
of SPARQL. He et al. [17], provide a language for finding sub-
graph patterns using a graph as a query primitive. Gremlin®* is a
graph traversal language over the property graph data model, and
has been adopted by several open-source systems. For large-scale
graph analysis, perhaps the most popular framework is the vertex-
centric programming framework, adopted by Giraph, GraphLab,
GraphX, and several other systems; there have also been several
proposals for richer and more expressive programming frameworks
in recent years. However, most of these prior systems largely focus
on analyzing a single snapshot of the graph data, with very little
support for handling dynamic graphs, if any.

Uhttps://cassandra.apache.org
Zhttp://thinkaurelius.github.io/titan/
3https://github.com/tinkerpop/blueprints/wiki
“https://github.com/tinkerpop/gremlin
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A few recent papers address the issues of storage and retrieval in
dynamic graphs. In our prior work, we proposed DeltaGraph [21],
an index data structure that compactly stores the history of all
changes in a dynamic graph and provides efficient snapshot re-
construction. G* [25] stores multiple snapshots compactly by uti-
lizing commonalities. ImmortalGraph [30] is an in-memory sys-
tem for processing dynamic graphs, with the objectives of shared
storage and computation for overlapping snapshots. Ghrab et
al. [11] provide a system of network analytics through labeling
graph components. Gedik et al. [10], describe a block-oriented and
cache-enabled system to exploit spatio-temporal locality for solv-
ing temporal neighborhood queries. Koloniari et al. [23] also utilize
caching to fetch selective portions of temporal graphs they refer to
as partial views. LLAMA [28] uses multiversioned arrays to rep-
resent a mutating graph, but their focus is primarily on in-memory
representation. There is also recent work on streaming analytics
over dynamic graph data [8, 7], but it typically focuses on analyz-
ing only the recent activity in the network (typically over a sliding
window).

Temporal graph analytics is an area of growing interest. Evolu-
tion of shortest paths in dynamic graphs has been studied by Huo
et al. [18], and Ren et al. [34]. Evolution of community structures
in graphs has been of interest as well [5, 14]. Change in page rank
with evolving graphs [3], and the study of change in centrality of
vertices, path lengths of vertex pairs, etc. [32], also lie under the
larger umbrella of temporal graph analysis. Ahn et al. [1] pro-
vide a taxonomy of analytical tasks over evolving graphs. Barrat
et al. [4], provide a good reference for studying several dynamic
processes modeled over graphs. Our system significantly reduces
the effort involved in building and deploying such analytics over
large volumes of graph data.

Temporal data management for relational databases was a topic
of active research in the 80s and early 90s. Snapshot index [39]
is an I/O optimal solution to the problem of snapshot retrieval for
transaction-time databases. Salzberg and Tsotras [35] present a
comprehensive survey of temporal data indexing techinques, and
discuss two extreme approaches to supporting snapshot retrieval
queries, referred to as the Copy and Log approaches. While the
copy approach relies on storing new copies of a snapshot upon ev-
ery point of change in the database, the log approach relies on stor-
ing everything through changes. Their hybrid is often referred to as
the Copy+Log approach. We omit a detailed discussion of the work
on temporal databases, and refer the interested reader to a represen-
tative set of references [37, 31, 35].Other data structures, such as
Interval Trees [2] and Segment trees [6] can also be used for stor-
ing temporal information. Temporal aggregation in scientific ar-
ray databases is another related topic of interest, but the challenges
there are significantly different. Kaufmann et al. [20] propose an
in-memory index in SAP HANA that addresses temporal aggrega-
tion, joins, and snapshot construction. The applicability of tem-
poral relational data management techniques to graphs is restricted
due to lack of (efficient) support for graph specific retrieval such
as fetching neighborhoods, or histories of nodes over time. Our
work in this paper focuses on techniques for a wide variety of tem-
poral graph retrieval and analysis on entire graph histories that are
primarily stored on disk.

3. OVERVIEW

In this section, we introduce key aspects related to HGS. We
begin with the data model, followed by the key challenges and con-
cluding with an overview of the system.
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Figure 1: The scope of temporal graph analytics can be represented
across two different dimensions - time and entity. The chart lists re-
trieval tasks (black), graph operations (red), example queries (ma-
genta) at different granularities of time and entity size.

3.1 Data Model

Under a discreet notion of time, a time-evolving graph GT =
(vT,ET) may be expressed as a collection of graph snapshots over
different time points, {G° = (V0,E®),G',...,G'}. The vertex set
Vifora snapshot consists of a set of vertices (nodes), each of which
has a unique identifier (constant over time), and an arbitrary num-
ber of key-value attribute pairs. The edge sets E' consist of edges
that each contain references to two valid nodes in the correspond-
ing vertex set V/, information about the direction of the edge, and
an arbitrary list of key-value attribute pairs. A temporal graph can
also be equivalently described by a set of changes to the graph over
time. We call an atomic change at a specific timepoint in the graph
an event. The changes could be structural, such as the addition or
the deletion of nodes or edges, or be related to attributes such as
an addition or a deletion or a change in the value of a node or an
edge attribute. For instance, a new user joining the Facebook so-
cial network corresponds to an event of node creation; connecting
to another user is an event of edge creation; changing location or
posting an update are events of change and creation of attribute val-
ues, respectively. These approaches specified here as well as cer-
tain hybrids have been used in the past for the physical and logical
modeling of temporal data. Our approach to temporal processing
in this paper is best described using a node-centric logical model,
i.e., the historical graph is seen as a collection of evolving vertices
over time; the edges are considered as attributes of the nodes. This
abstraction helps in our design of distributed storage of the graph
and parallel execution of the analytical tasks.

3.2 Challenges

The nature of data management tasks in historical graph analyt-
ics can be categorized based on the scope of analysis using the dual
dimensions of time and entity as illustrated with examples in Fig-
ure 1. The temporal scope of an analysis task can range from a
single point in time to a long interval; the entity scope can range
from a single node to the entire graph. While the diversity of an-
alytical tasks provides a potential for a rich set of insights from
historical graphs, it also poses several challenges in constructing a
system that can perform those tasks. To the best of our knowledge,
none of the existing systems address a majority of those challenges
that are described below:

Compact storage with fast access: An natural tradeoff between
index size and access latencies can be seen in the Log and Copy ap-
proaches for snapshot retrieval. Log requires minimal information
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to encode the graph’s history, but incurs large reconstruction costs.
Copy, on the other hand, provides direct access, but at the cost of
excessive storage. The desirable index should consume space of
the order of Log index but provide near direct access like Copy.

Time-centric versus entity-centric indexing: For point access
such as past snapshot retrieval, a time-centric indexing such as
DeltaGraph or Copy+Log is suitable. However, for version re-
trieval tasks such as retrieving a node’s history, entity-centric in-
dexing is the correct choice. Neither of the indexing approaches,
however, are feasible in the opposite scenarios. Given the diver-
sity of access needs, we require an index that works well with both
styles of lookup at the same time.

Optimal granularity of storage for different queries: Query la-
tencies for a graph also depend on the size of chunks in which the
data is indexed. While larger granularities of storage incur waste-
ful data read for “node retrieval”, a finely chunked graph storage
would mean higher number of lookups and aggregation for a 2-
hop neighborhood lookup. The physical and logical arrangement
of data should take care of access needs at all granularities.

Coping with changing topology in a dynamic graph: It is evi-
dent that graph partitioning is inevitable in the storage and pro-
cessing of large graphs. However, finding the appropriate strategy
to maintain workable partitioning on a constantly changing graph
is another challenge while designing a historical graph index.

Systematically expressing temporal graph analytics: A plat-
form for expressing a wide variety of historical graph analytics
requires an appropriate amalgam of temporal logic and graph
theory. Additionally, utilizing a vast body of existing tools in
network science is an engineering challenge and opportunity.

Appropriate abstractions for distributed, scalable analytics:
Parallelization is key to scale up analytics for large graph datasets.
It is essential that the underlying data-representations and operators
in the analytical platform be designed for parallel computing.

3.3 System Overview

Figure 2 shows the architecture of our proposed Historical Graph
Store. It consists of two main components:

Temporal Graph Index (TGI) records the entire history of a
graph compactly while enabling efficient retrieval of several tempo-
ral graph primitives. It encodes various forms of differences (called
deltas) in the graph, such as atomic events, changes in subgraphs
over intervals of time, etc. It uses specific choices of graph parti-
tioning, data replication, temporal compression and data placement
to optimize the graph retrieval performance. TGI uses Cassandra, a
distributed key-value store for the deltas. In Section 4, we describe
the design details of TGI and the access algorithms.

Temporal Graph Analytics Framework (TAF) provides a fem-
poral node-centric abstraction for specifying and executing com-
plex temporal network analysis tasks. It helps the user analyze
the history of the graph by means of simple yet expressive tem-
poral operators. The abstraction of temporal graph through a set
of (temporal) nodes (SoN) allows the framework to achieve compu-
tational scalability through distribution of tasks by node and time.
TAF is built on top of Apache Spark to utilize its support for scal-
able, in-memory, cluster computation; TAF provides an option to
utilize GraphX for static graph computation. We provide a Java
and Python based library to specify the retrieval, computation and
analysis tasks. In Section 5, we describe the details of the data and
computational models, query processing, parallel data fetch aspects
of the system, the analytical library along with a few examples.
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Figure 2: System Overview

4. TEMPORAL GRAPH INDEX

In this section, we investigate the issue of indexing temporal
graphs. First, we introduce a delta framework to define any tempo-
ral index as a set of different changes or deltas. Using this frame-
work, we are able to qualitatively compare the access costs and
sizes of different alternatives for temporal graph indexing, includ-
ing our proposed approach. We then present the Temporal Graph
Index (TGI), that stores the entire history of a large evolving net-
work in the cloud, and facilitates efficient parallel reconstruction
for different graph primitives. TGI is a generalization of both en-
tity and time-based indexing approaches and can be tuned to suit
specific workload needs. We claim that TGI is the minimal index
that provides efficient access to a variety of primitives on a his-
torical graph, ranging from past snapshots to versions of a node
or neighborhood. We also describe the key partitioning strategies
instrumental in scaling to large datasets across a cloud storage.

4.1 Preliminaries

We start with a few preliminary definitions that help us formalize
the notion of the delta framework.

DEFINITION 1  (STATIC NODE). A static node refers to the
state of a vertex in a network at a specific time, and is defined as a
set containing: (a) node-id, denoted I (an integer), (b) an edge-list,
denoted E (captured as a set of node-ids), (c) attributes, denoted A,
a map of key-value pairs.

A static edge is defined analogously, and contains the node-ids
for the two endpoints and the edge direction in addition to a map of
key-value pairs. Finally, a static graph component refers to either a
static edge or a static node.

DEFINITION 2 (DELTA). A Delta (A) refers to either: (a) a
static graph component (including the empty set), or (b) a differ-
ence, sum, union or intersection of two deltas.

Such a definition of delta helps express the change in a wider con-
text than merely difference of graph states at two points. It helps us
articulate several temporal graph indexes including TGI and Delta-
Graph in a single framework.
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DEFINITION 3  (CARDINALITY AND SIZE). The cardinality
and the size of a delta are the unique and total number of static
node or edge descriptions within it, respectively.

DEFINITION 4 (A SUM). A sum (+) over two deltas, Ay and
Ny, ie., Ay = Ay + A; is defined over graph components in the two
deltas as follows: (1) Vgc1 € Ay, if 3gco € Ay s.t. ged = gea d,
then we add gc, to A, (2) Vgc, € Ay s.t. Fger € Ay sit. gey I =
gerd, we add gey to A, and (3) analogously the components
present only in Ay are added to Ag.

Note that: A; +Ay = Ay + A; is not necessarily true due the
order of changes. We also note that: A +0 = Ay, and (A +4A;) +
Az = A + (Ay 4+ Az). Analogously, difference(-) is defined as a set
difference over different components of the two deltas. A} — ¢ = A
and A} — A = ¢, are true, while, A| — Ay = Ay — Ay, does not
necessarily hold.

DEFINITION 5 (A INTERSECTION). An intersection of two
deltas is defined as a set intersection over the the components of
two deltas. Ay N @ = @, is true for any delta. Similarly, union of
two deltas Ay = Aj U Ay, consists of all elements from Ay and A;.
The following is true for any delta: Ay U¢ = Ay.

Next we discuss and define some specific types of deltas:

DEFINITION 6 (EVENT). An event is the smallest change that
happens to a graph, i.e., addition or deletion of a node or an edge,
or a change in an attribute value. An event is described around
one time point. As a delta, an event concerning a graph component
¢, at time point t,, is defined as the difference of state of ¢ at and
before to, i.e., Agyent (¢,te) = c(te) — c(te — 1).

DEFINITION 7 (EVENTLIST). An eventlist delta is a chrono-
logically sorted set of event deltas. An eventlist’s scope may be
defined by the time duration, (ts,t,], during which it defines all the
changes that happened to the graph.

DEFINITION 8 (EVENTLIST PARTITION). An eventlist pari-
tition delta is is a chronologically sorted set of event deltas per-
taining to a set of nodes, P, over a given time duration, (fs,1,).

DEFINITION 9  (SNAPSHOT). A snapshot, G' is the state of a
graph G at a time point t,. As a delta, it is defined as the difference
of the state of the graph at t, from an empty set, Agqpror(G,ta) =
G(ta) = G(—oo).

DEFINITION 10 (SNAPSHOT PARTITION). A snapshot parti-
tion is a subset of a snapshot. It is identified by a subset P of all
nodes in graph, G at time, t,. It consists of all nodes in G at t, and
all the edges whose at least one end-point lies in P at time, t,.

4.2 Prior Techniques

The prior techniques for temporal graph indexing use changes
or differences in various forms to encode time-evolving datasets.
We can express them in the A-framework as follows. The Log in-
dex is equivalent to a set of all event deltas (equivalently, a single
eventlist delta encompassing the entire history). The Copy+Log
index can be represented as combination of: (a) a finite number
of distinct snapshot deltas, and (b) eventlist deltas to capture the
change between successive snapshots. Although we are not aware
of a specific proposal for a vertex-centric index, however, a natural
approach would be to maintain a set of eventlist partition deltas,



one for each node (with edge information replicated with the end-
points). The DeltaGraph index, proposed in our prior work, is a
tunable index with several parameters. For a typical setting of pa-
rameters, it can be seen as equivalent to taking a Copy+Log index,
and replacing the snapshot deltas in it with another set of deltas
constructed hierarchically as follows: for every k successive snap-
shot deltas, replace them with a single delta that is the intersection
of those deltas and a set of difference deltas from the intersection
to the original snapshots, and recursively apply this till you are left
with a single delta.

Table 1 estimates the cost of fetching different graph primitives
as the number and the cumulative size of deltas that need to be
fetched for the different indexes. The first column shows an esti-
mate of index storage space, which varies considerably across the
techniques. For proofs, please refer to the extended version [22].

4.3 Temporal Graph Index: Definition

Given the above formalism, a Temporal Graph Index for a graph
G over a time period T = [0, 7] is described by a collection of dif-
ferent deltas as follows:

(a) Eventlist Partitions: A set of eventlist partition deltas, {E;,},
where E;, captures the changes during the time interval ¢ be-
longing to partition p.

Derived Snapshot Partitions: Consider r distinct time points,
t;, where 1 <i <r, t; € T, For each t;, we consider [ parti-
tion deltas, P}, 1 < j <, such that U jP} = G". There exists a
function that maps any node-id(I) in G' to a unique partition-
id(P;), fitl— Pj’ With a collection of Pj’: over T as leaf nodes,
we construct a hierarchical tree structure where a parent is the
intersection of children deltas. The difference of each parent
from its child delta is called as a derived snapshot partition and
is explicitly stored. Note that P! are not explicitly stored. This
is the same as DeltaGraph, with the exception of partitioning.
Version Chain: For all nodes N in the graph G, we maintain a
chronologically sorted list of pointers to all the references for
that node in the delta sets described above (a and b). For a node
1, this is called a version chain (denoted V Cy).

(b)

©

In short, the TGI stores deltas or changes in three different forms,
as follows. The first one is the atomic changes in a chronological
order through eventlist partitions. This facilitates direct access to
the changes that happened to a part or whole of the graph at speci-
fied points in time. Secondly, the state of nodes at different points
in time is stored indirectly in form of the derived snapshot partition
deltas. This facilitates direct access to the state of a neighborhood
or the entire graph at a given time. Thirdly, a meta index stores
node-wise pointers to the list of chronological changes for each
node. This gives us a direct access to the changes occurring to
individual nodes. Figure 3(a) shows the arrangement of eventlist,
snapshot and derived snapshot partition deltas. Figure 3(b) shows
a sample version chain.

TGI utilizes the concept of temporal consistency which was opti-
mally utilized by DeltaGraph. However, it differs from DeltaGraph
in two major ways. First, it uses a partitioning for eventlists, snap-
shots or deltas instead of large monolithic chunks. Additionally,
it maintains a list of version chain pointers for each node. The
combination of these two novelties along with DeltaGraph’s tem-
poral compression generalizes the notion of entity-centric and time-
centric indexing approaches in an efficient way. This can be seen by
the qualitative comparison shown in Table 1 as well as empirical re-
sults in Section 6. Note that the particular design of TGI in the form
of eventlist partitions and deltas, and version chain is not equiva-
lent to two separate indexes, one with snapshots and eventlists and
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Figure 3: Temporal Graph Index representation: (a) TGI deltas par-
titions - eventlists, snapshots and derived snapshots. The (dashed)
bounded deltas are not stored; (b) Version Chains.

the other with chronologically organized events per node. For in-
stance, the latter is fairly inefficient to fetch temporal subgraphs or
neighborhoods over time intervals.

4.4 TGI: Design and Architecture

In the previous subsection, we presented the logical description
of TGI. We now describe the strategies for physical storage on a
cloud which enables high scalability. In a distributed index, we
desire that all graph retrieval calls achieve maximum paralleliza-
tion through equitable distribution. A distribution strategy based on
pure node-based key is good idea for snapshot style access, how-
ever, it is bad for a subgraph history style of access. A pure time-
based key strategy on the other hand, has complementary qualities
and drawbacks. An important related challenge for scalability is
dealing with two different skews in a temporal graph dataset — tem-
poral and topological. They refer to the uneven density of graph
activity over time and the uneven edge density across regions of
the graph, respectively. Another important aspect to note is that for
a retrieval task, it is desirable that all the deltas needed for a fetch
operation that are present on a particular machine be proximally
located to minimize latency of lookups®. Based on the above con-
straints and desired properties, we describe the physical layout of
TGI as follows:

1. The entire history of the graph is divided into time spans, keep-
ing the number of changes to the graph consistent across differ-
ent time spans, f; : e.time — tsid, where e is the event and tsid
is the unique identifier for the time span.

2. A graph at any point is horizontally partitioned into a fixed num-
ber of horizontal partitions based upon a random function of
the node-id, f, : nid — sid, where nid is the node-id and sid is
unique identifier of for the horizontal partition.

3. The partition deltas (including eventlists) are stored as a key-
value pairs, where the delta-key is composed of
{tsid,sid,did, pid}, where did is a delta-id, and pid is the
partition-id of the partition.

4. The placement-key is defined as a subset of the composite deltas
key described above, as {tsid, sid}, which defines the chunks in
which data is placed across a set of machines on a cluster. A
combination of the tsid and sid ensure that a large fetch task,
whether snapshot or version oriented, seeks data distributed
across the cluster and not just one machine.

SIn general, this depends on the underlying storage mechanism.
The physical placement of deltas is irrelevant for an in-memory
store, but significant for an on-disk store due to seek times.
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Table 1: Comparison of access costs for different retrieval queries and index storage for various temporal indexes. |G| =number of changes
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node; p= number of partitions in TGI. The metrics used are, sum of delta cardinalities (Y 5 |A|) and number of deltas (Yo 1).

. The partitioned deltas are clustered by the delta key. The given
order of delta-key along with the placement-key implies that all
partitions of a delta are stored contiguously, which makes it ef-
ficient to scan and read all partitions belonging to a delta in a
snapshot query. Also, if the order of did and pid is reversed, it
makes fetching a partition across different deltas more efficient.

Implementation and Architecture: TGI uses Cassandra for its
delta storage as well as metadata regarding partitioning, time-
spans, etc. TGI consists of a Query Manager (QM) is responsi-
ble for planning, dividing and delegating the query to one or more
Query Processors (QP). Multiple QPs query the datastore in paral-
lel and process the raw deltas into the required result. Depending
on the query specification, the distributed result is either aggregated
at a particular QP (the QM) or returned to the client which made the
request without aggregation. An Index Manager is responsible for
the construction and maintenance activities of the index. We omit
further details and refer the reader to the extended version [22].

4.5 Dynamic Graph Partitioning

Partitioning of the deltas is an essential aspect of TGI and pro-
vides cheaper access to subgraph elements when compared to Delt-
aGraph or similar indexes. The two traditional approaches to parti-
tioning a static graph are random (node-id hash-based) or locality-
based (min-cut, max-flow) partitioning. Random partitioning is
simpler and involves minimal bookkeeping. However, since it loses
locality, it is unsuitable for neighborhood-level granularity access.
Locality-aware partitioning, on the other hand, preserves locality
but incurs extra bookkeeping in form of a {node-id:partition-id}
map. TGI is designed to work with either configuration as desired,
as well as different partition size specifications. TGI also supports
replication of edge-cuts for further speed up of 1-hop neighbor-
hoods. It uses a separate auxiliary delta partition besides each delta
partition to store the replication, thereby preventing extra read cost
for snapshot or node centric queries. More details on this can be
found in the extended manuscript.

Locality-aware partitioning, however, faces an additional chal-
lenge with time-evolving graphs. With the change in size and topol-
ogy of a graph, a partitioning deemed good (with respect to local-
ity) at an instant may cease to be good at a later time. A probable
approach of frequent repartitioning over time would maintain par-
titioning quality, but leads to excessive amounts of bookkeeping,
which in turn leads to degradation of performance while accessing
different node or neighborhood versions.

Our approach of dealing with this dilemma is described as fol-
lows. For a time-evolving graph, G(¢), we update the partitioning
once at the beginning of each time span. The partitioning valid dur-
ing a time-span 7, is decided as the collectively best partitioning
for the graph during time 7, G*. Now, the best-suited partition-
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ing for a graph over a time-interval G* is performed by projecting
it to a static graph using a function, Q(G?), followed by a static-
graph partitioning. Q could be defined in various ways, depending
on the best-deemed interpretation of a representative static graph.
Any definition, however, must retain all and only the nodes that
appeared in G*. In TGI, the default choice of Q is called Union-
Mean and includes all edges that appeared in G* with the edge-
weights computed as a function of time-fraction of existence. We
refer the reader to the extended manuscript for further details on
different choices of Q, contrast of this technique with other alter-
natives, and comments on the associated problem of finding the
appropriate boundaries of time-spans.

4.6 Fetching Graph Primitives

We briefly describe how the different types of retrieval queries
are executed. The details of the algorithms can be found in the
extended version of the paper.

Snapshot Retrieval: In snapshot retrieval, the state of a graph at a
time point is retrieved. Given a time f,, the query manager locates
the appropriate time span 7 such that #; € T', within which, it figures
out the path from the root of the TGI to the leaf closest to the given
time point. All the snapshot deltas, Ag1, Ay, ..., Agn, (i.e., all the
corresponding partitions) along that path from root to the leaf, and
the eventlists from the leaf node to the time point, A,1,Ae2, ..., Aen
are fetched and merged appropriately as: ¥.1" | Ag; + Y7L | A, (no-
tice the order). This is performed across different query processors
covering the entire set of horizontal partitions. This is conceptually
similar to the DeltaGraph snapshot reconstruction with the addition
of the aspect of partitions.

Node’s history: Retrieving a node’s history during time interval,
[ts,te) involves finding the state of the graph at point 7, and all
changes during the time range (z,7,). The first one is done in a
similar manner to snapshot retrieval except the fact that we look up
only a specific delta partition in a specific horizontal partition, that
the node belongs to. The second part happens through fetching the
node’s version chain to determine its points of changes during the
given range. The respective eventlists are fetched and filtered for
the given node.

k-hop neighborhood (static): In order to retrieve the k-hop neigh-
borhood of a node, we can proceed in two possible ways. One of
them is to fetch the whole graph snapshot and filter the required
subgraph. The other is to fetch the given node, and then determine
its neighbors, fetch them, and recurse. It is easy to see that the per-
formance of the second method will deteriorate fast with growing
k. However for lower values, typically k < 2, the latter is faster or at
least as good, especially if we are using neighborhood replication
as discussed in a previous subsection. In case of a neighborhood




fetch, the query manager automatically fetches the auxiliary por-
tions of deltas (if they exist), and if the required nodes are found,
further lookup is terminated.

Neighborhood evolution: Neighborhood evolution queries can be
posed in two different ways. First, requesting all changes for a
described neighborhood, in which case the query manager fetches
the initial state of the neighborhood followed by the events indicat-
ing the change. Second, requesting the state of the neighborhood
at multiple specific time points. This translates to the retrieval of
multiple single neighborhoods fetch tasks.

5. ANALYTICS FRAMEWORK

In this section, we describe the Temporal Graph Analysis Frame-
work (TAF), that enables programmers to express complex analyt-
ical tasks on time-evolving graphs and execute them in a scalable,
parallel, in-memory manner. We present details of the novel com-
putational model, including a set of operators and operands. We we
also present the details of implementation on top of Apache Spark,
as well as the user API (exposed through Python and Java). Finally,
we describe TAF’s coordination with TGI, particularly the parallel
data transfer protocol, that provides a complete ecosystem for his-
torical graph management and analysis.

5.1 Data and Computational Model

At the heart of this analytics framework is an abstraction with the
view of historical graph as a set of nodes (or subgraphs) evolving
over time. The choice of temporal nodes as a primitive is instru-
mental in enabling us to express a wide range of fetch and compute
operations in an intuitive manner. More significantly, it provides us
with the appropriate basis for the parallelizing computation of arbi-
trary analysis tasks. The temporal nodes and set of temporal nodes
bear a correspondence to tuples and tables of the relational algebra,
as the basic unit of data and the prime operand, respectively. The
two central data types are defined below:

DEFINITION 11 (TEMPORAL NODE). A  temporal node
(NodeT), NT, is defined as a sequence of all and only the states
of a node N over a time range, T = [t;,1,). All the k states of the
node must have a valid time duration T;, such that Uf-‘Ti =T and
KT = ¢.

DEFINITION 12 (SET OF TEMPORAL NODES). A SoN, is
defined as a set of r temporal nodes {NIT ,N2T ...NT'} over a time
range, T = [ts,t,), as depicted in Figure 4.

The NodeT class provides a range of methods to access the state
of the node at various time points, including: getVersions ()
which returns the different versions of the node as a list of static
nodes (NodeS), getVersionAt () which finds a specific version
of the node given a timepoint, getNeighborIDsAt () which
returns IDs of the neighbors at the specified time point, and so on.

A Temporal Subgraph (SubgraphT) generalizes NodeT and cap-
tures a sequence of the states of a subgraph (i.e., a set of nodes and
edges among them) over a period of time. Typically the subgraphs
correspond to k-hop neighborhoods around a set of nodes in the
graph. An analogous getVersionAt () function can be used to
retrieve the state of the subgraph as of a specific time point as an
in-memory Graph object (the user program must ensure that any
graph object so created can fit in the memory of a single machine).
A Set of Temporal Subgraphs (SoTS) is defined analogously to SON
as a set of temporal subgraphs.

5.2 Temporal Graph Analysis Library

The important temporal graph algebra operators supported by
our system are described below.
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Figure 4: SoN: A set of nodes can be abstracted as a 3 dimensional
array with temporal, node and attribute dimensions.

1. Selection accepts an SoN or an SoTS along with a boolean
function on the nodes or the subgraphs, and returns an SoN or
SoTS. It performs entity-centric filtering on the operand, and
does not alter temporal or attribute dimensions of the data.

2. Timeslicing accepts an SoN or an SoTS along with a timepoint
(or time interval) ¢, finds the state of each of individual nodes or
subgraphs in the operand as of ¢, and returns it as another SON
or SoTS, respectively (SON/SoTS can represent sets of static
nodes or subgraphs as a well). The operator can accept a list of
timepoints as input and return a list.

3. Graph accepts an SoN and returns an in-memory Graph object
containing the nodes in the SoN (with only the edges whose
both endpoints are in the SoN). An optional parameter, z,, may
be specified to get a GraphS valid at time 7,.

4. NodeCompute is analogous to a map operation; it takes as input
an SoN (or an SoTS) and a function, and applies the function to
all the individual nodes (subgraphs) and returns the results as a
set.

5. NodeComputeTemporal. Unlike NodeCompute, this operator
takes as input a function that operates on a static node (or
subgraph) in addition to an SoN (or an SoTS); for each node
(subgraph), it returns a sequence of outputs, one for each
different state (version) of that node (or subgraph). Optionally,
the user may specify another function (NodeCompute-
Delta, described next) that operates on the delta between two
versions of a node (subgraph). Another optional parameter
is a method describing points of time at which computation
needs to be performed; in the absence of it, the method will be
evaluated at all the points of change.

6. NodeComputeDelta operator takes as input: (a) a function that
operates on a static node (or subgraph) and produces an output
quantity, (b) an SoN (or an SoTS), (c) a function that operates
on the following: a static node (or subgraph), some auxiliary
information pertaining to that state of the node (or subgraph),
the value of the quantity at that state, and an update (event) to it.
This operator returns a sequence of outputs, one for each state of
the node (or subgraph), similar to NodeComputeTemporal.
However, it computes the required quantity for each version
incrementally instead of computing it afresh. An optional
parameter is the method describing points of time at which
to base the comparison. An optional parameter is a method
describing points of time at which computation needs to be
performed; in the absence of it, the method will be evaluated at
all the points of change.

7. Compare operator takes as input two SoNs (or two SoTSs)
and a scalar function (returning a single value), computes the
function value over all the individual components, and returns
the differences between the two as a set of (node-id, difference)
pairs. This operator tries to abstract the common operation of



comparing two different snapshots of a graph at different time
points. A simple variation of this operator takes a single SoN
(or SoTS) and two timepoints as input, and does the compare
on the timeslices of the SoN as of those two timepoints. An
optional parameter is the method describing points of time at
which to base the comparison.

8. Evolution operator samples a specified quantity (provided as a
function) over time to return evolution of the quantity over a
period of time. An optional parameter is the method describing
points of time at which to base the evolution.

9. TempAggregation abstractly represents a collection of temporal
aggregation operators such as Peak, Saturate, Max, Min,
and Mean over a scalar timeseries. The aggregation operations
are performed over a specified quantity for an SoN or SoTS.
For instance, finding “times at which there was a peak in the
network density” is used to find eventful timepoints of high in-
terconnectivity such as conversations in a cellular network, or
high transactional activity in a financial network.

5.3 System Implementation

The library is implemented in Python and Java and is built on
top of the Spark API. The choice of Spark provides us with an
efficient in-memory cluster compute execution platform, circum-
venting dealing with the issues of data partitioning, communica-
tion, synchronization, and fault tolerance. We provide a GraphX
integration for utilizing the capabilities of the Spark based graph
processing system for static graphs. Note that while we use Spark
for implementation, the concepts presented as a part of the TAF are
general and can be implemented over other distributed frameworks
such as DryadLINQ®.

The key abstraction in Spark is that of an RDD, which represents
a collection of objects of the same type, stored across a cluster. SON
and SoTS are implemented as RDDs of NodeT and SubgraphT re-
spectively (i.e., as RDDTG<NodeT> and RDDTG<SubgraphT>,
where RDDTG extends RDD class). Note that the in-memory graph
objects may be implemented using any popular graph representa-
tion, specially the ones that support useful libraries on top. We
now describe in brief the implementation details for NodeT and
SubgraphT, followed by details of the incremental computational
operator, and the parallel data fetch operation.

Figure 5 shows sample code snippets for three different analyt-
ical tasks — (a) finding the node with the highest clustering coeffi-
cient in a historical snapshot; (b) comparing different communities
in a network; (c) finding the evolution of network density over a
sample of ten points.

NodeT and SubgraphT: A set of temporal nodes is represented
with an RDD of NodeT (temporal node). A temporal node contains
the information for a node during a specified time interval. The
question of the appropriate physical storage of the NodeT (or
SubgraphT) structure is quite similar to storing a temporal graph
on disk such as the one using a DeltaGraph or a TGI, however,
in-memory instead of disk. Since NodeT is fetched at query time, it
is preferable to avoid creating a complicated index, since the cost to
create the index at query time is likely to offset any access latency
benefits due to the index. Upon observing several analysis tasks, we
noticed that the common access pattern is mostly in chronological
order, i.e., the query requesting the subsequent versions or changes,
in order of time. Hence, we store NodeT (and SubgraphT)
as an initial snapshot of the node (or subgraph), followed by a
list of chronologically sorted events. It provides methods such
as GetStartTime (), GetEndTime (), GetStateAt (),

Shttp://research.microsoft.com/en-us/projects/Dryad LINQ/
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tgiH = TGIHand1er(tgiconf, "wiki", sparkcontext)

sots = SOTS(k=1, tgiH).Timeslice("t = July 14,2002").fetch()
nm = NodeMetrics()

nodeCcC =

sots.NodeCompute(nm.LCC, append = True, key="cc")
"y

max1CC = nodecCC.Max(key="cc

(a) Finding node with highest local clustering coefficient

tgiH = TGIHandler(tgiconf, "snet", sparkcontext)

son = SON(tgiH).Timeslice('t >= Jan 1,2003 and t< Jan 1, '
\',2004").Filter("community")

sonA=son.Select("community =\"A\" ").fetch()

sonB=son.Select("community =\"B\" ").fetch()

compAB = SON.Compare(sonA, sonB, SON.count())

print('Average membership in 2003,"')

print (A=%s\tB=%s'%(mean(compAB[0]), mean(compAB[1])))

(b) Comparing two communities in a network

TGIHandler(tgiconf, "wiki", sparkcontext)

SON(tgiH).Select("id < 5000").Timeslice("t >= oct"
\"24, 2008").fetchQ

gm = GraphMetrics()

evol = son.GetGraph().Evolution(gm.density, 10)

print('Graph density over 10 points=%s'%evol)

tgiH =
son =

(c) Evolution of network density
Figure 5: Examples of analytics using the TAF Python API.

GetIterator (), Iterator.GetNextVersion (),
Iterator.GetNextEvent (), and so on. We omit their
details as their functionality is apparent from the nomenclature.

NodeComputeDelta: NodeComputeDelta evaluates a quantity
over each NodeT (or SubgraphT) using two supplied methods, f()
which computes the quantity on a state of the node or subgraph,
and, fA(), which updates the quantity on a state of the node or sub-
graph for a given set of event updates. Consider a simple example
of computing the fraction of all nodes that contain a specific at-
tribute value in a given SubgraphT. If this was performed using
NodeComputeTemporal, the quantity will be computed afresh
on each new version of the subgraph, which would cost &'(N.T)
operations where N is the size of the operand (number of nodes)
and 7 is the number of versions. However, using incremental com-
putation, each new version after the first snapshot can be processed
in constant time, which adds up to &(N +T'). While performing in-
cremental computation, the corresponding f () method is expected
to be defined so as to evaluate the nature of the event — whether
it brings about any change in the output quantity or not, i.e., a
scalar change value based upon the actual event and the concerned
portions of the state of the graph, and also update the auxiliary
structure, if used. Code snippet in Figure 6 illustrates the usage of
NodeComputeTemporal and NodeComputeDelta in a sim-
ilar example.

Consider a somewhat more intricate example, where one needs
to find counts of a small pattern over time on an SoTS, such as find-
ing the occurrence of a subgraph pattern in the data graph’s history.
In order to perform such pattern matching over long sequences of
subgraph versions, it is essential to maintain certain inverted in-
dexes which can be looked up to answer in constant time whether
an event has caused a change in the answer from a previous state or
caused a change in the index itself, or both. Such inverted indexes,
quite common to subgraph pattern matching, are required to be up-
dated with every event; otherwise, with every new event update, we
would need to look up the new state of the subgraph afresh which
would simply reduce it to performing non-indexed subgraph pat-
tern matching over new snapshots of a subgraph at each time point,
which is a fairly expensive task. In order to utilize a constantly
updated set of indices, the auxiliary information, which is a param-
eter and a return type for fa(), can be utilized. Note that such an
incremental computational operator opens up possibilities of utiliz-




Tgin

= TGIHandler(tgicont, "dblp", sparkcontext)
sots =

S0TS(k=2, tgiH).Timeslice('t >= Nov 1,2009 and t< Nov 30,'\
'2009').fetchQ)
TlabelcCount = sots.NodeComputeTemporal(fCountLabel)

labelCount = sots.NodeComputeDelta(fCountLabel, fCountLabelDel)

def fcountLabel(g):
labCount = 0
for node in g.GetNodes():
if node.GetPropvalue('EntityType') ==
TabCount += 1
return labCount

'Author':

def fcCountLabelDel(gPrev,
valNew = valPrev
if event.Type == EType.AttribvalAlter:
if event.Attribkey == 'EntityType':
if event.Prevval == 'Author':
valNew = valpPrev - 1
else if event.Nextval ==
valNew = valPrev + 1
return valNew

valpPrev, event):

'Author':

Figure 6: Incremental computation using different options:
NodeComputeTemporal and NodeComputeDelta to com-
pute counts of nodes with a specific label in subgraphs over time.

ing a large body of algorithmic work in online and streaming graph
query evaluation for the purpose of graph analytics.

Specifying interesting time points: In the map-oriented version
operators on an SoN or an SoTS, the time points of evaluation,
by default, are all the points of change in the given operand. How-
ever, a user may choose to provide a definition of which points to
select. This can be as simple as returning a constant set of time-
points, or based on a more complex function of the operand(s).
Except the Compare operator, which accepts two operands, other
operators allow an optional function, which works on a singe tem-
poral operand; the compare accepts a similar function that operates
on two such operands. Two such examples can be seen in Figure 7.

tgiH =
son =

TGIHandler(tgiconf, "wiki", sparkcontext)
SON(tgiH).select("id < 5000").Timeslice("t >= oct"
\"24, 2008").fetchQ
gm = GraphMmetrics()
evol = son.GetGraph().Evolution(gm.density,
\ selectTimepointsMinimal)
print('Graph density over 3 points=%s'%evol)

def selectTimepointsMinimal(son):
time_arr = []
st = son.GetStartTime()
et = son.GeteEndTime()
time_arr.append(st)
time_arr.append((st + et)/2)
time_arr.append(et)
return time_arr

Figure 7: Using the optional timepoint specification function for an
Evolution query with the start, middle and endpoint of SON.

Data Fetch: In a temporal graph analysis task, we first need to in-
stantiate a T7GI connection handler instance. It contains configu-
rations such as address and port of the TGI query manager host,
graph-id, and a SparkContext object. Then, a SON (or SOTS)
object is instantiated by passing the reference to the TGI handler,
and any query specific parameters (such as k-value for fetching 1-
hop neighborhoods with SOTS). The next few instructions spec-
ify the semantics of the graph to be fetched from the TGI. This
is done through the commands explained in Section 5.1, such as
the Select, Filter, Timeslice, etc. However, the actual
retrieval from the index doesn’t happen until the first statement fol-
lowing the specification instructions. A fetch () command can
be used explicitly to tell the system to perform the fetch operation.
Upon the fetch () call, the analytics framework sends the com-
bined instructions to the query planner of the TGI, which translates
those instructions into an optimal retrieval plan. This prevents the
system from retrieving large amounts of data from the index that is
a superset of the required information and prune it later.
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Figure 8: A flow diagram of the parallel fetch operation between
the TGI and TAF clusters. The numbers in circles indicate the rel-
ative order of events and arrowheads indicate the direction of flow.

The analytics engine runs in parallel on a set of machines, so
does the graph index. The parallelism at both places speeds up and
scales both the tasks. However, if the retrieval graph at the TGI
cluster was aggregated at the Query Manager and sent serially to
the master of the analytical framework engine after which it was
distributed to the different machines on the cluster, it would create
a space and time bottleneck at the Query Manager and the mas-
ter, respectively, for large graphs. In order to bypass this situation,
we have designed a parallel fetch operation, in which there is a di-
rect communication between the nodes of the analytics framework
cluster and the nodes of the TGI cluster. This happens through a
protocol that can be seen in Figure 8 and summarized below:

1. Analytics query containing fetch instructions is received by the
TAF master.

2. A handshake between the TAF master and TGI query manager is
established. The latter receives fetch instructions and the former
is made aware of the active TGI query processors.

3. Parallel fetch starts at the TGI cluster.

4. The TAF master instantiates a TGIDriver instance at each of its
cluster machines wrapped in a RDD.

5. Each node at the TAF performs a handshake with one or more
of the TGI nodes.

6. Upon completion of fetch at TGI, the individual TGI nodes
transfer the SoN to an RDDs on the corresponding TAF nodes.

More details on the TGI-TAF integration can be found in the
longer version of the paper [22].

6. EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the efficiency of TGI and
TAF. To recap, TGI is a persistent store for entire histories of large
graphs, that enables fast retrieval for a diverse set of graph primi-
tives — snapshots, subgraphs, and nodes at past time points or across
intervals of time. We primarily highlight the performance of TGI
across the entire spectrum of retrieval primitives. We are not aware
of a baseline that may compete with TGI across all or a substantial
subset of these retrieval primitives. Specialized alternatives such as
DeltaGraph for snapshot retrieval is highly unsuitable for node or
neighbor version retrieval; a version centric index may be special-
ized for node-version retrieval but is highly unsuitable for snapshot
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Figure 9: Snapshot retrieval times for varying parallel fetch factor
(c), on Dataset 1; m=4; r=1, ps = 500.

or neighborhood-version style retrieval. Also note that TGI gener-
alizes all the known approaches including those two; using appro-
priate parameter configurations, it can even converge to any specific
alternative. Secondly, we demonstrate the scalability of TGI design
through experiments on parallel fetching for large and varying data
sizes. Finally, we also report experiments demonstrating computa-
tional scalability of the TAF for a graph analysis task, as well as the
benefits of our incremental computational operator.

Datasets and Notation: We use four datasets: (1) Wikipedia cita-
tion network consisting of 266,769,613 edge addition or modifica-
tion events from Jan 2001 to Sept 2010. At its largest point, the
graph consists of 21,443,529 nodes and 122,075,026 edges; (2) We
augment Dataset 1 by adding around 333 million synthetic events
which randomly add new edges or delete existing edges over a pe-
riod of time, making a total of 700 million events; (3) Similarly, we
add 733 million events, making the total around 1 billion events;
(4) Using a Friendster gaming network snapshot, we add synthetic
dates at uniform intervals to 500 million events with a total of ap-
proximately 37.5 million nodes and 500 million edges.

Following key parameters that are varied in the experiments:
data store machine count (m), replication across dataset (r), num-
ber of parallel fetching clients (c), eventlist size (/), snapshot or
eventlist partition size (ps), and Spark cluster size (m,).

We conducted all experiments on an Amazon EC2 cluster. Cas-
sandra ran on machines containing 4 cores and 15GB of available
memory. We did not use row caching and the actual memory con-
sumption was much lower that the available limit on those ma-
chines. Each fetch client ran on a single core with up to 7.5GB
available memory. The machines with TAF nodes running Spark
workers ran on a single core and 7.5GB of available memory each.

Snapshot retrieval: Figure 9 shows the snapshot retrieval times for
Dataset 1 for different values of the parallel fetch factor, c. We ob-
serve that the retrieval cost is directly proportional to the size of the
output. Further, using multiple clients to retrieve the snapshots in
parallel gives near-linear speedup, especially with low parallelism.
This demonstrates that TGI can exploit available parallelism well.
We expect that with higher values of m (i.e., if the index were dis-
tributed across a more machines), linear speedup would be seen for
larger values of c¢ (this is corroborated by the next set of experi-
ments). Figure 11c shows snapshot retrieval times for Dataset 4.
Figure 10 shows snapshot retrieval performance for three differ-
ent sets of values for m and r. We can see that while there is no
considerable difference in performance across the different config-
urations, using two storage machines slightly decreases the query
latency over using one machine, in the case of a single query client,
¢ = 1. For higher c values, we see that m = 2 has a slight edge over
m = 1. Also, the behavior for the two m = 1 and m = 2;r = 2 cases
are quite similar for same ¢ values. However, we observed that the
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latter case allows a higher possibility of ¢ value whereas the for-
mer peaks out at a lower ¢ value. Further, compression for deltas is
negligible for TGI. We omit the detailed points of our investigation,
but Figure 11a is representative of the general behavior.

In the special case of ps — oo, TGI becomes structurally equiva-
lent to a DeltaGraph. While DeltaGraph provides the most efficient
way of performing snapshot retrieval, we show that using lower val-
ues of ps in TGI only has a marginal impact on the performance of
snapshot retrieval (Figure 11b). This occurs due to the TGI design
policy of storing all the partitions of a delta contiguously in a clus-
ter and avoiding any additional seek costs. Hence, DeltaGraph is
subsumed as a part of TGI and we omit further comparisons in this
respect. Also note that the internals of snapshot retrieval through
DeltaGraph have been thoroughly explored in our prior work [21].

Node History Retrieval: Smaller eventlists or partition sizes pro-
vide a lower latency time for retrieving different versions of a node,
which can be seen in Figure 12a and Figure 12c, respectively. This
is primarily due to the reduction in effort for fetching and dese-
rialization. A higher parallel fetch factor is effective in reducing
the latency for version retrieval (Figure 12b). Note that the perfor-
mances of version and snapshot retrieval for varying partition sizes
are opposite. However, smaller eventlist sizes benefit both version
and snapshot retrieval. Node version retrieval for Dataset 4 shows
a similar behavior, which can be seen in Figure 14.

Neighborhood Retrieval: We compared the performance of re-
trieving 1-hop neighborhoods, both static and specific versions, us-
ing different graph partitioning and replication choices. A topolog-
ical, flow-based partitioning accesses fewer graph partitions com-
pared to a random partitioning scheme, and a 1-hop neighborhood
replication restricts the access to a single partition.This can be seen
in Figure 13a for 1-hop neighborhood retrieval latencies. As dis-
cussed in Section 4, the 1-hop replication does not affect other
queries involving snapshots or individual nodes, as the replicated
portion is stored separately from the original partition. In case of a
2-hop neighborhood retrieval, there are similar performance bene-
fits over random partitioning.

Increasing Data Over Time: We observed the fetch performance
of TGI with an increasing size of the index. We measured the laten-
cies for retrieving certain snapshots upon varying the time duration
of the graph dataset, as shown in Figure 13b. Datasets 2 and 3 con-
tain additional 333 million and 733 million events over dataset 1,
respectively. Only a marginal difference in snapshot retrieval per-
formance demonstrates TGI’s scalability for large datasets.

Conducting Scalable Analytics: We examined TAF’s perfor-
mance through an analytical task for determining the highest lo-
cal clustering coefficient in historical graph snapshot. Figure 13c
shows compute times for the given task on different graph sizes, as
well as varying size of the Spark cluster. Speedups due to parallel
execution can be observed, especially for larger datasets.

Temporal Computation: Earlier in the chapter, we presented two
separate ways of computing a quantity over changing versions of a
graph (or node). Those include, evaluating the quantity on different
versions of the graph separately, and alternatively, performing it in
an incremental fashion, utilizing the result for the previous version
and updating it with respect to the graph updates. This can be seen
for a simple node label counting task in Figure 6. the benefits due
to the incremental (NodeComputeDelta operator) computation
over a version-based computation (NodeComputeTemporal
operator) can be seen in Figure 15.
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7. CONCLUSION

Graph analytics are increasingly considered crucial in obtaining
insights about how interconnected entities behave, how informa-
tion spreads, what are the most influential entities in the data, and
many other characteristics. Analyzing the history of a graph’s evo-
lution can provide significant additional insights, especially about
the future. Most real-world networks however, are large and highly
dynamic. This leads to creation of very large histories, making it
challenging to store, query, or analyze them. In this paper, we pre-
sented a novel Temporal Graph Index that enables compact storage
of very large historical graph traces in a distributed fashion, sup-
porting a wide range of retrieval queries to access and analyze only
the required portions of the history. Our experiments demonstrate
its efficient retrieval performance across a wide range of queries,
and can effectively exploit parallelism in a distributed setting. We
also presented a distributed analytics framework, built on top of
Apache Spark, that allows analysts to quickly write complex tem-
poral analysis tasks and execute them scalably over a cluster.
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ABSTRACT

There is considerable interest in the design and development
of distributed systems that can execute algorithms to pro-
cess large graphs. Serializability guarantees that parallel
executions of a graph algorithm produce the same results as
some serial execution of that algorithm. Serializability is re-
quired by many graph algorithms for accuracy, correctness,
or termination but existing graph processing systems either
do not provide serializability or cannot provide it efficiently.
To address this deficiency, we provide a complete solution
that can be implemented on top of existing graph processing
systems. Our solution formalizes the notion of serializabil-
ity and the conditions under which it can be provided for
graph processing systems. We propose a novel partition-
based synchronization approach that enforces these condi-
tions to efficiently provide serializability. We implement our
partition-based technique into the open source graph pro-
cessing system Giraph and demonstrate that our technique is
configurable, transparent to algorithm developers, and pro-
vides large across-the-board performance gains of up to 26 x
over existing techniques.

1. INTRODUCTION

Graph data processing has become ubiquitous due to the
large quantities of data collected and processed to solve real-
world problems. For example, Facebook processes massive
social graphs to compute popularity and personalized rank-
ings, find communities, and propagate advertisements for
over 1 billion monthly active users [16]. Google processes
web graphs containing over 60 trillion indexed webpages to
determine influential vertices [19].

Graph processing solves real-world problems through al-
gorithms that are implemented and executed on graph pro-
cessing systems. These systems provide programming and
computation models for graph algorithms as well as correct-
ness guarantees that algorithms require.

One key correctness guarantee is serializability. Infor-
mally, a graph processing system provides serializability if it
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can guarantee that parallel executions of an algorithm, im-
plemented with its programming and computation models,
produce the same results as some serial execution of that
algorithm [18].

Serializability is required by many algorithms, for exam-
ple in machine learning, to provide both theoretical and em-
pirical guarantees for convergence or termination. Parallel
algorithms for combinatorial optimization problems experi-
ence a drop in performance and accuracy when parallelism
is increased without consideration for serializability. For ex-
ample, the Shotgun algorithm for L;-regularized loss mini-
mization parallelizes sequential coordinate descent to handle
problems with high dimensionality or large sample sizes [11].
As the number of parallel updates is increased, convergence
is achieved in fewer iterations. However, after a sufficient
degree of parallelism, divergence occurs and more iterations
are required to reach convergence [11]. Similarly, for energy
minimization on NK energy functions (which model a sys-
tem of discrete spins), local search techniques experience an
abrupt degradation in the solution quality as the number of
parallel updates is increased [32]. Some algorithms also re-
quire serializability to prevent unstable accuracy [27] while
others require it for statistical correctness [17]. Graph col-
oring requires serializability to terminate on dense graphs
[18] and, even for sparse graphs, will use significantly fewer
colors and complete in only a single iteration (rather than
many iterations) when executed serializably.

Providing serializability in a graph processing system is
fundamentally a system-level problem that informally re-
quires: (1) vertices see up-to-date data from their neighbors
and (2) no two neighboring vertices execute concurrently.
The general approach is to pair an existing system or compu-
tation model with a synchronization technique that enforces
conditions (1) and (2). Despite this, of the graph process-
ing systems that have appeared over the past few years, few
provide serializability as a configurable option. For exam-
ple, popular systems like Pregel [28], Giraph [1], and GPS
[31] pair a vertex-centric programming model with the bulk
synchronous parallel (BSP) computation model [34] but do
not provide serializability.

Giraphx [33] provides serializability by pairing the asyn-
chronous parallel (AP) model, which is an asynchronous
extension of the BSP model, with the single-layer token
passing and vertex-based distributed locking synchroniza-
tion techniques. However, it implements these synchroniza-
tion techniques as part of specific user algorithms rather
than within the system, meaning algorithm developers must
re-implement the techniques into every algorithm that they
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Figure 1: Spectrum of synchronization techniques.

write. Consequently, Giraphx unnecessarily couples and ex-
poses internal system details to user algorithms, meaning
serializability is neither a configurable option nor transpar-
ent to the algorithm developer. Furthermore, its implemen-
tation of vertex-based distributed locking unnecessarily di-
vides each superstep, an iteration of computation, into mul-
tiple sub-supersteps in which only a subset of vertices can
execute. This exacerbates the already expensive commu-
nication and synchronization overheads associated with the
global synchronization barriers that occur at the end of each
superstep [20], resulting in poor performance.

GraphLab [27], which now subsumes PowerGraph [18],
takes a different approach by starting with an asynchronous
implementation of the Gather, Apply, Scatter (GAS) com-
putation model. This asynchronous mode (GraphLab async)
avoids global barriers by using distributed locking. GraphLab
async provides the option to execute with or without seri-
alizability and uses vertex-based distributed locking as its
synchronization technique. However, GraphLab async suf-
fers from high communication overheads [22, 20] and scales
poorly with this technique. Moreover, neither GraphLab
nor Giraphx provide a theoretical framework for proving the
correctness of their synchronization techniques.

Irrespective of the specific system, synchronization tech-
niques used to enforce conditions (1) and (2) fall on a spec-
trum that trades off parallelism with communication over-
heads (Figure 1). In particular, single-layer token passing
and vertex-based distributed locking fall on the extremes
of this spectrum: token passing uses minimal communica-
tion but unnecessarily restricts parallelism, forcing only one
machine to execute at a time, while vertex-based distributed
locking uses a dining philosopher algorithm to maximize par-
allelism but incurs substantial communication overheads due
to every vertex needing to synchronize with their neighbors.

To overcome these issues, we first formalize the notion of
serializability in graph processing systems and establish the
conditions under which it can be provided. To the best of our
knowledge, no existing work has presented such a formaliza-
tion. To address the shortcomings of the existing techniques,
we introduce a fundamental design shift towards partition
aware synchronization techniques, which exploit graph par-
titions to improve performance. In particular, we propose
a novel partition-based distributed locking solution that al-
lows control over the coarseness of locking and the resulting
trade-off between parallelism and communication overheads
(Figure 1). We implement all techniques at the system level
in the open source graph processing system Giraph so that
they are performant, configurable, and transparent to al-
gorithm developers. We demonstrate through experimen-
tal evaluation that our partition-based solution substantially
outperforms existing techniques.

Our contributions are hence threefold: (i) we formal-
ize the notion of serializability in graph processing systems
and establish the conditions that guarantee it; (ii) we intro-
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duce the notion of partition aware techniques and our novel
partition-based distributed locking technique that enables
control over the trade-off between parallelism and commu-
nication overheads; and (iii) we implement and experimen-
tally compare the techniques with Giraph and GraphLab to
show that our partition-based technique provides substan-
tial across-the-board performance gains of up to 26x over
existing synchronization techniques.

This paper is organized as follows. In Section 2, we pro-
vide background on the BSP, AP, and GAS models. In Sec-
tion 3, we formalize serializability and, in Sections 4 and
5, describe both existing techniques and our partition-based
approach. In Section 6, we detail their implementations in
Giraph. We present an extensive experimental evaluation of
these techniques in Section 7 and describe related work in
Section 8 before concluding in Section 9.

2. BACKGROUND AND MOTIVATION

In this section, we introduce the computation models and
give a concrete motivation for serializability.

2.1 BSP Model

Bulk synchronous parallel (BSP) [34] is a computation
model in which computations are divided into a series of
(BSP) supersteps separated by global barriers. Pregel (and
Giraph) pairs BSP with a vertex-centric programming model,
where vertices are the units of computation and edges act
as communication channels.

Graph computations are specified by a user-defined com-
pute function that executes, in parallel, on all vertices in
each superstep. The function specifies how each vertex pro-
cesses its received messages, updates its vertex value, and
who to send messages to. Importantly, messages sent in
one superstep can be consumed/processed by their recipi-
ents only in the next superstep. Vertices can vote to halt to
become inactive but are reactivated by incoming messages.
The computation terminates when all vertices are inactive
and no more messages are in transit.

Pregel and Giraph use a master/workers configuration.
The master machine partitions the input graph across worker
machines, coordinates all global barriers, and performs ter-
mination checks based on the two aforementioned condi-
tions. The graph is partitioned by edge-cuts: each vertex
belongs to a single worker while an edge can span two work-
ers. Finally, BSP is push-based: messages are pushed by the
sender and buffered at the receiver.

As a running example, consider the greedy graph color-
ing algorithm. Each vertex starts with the same color (de-
noted by its vertex value) and, in each superstep, selects
the smallest non-conflicting color based on its received mes-
sages, broadcasts this change to its neighbors, and votes to
halt. The algorithm terminates when there are no more
color conflicts. Consider an undirected graph of four ver-
tices partitioned across two worker machines (Figure 2). All
vertices broadcast the initial color 0 in superstep 1 but the
messages are not visible until superstep 2. Consequently, in
superstep 2, all vertices update their colors to 1 based on
stale data. Similarly for superstep 3. Hence, vertices col-
lectively oscillate between 0 and 1 and the algorithm never
terminates. However, if we could ensure that only vo and vs3
execute in superstep 2 and only v2 and v; execute in super-
step 3, then this problem would be avoided. As we will show
in Section 4.3, serializability provides precisely this solution.
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Figure 2: BSP execution of greedy graph coloring.
Each graph is the state at the end of that superstep.

2.2 AP Model

The asynchronous parallel (AP) model improves on the
BSP model by reducing staleness: instead of delaying all
messages until the next superstep, vertices can immediately
process any received messages (including ones sent in the
same superstep). The AP model retains global barriers to
separate supersteps, so messages that arrive too late to be
seen by a vertex in superstep 7 (because the vertex was al-
ready executed) will be processed in the next superstep i+ 1.
We use a more efficient and performant version of the AP
model, described in [20], and its implementation in Giraph,
which we will refer to as Giraph async.

Like BSP, the AP model can also fail to terminate for the
greedy graph coloring algorithm. Consider again the undi-
rected graph (Figure 3) and suppose that workers Wi and
W2 execute their vertices sequentially as vo then ve and v
then vs, respectively. Furthermore, suppose the pairs v, v1
and va, vs are each executed in parallel. Then the algorithm
fails to terminate. Specifically, in superstep 1, vo and v
initialize their colors to 0 and broadcast to their neighbors.
Due to the asynchronous nature of AP, v2 and wvs are able
to see this message 0 and select the color 1. Similarly, in
superstep 2, vo and v now see each other’s message 0 (sent
in superstep 1) and also the message 1 from vy and vs, re-
spectively, so they update their colors to 2. Similarly for v,
and vz, who now update their colors to 0. Ultimately, the
graph’s state at superstep 4 returns to that at superstep 1,
so the vertices are collectively cycling through three graph
states in an infinite loop.

However, if we can force vp to execute concurrently with
vz instead of v1 (and ve with v1), then neighboring vertices
will not simultaneously pick the same color. Furthermore, if
we ensure that ve and v, wait for the messages from vz and
vo to arrive before they execute, then they will have up-to-
date information on all their neighbors’ colors. With these
two constraints, graph coloring will terminate in just two su-
persteps. In Section 3, we present a theoretical framework
for serializability that formalizes and incorporates these con-
straints as correctness criteria.

2.3 GAS Model

The Gather, Apply, and Scatter (GAS) model is used
by GraphLab for both its synchronous and asynchronous
modes, which we refer to as GraphLab sync and GraphLab
async. These two system modes use the sync GAS and async
GAS models, respectively. In GAS, each vertex pulls infor-
mation from its neighbors in the gather phase, applies the
accumulated data in the apply phase, and updates and ac-
tivates neighboring vertices in the scatter phase.

Like Pregel and Giraph, GraphLab pairs GAS with a
vertex-centric programming model. However, as evidenced
by the Gather phase, GAS is pull-based rather than push-
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Figure 3: AP execution of greedy graph coloring.
Each graph is the state at the end of that superstep.

based. Furthermore, GraphLab partitions graphs by vertex-
cut: for each vertex u, one worker owns the primary copy of
u while all other workers owning a neighbor of u get a local
read-only replica of w.

Sync GAS is similar to BSP: vertices are executed in su-
persteps separated by global barriers and the effects of apply
and scatter of one superstep are visible only to the gather of
the next superstep. Async GAS, however, is different from
AP as it has no notion of supersteps. To execute a vertex
u, each GAS phase individually acquires a write lock on
and read locks on u’s neighbors to prevent data races [3].
However, this does not provide serializability because GAS
phases of different vertex computations can interleave [18].
To provide serializability, a synchronization technique must
be added on top of async GAS. This technique prevents
neighboring computations from interleaving by performing
distributed locking over all three GAS phases.

Async GAS can similarly fail to terminate for graph col-
oring [18]. For example, for the graph in Figure 3, suppose
both W7 and W> each have two threads for their two ver-
tices and that all four threads execute in parallel. Then, as
described above, the GAS phases of different vertices will
interleave, which causes vertices to see stale colors and so
the execution is not guaranteed to terminate: it can become
stuck in an infinite loop. In contrast, executing in async
GAS with serializability will always terminate successfully.

3. SERIALIZABILITY

In this section, we present a theoretical framework that
formalizes key conditions under which serializability can be
provided for graph processing systems. Later, we show how
serializability can be enforced efficiently in these systems.

3.1 Preliminaries

Since popular graph processing systems use a vertex-centric
programming model, where developers specify the actions of
a single vertex, we focus on vertex-centric systems. The for-
malisms that we will establish apply to all vertex-centric
systems, irrespective of the computation models they use.

Existing work [18, 33] considers serializability for vertex-
centric algorithms where vertices communicate only with
their direct neighbors, which is the behaviour of the ma-
jority of algorithms that require serializability. For exam-
ple, the GAS model supports only algorithms where vertices
communicate with their direct neighbors [27, 18]. Thus, we
focus on this type of vertex-centric algorithms. Our goal
is to provide serializability transparently within the graph
processing system, independent of the particular algorithm
being executed.

In vertex-centric graph processing systems, there are two
levels of parallelism: (1) between multiple threads within a
single worker machine and (2) between the multiple worker



machines. Due to the distributed nature of computation,
the input graph must be partitioned across the workers and
so data replication will occur. To better understand this, let
neighbors refer to both in-edge and out-edge neighbors.

DEFINITION 1. A wertex u is a machine boundary verter,
or m-boundary for short, if at least one of its neighbors v
belongs to a different worker machine from w. Otherwise, u
is a machine internal, or m-internal, vertez.

DEFINITION 2. A replica is local if it belongs to the same
worker machine as its primary copy and remote otherwise.

Systems keep a read-only replica of each vertex on its
owner’s machine and of each m-boundary vertex u on each of
u’s out-edge neighbor’s worker machines. This is a standard
design used, for example, in Pregel, Giraph, and GraphLab.
Remote replicas (of m-boundary vertices) exist due to graph
partitioning: for vertex-cut partitioning, u’s vertex value is
explicitly replicated on every out-edge neighbor v’s worker
machine; for edge-cut, u is implicitly replicated because the
message it sends to v, which is a function of u’s vertex value,
is buffered in the message store of v’s machine. This distinc-
tion is unimportant for our formalism as we care only about
whether replication occurs. Local replicas occur in push-
based systems because message stores also buffer messages
sent between vertices belonging to the same worker. In pull-
based systems, local replicas are required for implementing
synchronous computation models like sync GAS. For asyn-
chronous models, pull-based systems may not always have
local replicas (such as in GraphLab async) but we will con-
sider the more general case in which they do (if they do not,
then reads of such vertices will always trivially see up-to-
date data).

DEFINITION 3. A read of a replica is fresh if the replica
is up-to-date with its primary copy and stale otherwise.

An execution is serializable if it produces the same result
as a serial execution in which all reads are fresh. Formally,
this is one-copy serializability (1SR) [5]. Informally, we will
say a system provides serializability if all executions conform
to 1SR. In terms of traditional transaction terminology, we
define a site as a worker machine, an item as a vertex, and
a transaction as the execution of a single vertex. We detail
such transactions next.

3.2 Transactions

We define a transaction to be the single execution of an
arbitrary vertex u, consisting of a read on u and the replicas
of u’s in-edge neighbors followed by a write to u. The read
acts only on u and its in-edge neighbors because u receives
messages (or pulls data) from only its in-edge neighbors—it
has no dependency on its out-edge neighbors. Denoting the
read set as N, = {u,u’s in-edge neighbors}, any execution
of u is the transaction T; = r;[Ny|w;[u], or simply T;(Ny)
as all transactions are of the same form.

Any v € N, with v # u is also annotated to distinguish
it from the other read-only replicas of v. For example, if u
belongs to worker A, we annotate the read-only replica as
va € N,. However, the next two sections will show how we
can drop these annotations.

Our definition relies only on the fact that the system is
vertex-centric and not on the nuances of specific compu-
tation models. For example, although BSP and AP have
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a notion of supersteps, the ¢ for a transaction T;(N,) has
no relation to the superstep count. The execution of u
in two different supersteps is represented by two different
transactions T;(N,) and T;(N,). Our definitions also work
when there is no notion of supersteps, such as in async GAS,
or when there are per-worker logical supersteps (supersteps
that are not globally coordinated), such as proposed in [20].
Thus, the notion of a transaction that follows from our above
definition is consistent with the standard notion of a trans-
action [5]: it captures, for graph processing, the atomic unit
of operation that acts on shared data (the graph state).

3.3 Our Approach

In contrast to traditional database systems, graph pro-
cessing systems present unique constraints that need to be
taken into account for providing serializability.

First, Pregel-like graph processing systems such as Giraph
and GraphLab do not natively support transactions: they
are not database systems and thus have no notion of com-
mits or aborts. The naive solution is to implement trans-
action support into all graph processing systems. However,
this requires a fundamental redesign of each system, which
is neither general nor reusable. Moreover, such a solution
fails to be modular: it introduces performance penalties for
graph algorithms that do not require serializability.

Second, an abort in a graph processing system can result
in prohibitively expensive (and possibly cascading) rollbacks
on the distributed graph state: a transaction often involves
sending messages to vertices of different worker machines,
the effects of which are difficult to undo. Consequently, so-
lutions relying on optimistic currency control are a poor fit
for graph processing due to the high cost of aborts.

However, for graph processing systems, a write-all ap-
proach [5] can be used to keep replicas up-to-date because
graph processing systems replicate only for distributed com-
putation and not for availability. When a worker machine
fails, we lose a portion of the input graph and so cannot pro-
ceed with the computation. Indeed, failure recovery requires
all machines to rollback to a previous checkpoint [1, 27, 28],
meaning the problem of pending writes to failed machines
never occurs. In contrast, a write-all approach is very expen-
sive for traditional database systems because they replicate
primarily for better performance and/or availability.

Furthermore, as detailed in Section 3.2, the read and write
sets of each transaction are known a priori (N, and v, respec-
tively, for a transaction T;(N,)), which means pessimistic
concurrency control can be used to avoid costly aborts.

Our approach, at a high level, is to pair graph processing
systems with a synchronization technique, which uses (1) a
write-all approach to avoid data staleness and (2) pessimistic
concurrency control to prevent conflicting transactions from
starting. For the graph processing systems, (1) means ver-
tices will always read from fresh replicas and so the system
need not reason about versioning, while (2) means all trans-
actions that start will commit, so aborts never occur and
hence the system can treat all operations as final without
needing explicit support for commits and aborts. Further-
more, this solution enables us to use transactions to formally
reason about correctness without the burden of fundamen-
tally redesigning each system to support transactions. Since
aborts cannot occur, we also avoid the expensive penalties
of distributed cascading rollbacks.

Using the definitions introduced in Section 3.2, we can



formalize our requirements into the following two conditions:

CoNDITION C1. Before any transaction T;(N.) executes,
all replicas v € N,, are up-to-date.

CONDITION C2. No transaction T;(N,) is concurrent with
any transaction T;(Ny) for all copies of v € Ny, v # u.

Next, we will prove that 1SR can be provided by enforcing
these two conditions.

3.4 Correctness

We first prove, in Lemma 1, that enforcing condition C1
simplifies the problem of providing 1SR to that of providing
standard serializability on a single logical copy of each vertex
(i.e., without data replication).

LEMMA 1. If condition C1 is true, then it suffices to use
standard serializability theory where operations are performed
on a single logical copy of each vertex.

PrOOF. Condition C1 ensures that before every transac-
tion T3(N.) executes, the replicas v € N, are all up-to-date.
Then all reads 7;[INV,] see up-to-date replicas and are thus
the same as reading from the primary copy of each v € N,,.
Hence, there is effectively only a single logical copy of each
vertex, so we can apply standard serializability theory. [

Theorem 1 then establishes the relationship between 1SR
and conditions C1 and C2.

THEOREM 1. All executions are serializable for all input
graphs if and only if conditions C1 and C2 are both true.

PROOF SKETCH. Due to space constraints, we will briefly
sketch only the key ideas of the proof. The full proof is
provided in [21].

(Ir) Since condition C1 is true, by Lemma 1 we can apply
standard serializability theory [5]. It can then be shown
that, for all input graphs, if condition C2 is true then it
is impossible for the read and write sets of two arbitrary
transactions to overlap. Thus, transactions never conflict
and so the serialization graph [5] is always acyclic.

(ONLY IF) We prove the inverse (if either condition is false
then there exists a non-serializable execution for some input
graph) by considering an input graph with two vertices con-
nected by an undirected edge. When C1 is true and C2 is
false, we can construct a non-serializable history with two
parallel but conflicting transactions. When C2 is true and
Cl1 is false, replicas are no longer kept up-to-date and so, by
placing each vertex on a different worker, we can construct
a serial history that violates 1SR. [

3.5 Enforcing Serializability

The computation models from Section 2 do not enforce
conditions C1 and C2 and therefore, by Theorem 1, do not
provide serializability. Consequently, graph processing sys-
tems that implement these models also do not provide seri-
alizability. Moreover, these models do not guarantee fresh
reads even under serial executions (on a single machine or
under the sequential execution of multiple machines). For
example, BSP effectively updates replicas lazily’ because
messages sent in one superstep, even if received, cannot be

!The “synchronous” in BSP refers to the global communica-
tion barriers, not the method of replica synchronization.
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read by the recipient in the same superstep. Thus, both m-
boundary and m-internal vertices (Definition 1) suffer stale
reads under a serial execution. While AP reduces this stal-
eness and can update local replicas eagerly, it propagates
messages to remote replicas lazily without the guarantees
of condition C1 and so stale reads can again occur under a
serial execution of multiple machines.

As mentioned in Section 3.3, to provide serializability, we
enforce conditions C1 and C2 by adding a synchronization
technique (Sections 4 and 5) to the systems that implement
the above computation models. These synchronization tech-
niques implement a write-all approach for updating replicas,
which is required for enforcing condition C1. They also en-
sure that a vertex u does not execute concurrently with any
of its in-edge and out-edge neighbors. At first glance, this
appears to be stronger than what condition C2 requires.
However, suppose v is an out-edge neighbor of v and v is
currently executing. Then if u does not synchronize with its
out-edge neighbors, it will erroneously execute concurrently
with v, violating condition C2 for v. Alternatively, if v is an
out-edge neighbor of u then w is an in-edge neighbor of v,
so they must not execute concurrently.

4. EXISTING SYNCHRONIZATION
TECHNIQUES

Token passing and distributed locking are the two general
approaches for implementing synchronization techniques that
enforce conditions C1 and C2. In this section, we review two
existing synchronization techniques: single-layer token pass-
ing and vertex-based distributed locking.

4.1 Preliminaries

How a synchronization technique implements a write-all
approach (Section 3.3) depends on whether the computation
model is synchronous or asynchronous.

In asynchronous computation models (AP and async GAS),
replicas immediately apply received updates. Thus, local
replicas can be updated eagerly, since there is no network
communication (Section 6). Remote replicas, however, are
updated lazily in a just-in-time fashion to provide commu-
nication batching. This lazy update is possible because all
vertices are coordinated by a synchronization technique: any
vertex v must first acquire a shared resource (e.g., a token
or a fork) from its neighbor u before it can execute. Con-
sequently, for an m-boundary vertex u with a replica on its
neighbor v’s worker, u’s worker can buffer remote replica
updates until v wants to execute (i.e., requests the shared
resource)—at which point u’s machine will flush all pend-
ing remote replica updates (and ensure their receipt) before
handing over the shared resource that allows v to proceed.

In contrast, synchronous computation models (BSP and
sync GAS) hide updates from replicas until the next super-
step. That is, replicas can be updated only after a global
barrier. This means systems with synchronous models are
limited to specialized synchronization techniques that keep
replicas up-to-date by dividing each superstep into multiple
sub-supersteps. This is significantly less performant than
synchronization techniques for systems with asynchronous
computation models, as detailed further in Section 6.

4.2 Single-Layer Token Passing
Single-layer token passing, considered in [33], is a simple
technique that passes an exclusive global token in a round-



robin fashion between workers arranged in a logical ring.
Each worker machine must execute with only one thread.

The worker machine holding the global token can execute
both its m-internal and m-boundary vertices (Definition 1),
while workers without the token can execute only their m-
internal vertices. This prevents neighboring vertices from
executing concurrently since each m-internal vertex and its
neighbors are executed by a single thread, so there is no
parallelism, while an m-boundary vertex can execute only
when its worker machine holds the exclusive token.

To enforce condition C1, local replicas must be updated
eagerly, while remote replicas of a worker’s m-boundary ver-
tices can be updated in batch before a worker passes along
the global token (as updates will arrive before the token).
Per Section 4.1, this is possible with asynchronous compu-
tation models. Thus, for asynchronous models, single-layer
token enforces conditions C1 and C2 and, by Theorem 1,
provides serializability. However, this technique does not
provide serializability for synchronous computation models
as they cannot update local replicas eagerly.

4.3 Vertex-based Distributed Locking

Vertex-based distributed locking, unlike token passing,
pairs threads with individual vertices to allow all vertices
to attempt to execute in parallel. As motivated in Section
2.1, the key idea is to coordinate these vertices such that
neighboring vertices do not execute concurrently, while also
addressing issues such as deadlock and fairness.

This coordination is achieved using the Chandy-Misra al-
gorithm [13], which solves the hygienic dining philosophers
problem, a generalization of the dining philosophers prob-
lem. In this problem, each philosopher is either thinking,
hungry, or eating and must acquire a shared fork from each
of its neighbors to eat. Philosophers can communicate with
their neighbors by exchanging forks and request tokens for
forks. The “dining table” is effectively an undirected graph
where each vertex is a philosopher and each edge is asso-
ciated with a shared fork: a philosopher u must acquire
deg(u) forks to eat. The Chandy-Misra algorithm ensures
no neighbors eat at the same time, guarantees fairness (no
philosopher can hog its forks), and prevents deadlocks and
starvation [13]. Hence, condition C2 is enforced.

To enforce condition C1, local replicas are updated ea-
gerly and, for remote replicas, each worker flushes its pend-
ing remote replica updates before any m-boundary vertex
relinquishes a fork to a vertex of another worker. Then, per
Section 4.1, vertex-based distributed locking provides serial-
izability for asynchronous computation models. As we men-
tioned in Section 4.1, this solution is incompatible with syn-
chronous models (BSP and sync GAS) because these models
do not allow local replicas to be updated eagerly. However,
applying the theory developed in Section 3, Proposition 1
shows that a constrained vertex-based locking solution can
provide serializability for systems with synchronous models.
We omit the proof due to space constraints. It can be found
in the longer version of this paper [21].

PROPOSITION 1. Vertex-based distributed locking enforces
conditions C1 and C2 for synchronous computation models
when the following two properties hold: (i) all vertices act
as philosophers and (i) fork and token exchanges occur only
during global barriers.
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5. PARTITION AWARE TECHNIQUES

In this section, we show how partition aware synchroniza-
tion techniques can address severe limitations of existing
techniques. We then present our partition-based solution to
demonstrate its significant performance advantages.

5.1 Preliminaries

Existing graph processing systems provide parallelism at
each worker machine by pairing computation threads with
either graph partitions or individual vertices.

For example, both Giraph and Giraph async (Section 2.2)
assign multiple graph partitions to each worker machine and
pair threads, each roughly equivalent to a CPU core, with
available partitions. This allows multiple partitions to exe-
cute in parallel, while vertices in each partition are executed
sequentially. We call such systems partition aware.

In contrast, GraphLab async uses over-threading to pair
lightweight threads (called fibers) with individual vertices.
Thus, it has no notion of partitions. The large number of
fibers provides a high degree of parallelism and ensures that
CPU cores are kept busy even when some fibers are blocked
on communication.

Systems like GraphLab async are well-suited for very fine-
grained synchronization techniques such as vertex-based dis-
tributed locking (Section 4.3). Partition aware systems like
Giraph async are able to support partition aware techniques
that, as we will show, take advantage of partitions to signif-
icantly improve performance. Since GraphLab async is not
partition aware, it is unable to support such techniques.

Lastly, as we will show in the following sections, it is im-
portant for synchronization techniques implemented in par-
tition aware systems to distinguish between p-internal and
p-boundary vertices, defined as follows.

DEFINITION 4. A vertex u is a partition boundary vertez,
or p-boundary for short, if at least one of its neighbors v
belongs to a different partition from w. Otherwise, u is a
partition internal, or p-internal, vertex.

5.2 Motivation

The two existing synchronization techniques described in
Section 4 suffer from several major performance issues.

Token passing has minimal communication overheads but
very limited parallelism (Figure 1): only one worker machine
can execute its m-boundary vertices at any time. Having
only one global token also results in poor scalability, be-
cause the size of the token ring increases with the num-
ber of workers, which leads to longer wait times. Moreover,
the token ring is fixed: workers that are finished must still
receive and pass along the token, which adds unnecessary
overheads. This is especially evident in algorithms such as
SSSP, where workers may dynamically halt or become active
depending on the state of their constituent vertices. Thus,
as we show in Section 7.3, single-layer token passing is too
coarse-grained, which negatively impacts performance.

On the other hand, vertex-based distributed locking maxi-
mizes parallelism, by allowing all vertices to execute in paral-
lel, but suffers significant communication overheads. Vertex-
based locking requires, in the worst case, O(|€|) forks, where
|€] is the number of edges in the graph ignoring directions
(i-e., counting undirected edges once). This leads to signif-
icant communication overheads due to the forks and corre-
sponding request tokens that must be sent between individ-
ual vertices. Furthermore, it is difficult to form large batches
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Figure 4: Dual-layer token passing, with the global
token T at worker 1 and the local tokens L at par-
titions 0 and 2.

of messages (remote replica updates) as messages must be
flushed very frequently, whenever an m-boundary vertex re-
leases its forks. Although systems such as GraphLab async
can use fibers to try to mask communication latency with
additional vertex computations, it does not fully mitigate
the communication overheads, which results in poor perfor-
mance and scalability as we demonstrate in Section 7.3.

A key deficiency of these techniques is that they are not
partition aware: given a partition aware system, they are
unable to exploit partitions to improve performance. For
example, single-layer token passing would pass the global
token between the partitions rather than workers, with p-
boundary vertices requiring the token to execute (Definition
4). This increases the size of the token ring and does not
solve the existing performance problems. Similarly, vertex-
based distributed locking (for asynchronous models) would
require only p-boundary vertices to act as philosophers, since
p-internal vertices are executed sequentially. However, al-
though this reduces the number of forks, the heavy-weight
threads will block an entire CPU whenever a vertex blocks
on communication. Consequently, it is unable to mask com-

munication latency and performs worse than GraphLab async’s

pairing of fibers with individual vertices (Section 5.1).

We address these performance deficiencies by considering
partition aware synchronization techniques. Adding parti-
tion awareness enables us to devise either a more fine-grained
token passing technique to increase parallelism, or a more
coarse-grained distributed locking technique to reduce com-
munication overheads. We present these approaches next.

5.3 Dual-Layer Token Passing

We propose dual-layer token passing, which, unlike single
layer token passing, supports multithreading by being parti-
tion aware. This enables more vertices to execute in parallel
while ensuring condition C2 is enforced.

Dual-layer token passing uses two layers of tokens and
a more fine-grained categorization of vertices. Let u be a
vertex of partition P, of worker W,. Then an m-internal
vertex u is now either a p-internal vertex, if all its neighbors
belong to P,, or a local boundary vertex otherwise. An m-
boundary vertex wu is either remote boundary, if its neighbors
are only on partitions of other workers, or mized boundary
otherwise (i.e., its neighbors belong to partitions of both
W, and other workers). For example, in Figure 4, v is a
p-internal vertex, vo and vs4 are local boundary vertices, vs
is a remote boundary vertex, and vi, vs, and vs are mixed
boundary vertices.

A global token is passed in a round-robin fashion between
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Figure 5: Partition-based distributed locking.

the workers. Each worker also has its own local token passed
between its partitions in a round-robin fashion (Figure 4).
A p-internal vertex can execute without tokens, while a lo-
cal boundary vertex requires its partition to hold the local
token. A global boundary vertex requires its worker to hold
the global token and a mixed boundary vertex requires both
tokens to be held. To ensure that every mixed boundary
vertex gets a chance to execute, each worker must hold the
global token for a number of iterations equal to the number
of partitions it owns. Like single-layer token passing, local
replicas are updated eagerly while remote replicas are up-
dated before a worker relinquishes the global token. Hence,
dual-layer token passing enforces conditions C1 and C2 for
asynchronous computation models. Then, by Theorem 1, it
provides serializability for asynchronous models.

Although dual-layer token passing improves parallelism by
adding support for multithreading, it still suffers from the
same performance issues as single-layer token passing. It
again uses only one global token, has a fixed token ring, and
scales poorly when the number of workers and/or partitions
are increased. Having only one local token per worker also
means local boundary vertices cannot execute in parallel.

While these problems may be solved via more sophisti-
cated schemes, such as using multiple global tokens for more
parallelism or tracking additional state to support a dynamic
ring, it becomes much harder to guarantee correctness (no
deadlocks and no starvation) while also ensuring fairness.
Thus, rather than make token passing even more complex
and fine-grained, we propose an inherently partition-based,
coarse-grained distributed locking approach next.

5.4 Partition-based Distributed Locking

We propose partition-based distributed locking by build-
ing on the Chandy-Misra algorithm and treating partitions
as the philosophers. Two partitions share a fork if an edge
connects their constituent vertices. For example, in Figure
5, partitions Py and P; share a fork due to the edge between
their vertices vo and v1, respectively. Alternatively, forks are
associated with the virtual partition edges (in green), cre-
ated based on the edges between each partition’s vertices.

Condition C2 is enforced for p-boundary vertices because
neighboring partitions never execute concurrently, while p-
internal vertices do not need coordination as each partition
is executed sequentially. As an optimization, we can avoid
unnecessary fork acquisitions by skipping the partitions for
which all vertices are halted and have no more messages. To
enforce condition C1, local replicas are updated eagerly and,
for remote replicas, each worker flushes its pending remote
replica updates before any partition (with an m-boundary
vertex) relinquishes a fork to a partition of another worker.



Since both conditions are enforced, Proposition 2 follows
immediately.

PROPOSITION 2. Partition-based distributed locking enforces

conditions C1 and C2 for asynchronous computation models.

Hence, by Theorem 1, partition-based distributed locking
provides serializability for asynchronous computation mod-
els. Synchronous models are not supported as they cannot
update local replicas eagerly (Section 4.1), which is required
due to the sequential execution of p-internal vertices.

Partition-based distributed locking needs at most O(| P|?)
forks, where |P| is the total number of partitions. By con-
trolling the number of partitions, we can control the gran-
ularity of parallelism. On one extreme, |P| = |V| can give
vertex-based distributed locking (Section 4.3). On the other
extreme, we can have exactly one partition per worker. This
latter extreme still provides better parallelism than single-
layer token passing because any pair of non-neighboring work-
ers can execute in parallel, with a negligible increase in com-
munication. In general, | P| is set such that each worker can
use multithreading to execute multiple partitions in parallel.

Due to this flexibility, partition-based locking is both more
general and more performant than vertex-based locking: any
choice of |P| <« |V significantly reduces the number of forks
and hence communication overheads. Moreover, partition-
based locking enables messages (remote replica updates) of
an entire partition of vertices to be batched, substantially re-
ducing communication overheads. Compared to token pass-
ing, partition-based locking enables more parallelism: forks
are required only between partitions that cannot execute in
parallel, removing the need for a token ring, and halted par-
titions do not need their forks and will not perform unnec-
essary communication with their neighbors. These factors
result in partition-based locking’s superior performance and
scalability over both vertex-based distributed locking and
token passing.

Hence, partition-based distributed locking leverages the
best of both worlds: the increased parallelism of distributed
locking and the minimal communication overheads of token
passing. It scales better than vertex-based locking and to-
ken passing, due to its lower communication overheads and
the absence of a token ring, and offers flexibility in the num-
ber of partitions to allow for a tunable trade-off between
parallelism and communication overheads.

6. IMPLEMENTATION

We now describe our implementations for dual-layer token
passing and partition-based distributed locking in Giraph,
an open source graph processing system. Each technique is
an option that can be enabled and paired with Giraph async
to provide serializability. We show in Section 6.5 that pro-
viding serializability for AP does not impact usability. We
do not consider the constrained vertex-based locking for BSP
(Proposition 1) as it further exacerbates BSP’s already ex-
pensive communication and synchronization overheads [20].

We use Giraph because it is a popular and performant
system used, for example, by Facebook [14]. It is parti-
tion aware and thus can support partition aware synchro-
nization techniques. We do not implement token passing
and partition-based distributed locking in GraphLab async
because, as described in Section 5.1, GraphLab async is
optimized for vertex-based distributed locking and is not
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partition aware. Adding partitions would require substan-
tial changes to the architecture, design, and functionality of
GraphLab async, which is not the focus of this paper.

6.1 Giraph Background

As described in Section 5.1, Giraph assigns multiple graph
partitions to each worker. During each superstep, each worker
creates a pool of compute threads and pairs available threads
with uncomputed partitions. Each worker maintains a mes-
sage store to hold all incoming messages, while each compute
thread uses a message buffer cache to batch outgoing mes-
sages to more efficiently utilize network resources. These
buffer caches are automatically flushed when full but can
also be flushed manually. In Giraph async, messages be-
tween vertices of the same worker skip this cache and go
directly to the message store so that they are immediately
available for their recipients to process.

Since Giraph is implemented in Java, it avoids garbage
collection overheads (due to millions or billions of objects)
by serializing vertex, edge, and message objects when not in
use and deserializing them on demand. For each vertex wu,
Giraph stores only u’s out-edges in u’s vertex object. Thus,
in-edges are not explicitly stored within Giraph.

6.2 Dual-Layer Token Passing

For dual-layer token passing, each worker uses three sets
to track the vertex ids of local boundary, remote boundary,
and mixed boundary vertices that it owns. p-internal ver-
tices are determined by their absence from the three sets.
We keep this type information separate from the vertex ob-
jects so that token passing is a modular option. Moreover,
augmenting each vertex object with its type adds undesir-
able overheads since vertex objects must be serialized and
deserialized many times throughout the computation. Hav-
ing the type information in one place also allows us to update
a vertex’s type without deserializing its object.

To populate the sets, we intercept vertices during input
loading and scan the partition ids of its out-edge neighbors
to determine its type. This is sufficient for undirected graphs
but not for directed graphs: a vertex u has no information
about its in-edge neighbors. Thus, we have each vertex v
send a message to its out-edge neighbors u that belong to
a different partition. Then u can correct its type based on
messages received from its in-edge neighbors. This all occurs
during input loading and thus does not impact computation
time. We also batch all dependency messages to minimize
network overheads and input loading times.

As per Section 5.3, the global and local tokens are passed
in a round-robin fashion. Each local token is passed among
its worker’s partitions at the end of each superstep. Since
local messages (between vertices of the same worker) are
not cached, local replicas are updated eagerly. For remote
replicas, workers flush and await delivery confirmations for
their remote messages before passing along the global token.

6.3 Partition-based Distributed Locking

For partition-based distributed locking, each worker tracks
fork and token states for its partitions in a dual-layer hash
map. For each pair of neighboring partitions P; and P;, we
map P;’s partition id ¢ to the id j to a byte whose bits in-
dicate whether P; has the fork, whether the fork is clean or
dirty, and whether P; holds the request token. Since parti-
tion ids are integers in Giraph, we use hash maps optimized



for integer keys to minimize memory footprint.

In the Chandy-Misra algorithm, forks and tokens must
be placed such that the precedence graph, whose edge di-
rections determine which philosopher has priority for each
shared fork, is initially acyclic [13]. A simple way to en-
sure this is to assign each philosopher an id and, for each
pair of neighbors, give the token to the philosopher with the
smaller id and the dirty fork to the one with the larger id.
This guarantees that philosophers with smaller ids initially
have precedence over all neighbors with larger ids, because a
philosopher must give up a dirty fork upon request (except
while it is eating). Partition ids naturally serve as philoso-
pher ids, allowing us to use this initialization strategy.

For directed graphs, two neighboring partitions may be
connected by only a directed edge, due to their constituent
vertices. Since partitions must be aware of both its in-edge
and out-edge dependencies, workers exchange dependency
information for their partitions during input loading. Like
in token passing, dependency messages can be batched to
ensure a minimal impact on input loading times.

Partitions acquire their forks synchronously by blocking
until all forks arrive. This is because even if all forks are
available, it takes time for them to arrive over the network,
so immediately returning is wasteful and may prevent other
partitions from executing (a partition cannot give up clean
forks: it must first execute and dirty them). Finally, per
Section 5.4, each worker flushes its remote messages before
a partition sends a shared fork to another worker’s partition.

Using the insights from our implementation of partition-
based distributed locking, we can also implement vertex-
based distributed locking, which is the special case where
|P| = |V| (Section 5.4). Each worker tracks fork and to-
ken states for its p-boundary vertices and uses vertex ids as
the keys for its dual-layer hash map. Keeping this data in a
central per-worker data structure, rather than at each vertex
object, is even more important than in token passing: forks
and tokens are constantly exchanged so their states must be
readily available to modify. Storing this data at each ver-
tex object would incur significant deserialization overheads.
Fork and token access patterns are also fairly random, which
would further incur an expensive traversal of a byte array
to locate the desired vertex.

Like the partition-based approach, for directed graphs,
each vertex v broadcasts to its out-edge neighbors u so that u
can record the in-edge dependency into the per-worker hash
map. This occurs during input loading and all messages are
batched. Vertices acquire their forks synchronously and each
worker flushes its remote messages before any m-boundary
vertex forfeits a fork to a vertex of another worker. However,
as we show in Section 7, these batches of remote messages are
far too small to avoid significant communication overheads.

6.4 Fault Tolerance

For fault tolerance, we use the existing checkpointing mech-
anism of Giraph. In addition to the data that Giraph al-
ready writes to disk at each synchronous checkpoint, we
change Giraph to also record the relevant data structures
(hash sets or hash maps) that are used by the synchroniza-
tion techniques. For dual-layer token passing, each worker
also records whether they have the global token and the id
of the partition holding the local token. Checkpoints occur
after a global barrier and thus capture a consistent state:
there are no vertices executing and no in-flight messages.
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Thus, neither token passing’s global token nor distributed
locking’s fork and request tokens are in transit.

6.5 Algorithmic Compatibility and Usability

A system can provide one computation model for algo-
rithm developers to code with and use a different compu-
tation model to execute user algorithms. For example, Gi-
raph async allows algorithm developers to code for the BSP
model and transparently execute with an asynchronous com-
putation model to maximize performance [20]. Thus, with
respect to BSP, the more efficient AP model implemented
by Giraph async does not negatively impact usability.

When we pair Giraph async with partition-based or vertex-
based distributed locking, it remains backwards compatible
with (i.e., can still execute) algorithms written for the BSP
model. To take advantage of serializability, algorithm de-
velopers can now code for a serializable computation model.
Specifically, this is the AP model with the additional guar-
antee that conditions C1 and C2 hold. For example, our
graph coloring algorithm is written for this serializable AP
model rather than for BSP (Section 7.2.1).

However, not all synchronization techniques provide this
clean abstraction. Token passing fails in this regard because
only a subset of vertices execute in each superstep. That is,
token passing cannot provide the guarantee that all vertices
will execute some code in superstep ¢, because only a subset
of the vertices will execute at superstep i. The same issue
arises for the constrained vertex-based distributed locking
solution for BSP and sync GAS (Proposition 1), because it
relies on global barriers for the exchange of forks and to-
kens. In contrast, our implementations of partition-based
and vertex-based locking ensure that all vertices are exe-
cuted exactly once in each superstep and thus provide supe-
rior compatibility and usability.

7. EXPERIMENTAL EVALUATION

‘We compare dual-layer token passing and partition-based
distributed locking using Giraph async and vertex-based dis-
tributed locking using GraphLab async. We exclude Giraph
async for vertex-based locking because it is much slower than
GraphLab async, up to 44x slower on OR (Table 1). As dis-
cussed in Section 5.1, this is because GraphLab async is
specifically tailored for the vertex-based technique whereas
Giraph async is not. On the other hand, unlike Giraph
async, GraphLab async is not partition aware and thus can-
not support token passing or partition-based distributed lock-
ing. Hence, our evaluation focuses on the most performant
combinations of systems and synchronization techniques.

7.1 Experimental Setup

To evaluate the different synchronization techniques, we
use 16 and 32 EC2 r3.xlarge instances, each with four vC-
PUs and 30.5GB of memory. All machines run Ubuntu
12.04.1 with Linux kernel 3.2.0-70-virtual, Hadoop 1.0.4,
and jdk1.7.0_65. We implement our modifications in Gi-
raph 1.1.0-RCO and compare against GraphLab 2.2, which
is the latest version that provides serializability.

We use large real-world datasets®3[8, 7, 6], which are
stored on HDF'S as text files and loaded into each system us-
ing the default random hash partitioning. We use hash par-

“http://snap.stanford.edu/data/
3http ://law.di.unimi.it/datasets.php



Table 1: Directed datasets. Parentheses give values
for the undirected versions used by graph coloring.

Graph V| |E| Max Degree
com-Orkut (OR) 3.0M 117M (234M) 33K (33K)

arabic-2005 (AR) 22.7M  639M (1.11B) 575K (575K)
twitter-2010 (TW) 41.6M 1.46B (2.40B) 2.9M (2.9M)
uk-2007-05 (UK) 1056M 3.73B (6.62B) 975K (975K)

titioning as it is the fastest method of partitioning datasets
across workers and, importantly, does not favour any par-
ticular synchronization technique. Alternative partitioning
algorithms such as METIS [24] are impractical as they can
take several hours to partition large datasets [22, 30].

Table 1 lists the four graphs we use: OR and TW are social
network graphs while AR and UK are web graphs. |V| and
|E| of Table 1 denote the number of vertices and directed
edges for each graph, while the maximum degree gives a
sense of how skewed the graph’s degree distribution is. All
graphs have large maximum degrees because they follow a
power-law degree distribution.

For partition-based distributed locking, we use Giraph’s
default setting of |WW| partitions per worker, where |W| is
the number of workers. Increasing the number of partitions
beyond this does not improve performance: more edges be-
come cut, which increases inter-partition dependencies and
hence leads to more forks and tokens. Smaller partitions also
mean smaller message batches and thus greater communica-
tion overheads. However, using too few partitions restricts
parallelism for both compute threads and communication
threads: the message store at each worker is indexed by
separate hash maps for each partition, so more partitions
enables more parallel modifications to the store while fewer
partitions restricts parallelism and degrades performance.

7.2 Algorithms

We use graph coloring, PageRank, SSSP, and WCC as
our algorithms. Our choice is driven by the requirements
exhibited by graph processing algorithms that need serial-
izability. As described in Section 1, many machine learning
algorithms require serializability for correctness and conver-
gence. SSSP is a key component in reinforcement learning
while WCC is used in structured learning [29, 10]. Both
algorithms are used with extensive parallelism, making con-
vergence a crucial criterion that serializability can provide.
Similarly, as established in Section 2, graph coloring falls
into yet another class of algorithms where serializability en-
sures successful termination. Finally, PageRank is a good
comparison algorithm for two reasons: first, existing systems
that have considered serializability also implement PageR-
ank [33, 18] and second, the simple computation and com-
munication patterns of PageRank are identical to other more
complex algorithms [4], which allows us to better understand
the performance of the synchronization techniques without
being hindered by algorithmic complexity.

7.2.1 Graph Coloring

We use a greedy graph coloring algorithm (Algorithm 1)
that requires serializability and an undirected input graph.
Each vertex u initializes its value/color as NO_COLOR. Then,
based on messages received from its (in-edge) neighbors, u
selects the smallest non-conflicting color as its new color and
broadcasts it to its (out-edge) neighbors.

86

Algorithm 1 Graph coloring pseudocode.

1 procedure COMPUTE(vertex, incoming messages)
2 if superstep == 0 then

3 vertex.setValue(NO_COLOR)

4 return

5 if vertex.getValue() == NO_COLOR then

6 Cmin — smallest non-conflicting color

7 vertex.setValue(cmin )

8 Send cmin to vertex’s out-edge neighbors

9 voteToHalt()

In theory, the algorithm requires only one iteration since
serializability prevents conflicting colors. In practice, be-
cause Giraph async is push-based, it requires three itera-
tions: initialization, color selection, and handling extrane-
ous messages. The extraneous messages occur because ver-
tices indiscriminately broadcast their current color, even to
neighbors who are already complete. This wakes up ver-
tices, leading to an additional iteration. GraphLab async,
which is pull-based, has each vertex gather its neighbors’
colors rather than broadcast its own and thus completes in
a single iteration.

7.2.2  PageRank

PageRank is an algorithm that ranks webpages based on
the idea that more important pages receive more links from
other pages. Each vertex u starts with a value of 1.0. At
each superstep, u updates its value to pr(u) = 0.15+ 0.85z,
where z is the sum of values received from u’s in-edge neigh-
bors, and sends pr(u)/ deg’ (u) along its out-edges. The al-
gorithm terminates after the PageRank value of every vertex
u changes by less than a user-specific threshold between two
consecutive execution of u. The output pr(u) gives the ex-
pectation value for a vertex w, which can be divided by the
number of vertices to obtain the probability value.

We use a threshold of 0.01 for OR and AR and 0.1 for TW
and UK so that experiments complete in a reasonable amount
of time. Using the same threshold ensures that all systems
perform the same amount of work for each graph.

7.2.3 SSSP

Single-source shortest path (SSSP) finds the shortest path
between a source vertex and all other vertices in its con-
nected component. We use the parallel variant of the Bellman-
Ford algorithm [15]. Each vertex initializes its distance (ver-
tex value) to oo, while the source vertex sets its distance to 0.
Vertices update their distance using the minimum distance
received from their neighbors and propagate any newly dis-
covered minimum distance to all neighbors. We use unit
edge weights and the same source vertex to ensure that all
systems perform the same amount of work.

7.2.4 WCC

Weakly connected components (WCC) is an algorithm
that finds the maximal weakly connected components of a
graph. A component is weakly connected if all constituent
vertices are mutually reachable when ignoring edge direc-
tions. We use the HCC algorithm [23], which starts with
all vertices initially active. Each vertex initializes its com-
ponent ID (vertex value) to its vertex ID. When a smaller
component ID is received, the vertex updates its vertex value
to that ID and propagates the ID to its neighbors.
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Figure 6: Computation times for graph coloring,
PageRank, SSSP, and WCC. Missing bars are la-
belled with ‘F’ for unsuccessful runs.

7.3 Results

For our results, we report computation time, which is the
total time of running an algorithm minus the input loading
and output writing times. This also captures any commu-
nication overheads that the synchronization techniques may
have: poor use of network resources translates to longer com-
putation times. For each experiment, we report the mean
and 95% confidence intervals of five runs (three runs for ex-
periments taking over 3 hours). Due to space constraints, we
exclude the results for AR. They can be found in [21].

For graph coloring, partition-based locking is up to 2.3x
faster than vertex-based locking for TW with 32 machines
(Figure 6a). This is despite the fact that Giraph async per-
forms an additional iteration compared to GraphLab async
(Section 7.2.1). Similarly, partition-based locking is up to
2.2x faster than token passing for UK on 32 machines. Vertex-
based locking fails for UK on 16 machines because GraphLab
async runs out of memory.

As detailed in Section 5.4, these performance gains arise
from significantly reducing the communication overheads,
which is achieved by sharing fewer forks between larger par-
titions instead of millions or billions of forks between in-
dividual vertices. Moreover, unlike vertex-based locking,
partition-based locking is able to support message batching,
which further reduces communication overheads.

For PageRank, partition-based distributed locking again
outperforms the other techniques: up to 18x faster than
vertex-based locking on OR with 16 machines (Figure 6b).
Vertex-based locking again fails for UK on 16 machines due to
GraphLab async exhausting system memory. Token passing
takes over 12 hours (720 mins) for UK on 32 machines due to
its limited parallelism (Section 5.3), making partition-based
locking over 14x faster than token passing.

For SSSP and WCC on UK, token passing takes over 7
hours (420 mins) for 16 machines and 9 hours (540 mins) for
32 machines, while GraphLab async fails on 16 machines due
to running out of memory (Figures 6¢ and 6d). For SSSP,
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partition-based locking is up to 13 x faster than vertex-based
locking for OR on 16 machines and over 10x faster than to-
ken passing for UK with 32 machines. For WCC, partition-
based locking is up to 26x faster than vertex-based locking
for OR on 16 machines and over 8x faster than token pass-
ing for UK with 32 machines. These performance gains are
larger because these algorithms, like many machine learning
algorithms, require multiple iterations to complete: the per-
iteration performance gains, described earlier, are further
multiplied by the number of iterations executed.

Partition-based distributed locking also scales better when
going from 16 to 32 machines. For example, partition-based
locking achieves a speedup with graph coloring on UK, whereas
token passing suffers a slowdown (Figure 6a). In the cases
where partition based-locking also experiences slowdown,
which occurs because serializability trades off performance
for stronger guarantees, its performance does not degrade
as quickly as token passing and vertex-based locking and its
computation time remains the shortest.

Lastly, Giraphx implements its synchronization techniques
only for graph coloring, so we can compare against only
this algorithm. As discussed previously, Giraphx imple-
ments its techniques as part of user algorithms rather than
within the system, resulting in poor usability as they must
be re-implemented in every user algorithm. A key advantage
of our techniques is that, because they are implemented at
the system level, serializability is automatically provided for
all user algorithms. For graph coloring on OR with 16 ma-
chines, Giraphx with single-layer token passing is 30x and
41x slower than Giraph async with dual-layer token passing
and partition-based distributed locking, respectively. With
vertex-based locking, Giraphx is 55x slower than GraphLab
async with vertex-based locking and 103x slower than Gi-
raph async with partition-based locking. On TW and UK,
Giraphx fails to run due to exhausting system memory. Gi-
raphx’s poor performance is due to its less efficient tech-
niques, the fact that it uses a much older and less perfor-
mant version of Giraph and, unlike Giraph async, does not
implement the more performant version of the AP model.

8. RELATED WORK

To the best of our knowledge, this paper is the first to
formulate the important notion of serializability for graph
processing systems and to incorporate it into a foundational
framework that has been implemented in a real system to de-
liver an end-to-end solution. Only Giraphx [33] and GraphLab
[27, 18] provide serializability but, as we showed in this pa-
per, our techniques significantly outperform their designs.
Moreover, neither of their proposals provide a formal frame-
work for reasoning about serializability nor do they show
correctness for their synchronization techniques. Giraphx
considers single-layer token passing and vertex-based dis-
tributed locking but its implementations are a part of user
algorithms rather than within the system: each technique
must be re-implemented in every user algorithm, which neg-
atively impacts performance and usability. GraphLab async
uses vertex-based distributed locking and is tailored for this
synchronization technique. However, it is not partition aware
and thus cannot support the more efficient partition-based
distributed locking technique.

We mention several other vertex-centric graph processing
systems next, however, they neither consider nor provide se-
rializability. Apache Hama [2] is a general BSP system that,



unlike Giraph, is not optimized for graph processing. GPS
[31] and Mizan [25] are BSP systems that consider dynamic
workload balancing, but not serializability, while GRACE
[35] is a single-machine shared memory system that imple-
ments the AP model. GraphX [36] is a system built on the
data parallel engine Spark [37], and considers graphs stored
as tabular data and graph operations as distributed joins.
GraphX’s primary goal is to provide efficient graph process-
ing for end-to-end data analytic pipelines implemented in
Spark. Pregelix [12] is a BSP graph processing system im-
plemented in Hyracks [9], a shared-nothing dataflow engine.
Pregelix stores graphs and messages as data tuples and uses
joins to implement message passing. GraphChi [26] is a
single-machine disk-based graph processing system for pro-
cessing graphs that do not fit in memory.

9. CONCLUSION

We presented a formalization of serializability for graph
processing systems and proved that two key conditions must
hold to provide serializability. We then showed the need for
partition aware synchronization techniques to provide seri-
alizability more efficiently. In particular, we introduced a
novel partition-based distributed locking technique that, in
addition to being correct, is more efficient than existing tech-
niques. We implemented all techniques in Giraph to provide
serializability as a configurable option that is completely
transparent to algorithm developers. Our experimental eval-
uation demonstrated that our partition-based technique is
up to 26x faster than existing techniques that are imple-
mented by graph processing systems such as GraphLab.
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ABSTRACT

A traditional relational database can evaluate complex queries
but requires users to precisely express their information need.
But users often do not know what information is available
in a database, and hence cannot correctly express their in-
formation need. Traditional databases do not provide con-
venient means for users to gain familiarity with the data.

In this paper, we study the problem of exploratory search,
which a user may wish to perform to get an understanding of
the data set. We note that users often have some decisions
already made, so what they need is not an overall database
summary, but rather a summary “in context” of the rele-
vant portion of the database. Towards this end, we devise a
novel data summarization technique called the Conditional
Attribute Dependency (CAD) View, which shows the condi-
tional dependencies between attribute values conditioned on
applied selections. The CAD View can help users to gain fa-
miliarity with structured datasets in an attribute-wise man-
ner.

To evaluate the CAD View, we perform a user study com-
prising three complex exploratory tasks on a real dataset.
Our studies show that users are able to do all the tasks
about 4-5 times faster and with better accuracy using the
CAD View compared to the data summary shown in faceted
navigation, which is currently the most popular search inter-
face for e-commerce and has support for exploratory search.

1. INTRODUCTION

Users today have access to many large databases, yet find
it difficult to access the records they want. In some cases,
the challenge is to write correct SQL. But databases today
often come with easy-to-use query interfaces. Users still find
it difficult to specify the precise query conditions, due to
limited familiarity with the data. Consider, for example, a
user on a travel web site looking to book a hotel in a big
city. If she knows her preferences for price, location, star
rating, and other such relevant attributes, she can easily
specify a query that will pull out a few good choices for
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her to consider from among the hundreds of hotels in the
city. But, if she is unfamiliar with the city, she may not
understand what typical prices are in the city or how all
the 5-star hotels are clustered in the financial district or
how there is a tradeoff between location and price. Without
this knowledge of the data in the database, she is forced to
depend on other data sources, such as advice from friends
and relatives, social media, web documents, etc., to gain
data familiarity and pose the right queries. In consequence,
even after hours of effort she may be left with various doubts:
“Did T make a good choice?” “Did I explore all my options?”
“Did I spend more than I needed to?”

Our goal in this paper is to develop database facilities to
support exploratory search. There are two types of search:
lookup and ezploratory [26, 24, 19]. In lookup search users
have a specific well-defined search goal. In contrast, in ex-
ploratory search, the users’ goal is to gain a comprehensive
understanding of data that will enable them to pose more
informed lookup queries.

Supporting data exploration is difficult because: (a) Datasets
are complex and heterogeneous, and (b) Users have diverse
needs. It is easy, for example, to provide the user with some
simple summary statistics, such as average price for a ho-
tel room. However, this number is of only limited value to
the user, perhaps because there is huge variance between
different parts of the city or perhaps because the user is a
backpacker looking for youth hostels whose price is poorly
correlated with those at fancy hotels. What the user needs
is a characterization of a portion of the data (which she has
identified to the system) along dimensions that are of inter-
est to her.

Let us consider an example task to better appreciate our
problem. For variety, we describe a car purchase task rather
than a hotel room booking task. For specificity, we write
all queries in SQL, even though we expect any real imple-
mentation to have a user-friendly interface layer on top the
query language.

ExamprLE 1. Consider a used car database, which con-
tains a single table D with n attributes where each tuple rep-
resents a car for sale. The table has numerous attributes
that describe details of the car, such as Price, Make, Model,
BodyType, Drivetrain, Mileage, EngineSize, NumCylin-
ders, Color, FuelEconomy, Power, Year, etc.

Consider a user Mary who is unfamiliar with cars and
wants to buy a relatively new SUV car. She has five initial
Make preferences (Ford, Chevrolet, Toyota, Honda and Jeep),
because she has friends who drive these Makes, but she is open
to explore any similar option. She starts her exploration

10.5441/002/edbt.2016.11
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with an nitial query: R = SELECT * FROM D WHERE
Mileage BETWEEN 10K AND 30K AND Transmission =
Automatic AND BodyType = SUV. This query leads to a
large result set with thousands of tuples. Mary has to specify
more constraints to get to a smaller result set that she can
ezxplore in depth. She thinks a good place to start may be to
reduce the number of Makes she considers. Let’s look at her
difficulties in choosing between Makes.

Limitation 1. Understanding Attribute Values —
The attribute Make has more than 50 values. Even to choose
among the 5 Makes she has initially chosen, she needs to un-
derstand what is the main difference between SUVs from
any pair of manufacturers, such as Jeep and Chevrolet. Fur-
thermore, Mary knows that her initial set of 5 Makes is just
a rough starting point, so before she narrows it down fur-
ther she may also want to understand what other Makes are
similar, and therefore belong in her consideration set. For
example, she may want to know who else makes SUVs very
similar to those made by Chevrolet.

Comparison can be of two types: independent and condi-
tional. An independent comparison would be comparing the
general characteristics of Chevrolet vs. Jeep cars. A condi-
tional comparison would be based on the user’s already made
selections. For example, Mary might want to compare the
five Makes: Ford, Chevrolet, Toyota, Honda and Jeep, given
the following choices: BodyType = SUV, 10K < Mileage
< 30K, Transmission = Automatic. Conditional compar-
isons are difficult even for users who are quite familiar with
the domain. For example, Mary might know what Make she
would prefer if there are no constraints on other attributes.
However, if there are constraints in other attributes, such as
Price, Year, Color, etc., it is hard to find Makes that will
lead to cars that maximally satisfy her preferences across all
the attributes.

With traditional relational database, result sets are pre-
sented as sets of tuples. To compare Chevrolet SUVs with
Jeep SUVs, Mary has to look at hundreds of instances in
each set. This is very difficult to do. Perhaps these tuples
could be sorted on some important attributes, such as Price,
so that corresponding tuples can be compared. But this re-
quires knowing enough of the database to choose important
attributes, and even so provides only limited assistance in
understanding.

Finding similarities and differences are two complemen-
tary aspects of comparison. We looked at the difference
case in the preceding paragraph. To find additional similar
Makes is even more difficult, because now we need to check
the hundreds of Chevrolet instances with the thousands of
instances from dozens of other manufacturers. We note fur-
ther Mary has a desired mileage range initially specified. As
she explores the data set, she may decide to change this.
If she is comparing Makes conditioned on her mileage selec-
tion, then she has a whole new comparison. The conditional
comparisons change with every change in the given query
condition.

Limitation 2. Querying Hidden Attributes — Often,
there are characteristics of the data item that are important
to the user but not explicitly recorded as an attribute in
the database. For example, Mary wants to choose a certain
car body look, but this field is not encoded anywhere in the
database. There may be a way to express her preference as a
selection on available attributes (perhaps as a combination
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of low height, large wheel diameter and four doors). But
Mary does not know how to express her desired look in terms
of these other attributes.

Even worse, many database interfaces, for the sake of
simplicity, may limit the number of queriable attributes.
The number of cylinders in the engine may be an attribute
recorded in the database, but it is not available to Mary
through her forms-based interface for querying the database.
It is possible that queriable attributes, such as fuel efficiency,
can be used as surrogates to express her preference for a 4
cylinder engine. However, such cross-attribute relationships
are completely opaque to Mary, and she is unable to substi-
tute the surrogate for her desired attribute.

In exploring a database, users have two problems: (a) Choos-
ing attributes that will enable them to efficiently and pre-
cisely reach to their desired result set, and (b) Choosing at-
tribute values for each chosen attribute. These choices are
challenging because there is complex dependency between
attribute values within and across attributes, and users also
have an unspecified, complicated preference function that
spans across multiple attributes. Moreover, their preference
function changes on seeing the comparison between available
choices.

In short, while exploring a data set, users often make
choices in sequence (with some backtracking where needed).
They need help to understand the fragment of the database
that is currently selected, and they would like to see this
fragment of the data set characterized in terms of the choices
(of attributes and attribute values) that the user is contem-
plating next. The alternation of browsing and querying in
user interaction with data has been well-documented, where
the purpose of browsing is mostly exploration. When data
sets become large, unfortunately, browsing is no longer effec-
tive because of the very large number of tuples to be viewed.
Therefore, this understanding of selected database fragment
is best provided as a context-sensitive summary that sup-
ports the user’s exploration need.

In this paper, we present a novel data summarization tech-
nique called the Conditional Attribute Dependency (CAD)
View, which allows users to systematically explore the con-
ditional dependencies between attribute values both within
and across attributes. It thereby lifts the two limitations
described in the motivating example above. Our proposed
CAD View can be integrated with any structured data pre-
sentation system.

Our key contributions are as follows:

e We identify two limitations that users face in exploring
databases due to limited data familiarity (Section 1).

e We propose a query model and a data summarization
technique called the CAD View that can help users gain
familiarity with structured datasets (Section 2).

e We present the algorithms and techniques necessary to
create and present the relevant CAD Views (Sections 3
and 4).

e We integrate CAD View with faceted navigation to make
the exploratory search process user-friendly. Moreover,
this also leads to a novel search interface that can support
both exploratory and lookup search. (Section 5).

e We evaluate the CAD View on real data with a detailed
user study. We find that users, on average, can perform



Make Compare Attrs. | IUnit 1

| TUnit 2

| IUnit 3

Model [Traverse LT] [Equinox LT [Suburban 1500 LT, Tahoe LT] [Captiva LS, Equinox LT
Engine Vel V8] V4
Chevrolet | Price [25K-30K] [20K-25K] [35K-40K] [40K-45K] [15K-20K, 20K-25K]
Drivetrain [AWD] [AWD] [2WD] [2WD]
Year [2011-2012) [2011-2012) [2011-2012)
Model [Escape XLT] [Escape Ltd.] [Explorer XLT| [Explorer Ltd.] [Edge Ltd.] [Edge SEL]
Engine V6, V4] (V6] [V8] (V6]
Ford Price [20K-25K, 15K-20K] [30K-35K] [25K-30K] [25K-30K]
Drivetrain [2WD][4WD)] [AWD] [2WD] [AWD, 2WD]
Year [2011-2012] [2010-2011] [2011-2012] [2011-2012] [2010-2011]
Honda
Toyota
Model [Wrangler Unlimited] [Compass Sport, Patriot Sport] [leerty Sport]
Engine (V6] [V§] (V4] (V6]
Jeep Price [25K-30K] [30K-35K] [15K-20K] [15K-20K]
Drivetrain [4WD)] [4WD] [2WD] [4WD] [2WD]
Year [2011-2012] [2010-2011] [2011-2012) [2011-2012] [2010-2011]
Table 1: This table shows a sample Conditional Attribute Dependency (CAD) View for comparing five

different car manufacturers.

The first column Make is the Pivot Attribute.

The second column Compare

Attributes shows the top-5 attributes that are most informative for comparing the five Makes. The last three

columns shows the top-3 IUnits for each Make.

The user has selected BodyType = SUV, 10K < Mileage < 30K,

Transmission = Automatic. Each IUnit is a cluster label that summarizes a group of similar SUVs.

tasks that require data understanding with 4-5 times
greater efficiency and accuracy using our CAD View as
compared to faceted interface (Section 6).

Finally, we conclude with Section 8 after a discussion of
related work in Section 7.

2. SOLUTION ARCHITECTURE

In this section we describe our solution to the exploratory
search problem in complex databases — the Conditional At-
tribute Dependency (CAD) View. We also identify algorith-
mic challenges that must be solved for the CAD View to
fulfill its goals.

2.1 The CAD View

The CAD View is a novel data summarization technique
that shows the conditional relationship between values in a
given attribute with values in other attributes. It is best
introduced by example. A more formal treatment follows in
the next subsection.

2.1.1 Overview

Table 1 shows a sample CAD View, obtained from a real
dataset, for the example query discussed in Section 1. Mary’s
goal was to explore automatic transmission SUV cars that
have Mileage between 10K-30K from five different Makes.
The CAD View has several important components:

1. The Pivot Attribute organizes the information that
is shown in the CAD View. A user explicitly chooses one of
the attributes as Pivot Attribute f, and requests the system
to create a CAD View that facilitates comparison among
attribute values selected from the Pivot Attribute by show-
ing their relationship with values across other attributes. In
Table 1, Mary has chosen Make as the Pivot Attribute.

2. Compare Attributes are data attributes that inter-
act with the Pivot Attribute in “interesting” ways. All the
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values in the Pivot Attribute are compared using the same
set of Compare Attributes. These attributes can be auto-
matically determined based on the result set and the Pivot
Attribute or explictly provided by the user. For example,
one can use correlation to quantify interesting interaction.
In Table 1, the system has given five Compare Attributes:
Model, Engine, Price, Drivetrain, and Year.

3. An IUnit (Interaction Unit) is an “interesting” group of
values for the Compare Attributes. In Table 1, each TUnit
is described using the five Compare Attributes mentioned
above. Each IUnit is chosen to be relevant to a Pivot At-
tribute value: Chevrolet, Ford, Honda, etc. The top-left 1U-
nit in this table (containing Traverse LT and Equinox LT)
identifies a set of midsized Chevrolet SUVs: they share an
engine size and a drivetrain, and have similar prices. One
can think of an IUnit as a cluster of database values with
two special differences: it is a cluster on a partition of the
database determined by each Pivot Attribute value, and the
cluster is labeled using the chosen Compare Attribute labels
and Compare Attribute values.

The Overall CAD View is a tabular combination of the
above three components. It displays one row for each value
of the user-selected Pivot Attribute. In the second column
the system shows an ordered list of Compare Attributes, one
for each row of the table. The rest of the table shows each
row’s top IUnits, sorted left-to-right in descending order of
relevance to the row’s Pivot Attribute value. If an IUnit
cluster can be represented equally well by multiple values in
a single Compare Attribute, then an [Unit will show multiple
attribute values in square brackets (e.g. Traverse LT and
Equinox LT).

Note that there are competing ways to rank IUnits from
left-to-right within each row. They can be ranked left to
right in order of their salience for the row’s Pivot Attribute
value. Or we could try to ensure that all of the IUnits in
a single column can be compared across all Pivot Attribute



values so that, e.g., the IUnit 1 for Chevrolet is similar to
IUnit 1 for Ford (and thereby addressing Limitation 1).

However, not all Pivot Attribute values may share compa-
rable IUnits, forcing our system into an impossible tradeoff
between 1Unit quality and columnar IUnit “comparability.”
Thus, we chose to rank IUnits strictly by their relevance
to the row’s Pivot Attribute value. We use other means
to satisfy the comparability goal as described below in Sec-
tion 2.1.3.

2.1.2  Query Model

We use the following extension of SQL to express an ex-
ploratory search query:

CREATE CADVIEW cadview_name AS
SET pivot = pivot_attr
SELECT attrl, attr2,...,attrN
FROM tablel, table2...
[WHERE Clause]
[LIMIT COLUMNS M] [IUNITS K]
[ORDER BY attr_name, attr_name ASC|DESC]

In the above expression, the list of attributes shown in the
SELECT clause are the attributes that the user has explictly
selected as Compare Attributes. The LIMIT COLUMNS
clause is used to limit the number of Compare Attributes.
The CAD View will have total of M columns as Compare
Attributes, in which N are explicitly provided by the user
and the remaining (M-N) are automatically selected based
on the query result and the Pivot Attribute. The number of
IUnits per row K is determined using the keyword IUNITS.
The ORDER BY keyword can be used to sort the [Units by
one or more columns.

CREATE CADVIEW CompareMakes AS
SET pivot = Make
SELECT Price
FROM UsedCars
WHERE Mileage BETWEEN 10K AND 30K AND
Transmission = Automatic AND BodyType =
(Make = Jeep OR Make = Toyota OR Make
Make = Ford OR Make = Chevrolet)
LIMIT COLUMNS 5 IUNITS 3

For example, Mary’s query can be expressed as above. The
Price attribute has been explicitly selected as a Compare
Attribute, and the remaining four attributes (Model, Engine,
Drivetrain and Year) are automatically determined.

2.1.3  Finding Similar Information

If there are V values in the Pivot Attribute and the user
has requested k IUnits per attribute value, then the CAD
View will have k|V| IUnits. As discussed in Section 1, one of
the primary goal of exploratory search is comparison, which
includes finding similarities and differences. To facilitate
comparison, we support the following two search operations
within the CAD View: (i) Finding similar top ranked IUnits,
and (ii) Finding similar attribute values within the Pivot
Attribute.

For example, if a user likes a particular [Unit from one of
the selected Pivot Attribute values (e.g., Chevrolet), then the
user may want to efficiently locate similar top-ranked IUnits
that belong to other Pivot Attribute values. Similarly, if
the user likes multiple IUnits of a particular Pivot Attribute
value, then the user might be interested to find out other
Pivot Attribute values that have similar [Units.

SUV AND
Honda OR
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Let’s say Mary likes IUnit 3 of Chevrolet. She can create a
new CAD View where all the IUnits that are similar to this
IUnit gets highlighted by using the following query:

HIGHLIGHT SIMILAR IUNITS
IN CompareMakes
WHERE SIMILARITY(Chevrolet, 3) > 3.5

In the similarity function the user gives the Pivot At-
tribute value and the IUnit ID. The above query will high-
light all the IUnits (e.g., IUnit 1 of Ford, IUnit 2 of Jeep) in
the CAD View CompareMakes with similarity score greater
than 3.5. As discussed later, for five Compare Attributes
the max similarity score can be 5.0.

Similarly, to find Makes that are similar to Chevrolet, one
can reorder the rows of the CAD View such that the Pivot
Attribute values are ordered in terms of decreasing similar-
ity with respect to Chevrolet. The similarity between two
Pivot Attribute values can be measured by measuring the
similarity between their IUnits. This query can be expressed
as follows:

REORDER ROWS
IN CompareMakes
ORDER BY SIMILARITY(Chevrolet) DESC

2.1.4 Design Goals

We can now examine the extent to which the CAD View
addresses the limitations described in the motivating exam-
ple above:

Limitation 1. Understanding Attribute Values —
With the traditional tuplewise presentation of result set, it
was difficult for Mary to find the Makes that are similar to
Chevrolet, or see the difference between Chevrolet and Jeep.
However, using the CAD View it is easy to see that IUnits of
Chevrolet and Ford are quite similar, and thus one can infer
that both Chevrolet and Ford offer SUVs at roughly similar
capacities and price points. One can also see that SUVs from
Chevrolet and Jeep are quite different, and they primarily
differ in Price and Drivetrain. Moreover, the CAD View
can show conditional comparisons. Since Mary had selected
Mileage between 10K and 30K, the CAD View shows her
comparison between SUVs in Year range 2011-2012.

Limitation 2. Querying Hidden Attributes — Also
recall that Mary was unable to choose cars with V4 engines,
because the interface did not expose Engine type as an op-
tion in the query panel even though the information was
contained in the database (i.e., Engine was a non-queriable
attribute). Moreover, she was not familiar enough with the
database to indirectly find V4 engines by selecting values in
the queriable attributes. In contrast, the CAD View identi-
fies V4 engines as a characteristic of specific [Units for each
body style. Mary can select the desired tuples using the
corresponding queriable attributes.

2.2 Problem Definition

2.2.1 Assumptions

The CAD View is a tabular structure whose size must be
small enough for the summary information to be absorbed
effectively by the user. For example, the width must be small
enough not to require horizontal scrolling when displayed on
the user’s screen. We reflect this constraint on the width by
limiting the number of IUnits we can show for each attribute



value. Let this number be k. We assume that k is given
to us, either by the user explicitly, or through the system
gaining knowledge of the user’s set up.

The length of the table must also be constrained for the
same reason. There are two variables that control table
length. The first is the number of distinct values for the
pivot attribute. By default, we will show all of them. If the
user is focused on only specific values, these can be listed
explicitly in the CAD View specification. Mary has chosen
5 specific Makes in the example above. The second variable
affecting table length is the number of Compare Attributes
in each row. We assume that this number c is given to
us, just as k is. Furthermore, if the user is interested in
specific attributes, she can insist that these be included in
the Compare Attributes that the system selects.

For categorical attributes or attributes with small discrete
numerical domain, the attribute values are directly obtained
from the domain. Where the number of values is very large,
such as for most numerical domains, ranges of values are
binned together to create a small number of discrete at-
tribute values. Such attribute value cardinality reduction is
necessary for effective summarization. However, this cardi-
nality does not itself play a role in the CAD View generation
algorithm. Therefore, we mention it here as a pre-processing
step, but do not go into details of exactly how this binning
is done. We suggest following the well-developed techniques
in histogram construction[17] for this purpose.

In this section we describe the problems that needs to be
solved to create the CAD View. Our goals are (i) to pop-
ulate this structure effectively, making the most of limited
screen real-estate available, and (ii) to arrange and present
the information populated in this structure to maximize its
value to the user.

For the first goal, we have to find the best (i.e., most
informative) Compare Attributes, the best IUnit clusters,
and (for each IUnit) the best value labels to describe the
IUnit’s data.

The CAD View structure already lays out IUnits in rows,
one per attribute value for the Pivot Attribute. For the
second goal, the system must further decide how to order
IUnits within each row, how to indicate similarity between
IUnits in different rows, and how to indicate similarities and
differences between rows as a whole.

2.2.2  Creating the CAD View

The CAD View is created for a given result data set R
and a Pivot Attribute. Populating the CAD View entails one
main task: obtaining the k£ IUnits of interest for each value
of the pivot attribute. This task can be written formally as:

Problem 1 (Generate IUnits): Given a result set R, a
Pivot Attribute fp, a set of attribute values V selected from
fp, and a threshold value k, find for each attribute value
v €V a list of k IUnits S, where S* = {s7,s5,...,s1} and
sj is the 4™ IUnit for attribute value v.

The first task could be accomplished as finding k clusters
with our favorite clustering algorithm. However, we observe
that our goal is to explain the main structure of this frag-
ment of the data set to the user. Therefore, there are two
important ways in which we deviate from the basic problem
statement above. The first is that we restrict the clustering
to be on the basis of only the attributes selected as Compare
Attributes. These are the attributes that will be displayed in
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the CAD View. In other words, these are the attributes that
will be used to label each cluster (IUnit). Therefore, it is
the values of these attributes that we wish to have clustered
together in each IUnit rather than some other attributes not
shown to the user. The second point we note is that we are
under no obligation to cover all points in the data set with
the clusters produced. We do not want outliers to distort
the clusters. To this end, we choose to solve the clustering
problem with a larger number [, and then choose the top-
k IUnits from among these [ clusters. [ can be chosen by
iterating through all plausible [ values and evaluating the
quality of the resulting CAD View for each. Or it could be
obtained as a system tuning parameter, such as [ = 1.5k.

We can then restate the CAD View generation problem
as the following sequence of sub-problems:

Problem 1.1 (Compare Attributes): Given a result set
R, a Pivot Attribute fp, and set of attribute values V selected
in fp, find a subset of Compare Attributes T s.t. T generate
the most contrast among values in V.

Choosing Compare Attributes is a feature selection prob-
lem [12, 22] with a specialized way of evaluating the quality
of a feature: good features (that is, Compare Attributes)
yield sharply contrasting IUnits across the different Pivot
Attribute values. One can discriminate among Compare At-
tributes as follows: Given a multi-class problem, a feature X
is preferred to another feature Y if X induces a greater con-
trast between the multi-class conditional probabilities than
Y. X and Y are indistinguishable if they induce the same
amount of contrast.

Problem 1.2 (Generate Candidate IUnits): Given a
result set R, a Pivot Attribute f,, a set of attribute values
V selected from fp, a set of Compare Attributes Z, and a
threshold value l, find for each attribute value v € V a list of
I candidate IUnits S°, where S* = {s{,s5,...,sp} and s is
the j' candidate IUnit for attribute value v.

Problem 1.2 is now stated as a clustering problem, with
each resulting cluster being a candidate IUnit. We finally
need to choose k IUnits from among these [ candidates.

Problem 2 (Top-k IUnits): Given a list of IUnits S* for
attribute value v, and a preference function P, find the top-
k IUnits T" in SY according to preference P, where TV =
{t1,t5, ..., t5} and TV C S°.

The IUnits could be ranked based on a function that is
rooted in the clustering algorithm; for example, we could
prefer “tight” clusters by ranking them in ascending order
of minimum pairwise similarity. However, we can pursue
some application-specific goals by ranking IUnit clusters in
a manner that is distinct from the IUnit creation mechanism.
For example, our car navigation interface might, by default,
rank clusters in ascending order of cluster price. In contrast,
the fleet manager for a taxi company might have a different
preference function that ranks IUnits in descending order
of car mileage. Therefore, we have defined this ranking in
terms of a specific preference function. If no function is
specified by the user, we can use a simple system default,
such as cluster size.

2.2.3  Finding Similar Information

The two search operations within the CAD View can be
stated as following two problems:

Problem 3 (Similar IUnits): Given two attribute values



x and y from the Pivot Attribute, and an IUnit t7 from T%,
find all IUnits t§ s.t. t7 € TV and sim(t7,t%) > 7.

We can use any similarity function for this purpose, and
any user or system specified threshold 7. We describe the
specifics of the similarity function in Section 4.1.

Problem 4 (Similar Attribute Value): Given two at-
tribute values x and y and their top-k list of IUnits T and
TY, find the similarity between x and y by measuring the
similarity of their top-k IUnits.

If a user shows preference for a particular attribute value,
it implies that the user has liked most of the top-k IUnits
that has been shown for that attribute value. The user would
be interested to see other attribute values that have similar
IUnits both in terms of content and rank. We describe the
specifics in Section 4.2.

3. CREATING THE CAD VIEW

In this section, we describe how we create and sort [Units
(problems 1 and 2 above) for the CAD View.

3.1 Generating Candidate IUnits

Generating uniformly labeled IUnits consists of two steps:
finding good Compare Attributes Z that can show contrast
in Pivot Attribute values V; and then generating [ IUnits for
each value v € V.

3.1.1 Finding Compare Attributes

The problem of finding Compare Attributes is similar to
feature selection in a multi-class classification problem. To
provide efficient user interaction and understanding, we use
a feature selection algorithm that is computationally effi-
cient and returns all the relevant features.

To determine the number of Compare Attributes we con-
sider two factors: the available screen space and the rele-
vance score of each informative facet. The user’s available
screen space determines the maximum number ¢ of Compare
Attributes that can be shown for any Pivot Attribute. How-
ever, all Pivot Attribute may not have ¢ informative facets
that have relevance greater than a required minimum thresh-
old relevance score. A relevant Compare Attribute always
provides additional useful information. However, if a Com-
pare Attribute is not informative about the Pivot Attribute,
including it will lower the quality of generated IUnits and
waste valuable screen space.

We use the ChiSquare feature selection algorithm [23].
ChiSquare evaluates the worth of an attribute by comput-
ing the value of the chi-squared statistic with respect to the
class. For ChiSquare test one can determine the threshold
relevance using p-values, such as significance level equal to
0.01, 0.05, or 0.10. Even with this simple technique, ranking
Compare Attributes in order of decreasing relevance yields
a few interesting observations that a typical user might not
know. For example, it might seem that Mileage should be
the best Compare Attribute when distinguishing among dif-
ferent Year values: older cars will naturally accrue more
miles. However, it turns out that Model is better, as specific
car models (Suburban 1500 LT, not simply Suburban) are re-
leased frequently, and a specific model is prominent in the
database for only a short period of time.

3.1.2  Finding Important Attribute Interactions
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To create IUnits for a Pivot Attribute value v € V, we
take all tuples from the result set R that contain the given
value v, and allocate those tuples to [ clusters. We derive
an [Unit from each of these [ clusters. We cluster the tuples
using only the above-chosen Compare Attributes.

Since the CAD View is a user-facing application, we want
to create it within interactive time limits, well under 1 sec.
There are various factors that can slow down a clustering
algorithm: (i) clustering a dataset with large numbers of tu-
ples or dimensions, (ii) trying to infer the ideal number of
clusters using the clustering algorithm, and (iii) clustering
with large numbers of cluster centers. Since there are stan-
dard existing techniques to address each of these factors,
we defer their discussion to experimental evaluation (Sec-
tion 6.3).

The quality of IUnits depends on the quality of the clus-
tering algorithm. Since both efficiency and quality are major
concerns of our system, we use standard k-means algorithm.
Our main contribution in the clustering step is the dynamic
variation of system parameters to achieve real-time perfor-
mance, as discussed later in Section 6.3.

Our key contribution in creating the IUnits is the post-
clustering step of cluster labeling, which is often ignored in
clustering research. Although clustering is a very nice data-
categorization technique, it is very hard for most users to un-
derstand the large amount of information that is contained
in each cluster, or be able to compare multiple clusters.

There are existing systems to visually explore clusters of
structured data [5, 21, 29]. Some of these systems are not
easy to explore when the data is high-dimensional or cate-
gorical. For normal end-users, the commonly used cluster
labeling technique is to show the centroid of each cluster,
which is useful when all clusters are spherical. For complex
shaped clusters, it is considered more informative to show
multiple tuples that can show the whole cluster boundary [5].
It is very hard to understand a high-dimensional cluster by
seeing just one centroid or some boundary points. When a
user sees a high-dimensional representative tuple, it is not
easy to infer the dimensions that are most significant. We
need to label the clusters in such a way that we can convey
large amount of information in a summarized manner and
also emphasize the important information.

The way we label the clusters has many benefits. We la-
bel all IUnits uniformly and use ranking at all levels. We
rank the Compare Attributes to highlight the attributes that
are most significant. Similarly, in each [Unit we rank the
Compare Attribute values and show only the most impor-
tant representatives. Instead of showing few representative
tuples from each cluster, we try to summarize statistical
distribution of each Compare Attribute. To label both cate-
gorical and numerical attributes in uniform manner, we dis-
cretize the numerical attributes. We rank attribute values
based on frequency count and then group multiple values if
they have similar frequency count. We use two thresholds
— max display count and statistical difference between fre-
quency counts — to determine the representative Compare
Attribute values for each cluster.

3.2 Top-« IUnits

Without an explicit user preference function, we choose a
preference function that depends on the size of the IUnit’s
underlying cluster, as well as overall result diversity. IU-
nits that represent large clusters are desirable because they



summarize attribute interactions for larger number of tu-
ples. Moreover, they may give more reliable insight than
smaller outlier-prone clusters. However, when we select the
top-k IUnits based purely on the cluster size, many are quite
similar and appear redundant to the user.

Thus we use the generic top-k algorithm proposed in [25]
to compute diversified top-k IUnits. It requires the follow-
ing measures: preference score of each IUnit s7, denoted as
score(s?); similarity between two IUnits sf and s?, denoted
as sim(sf, s?); and a user defined threshold similarity value
7. Two IUnits sy and s? are considered similar, denoted as
sp = s¥, if sim(s7, sY) > 7.

Diversified Top-k IUnits: Given a list of IUnits S =
{s{,s5,...} for a attribute value v, and an integer k, the
diversified top-k IUnits for v, denoted as T = {t7,13,...},
is the list of IUnits that satisfy the following conditions:
)T CSY and |T°| < k

2) For any two different IUnits s, and sy, if sp, = sy, then
i, i} L T

8) Yiwery score(ty) is marimized.

To create the CAD View, we need to compute the diversi-
fied top-k IUnits for each attribute value v. The diversified
top-k problem can be reduced to the NP-Hard maximum
independent set problem on graphs [25]. Greedy solutions
often lead to good approximate results in many NP-Hard
problems, but for this problem a greedy algorithm can lead
to arbitrarily bad solutions, with no bounded constant fac-
tor solution [25]. Because in our problem the size |S”| is
generally not large, Qin, et al.’s basic div-astar algorithm
works well.

4. FINDING SIMILAR INFORMATION

In this section, we decribe how to find similar components
in the CAD View. These are solutions to Problems 3 and 4.

4.1 Finding Similar IUnits

If a user likes one of the IUnits, say [Unit ¢§ from T'*, the
user can find all the IUnits ¢ in the CAD View s.t. tf ~ ¢t
(in other words, sim(¢7,t) > tau). This approach allows
us to address the IUnit sorting problem mentioned in Sec-
tion 2.1.1; we can now sort IUnits from left-to-right by order
of salience to the row’s Pivot Attribute value, while still al-
lowing the user to compare similar IUnits.

Computing similarity between IUnits is equivalent to com-
puting similarity between clusters. For a numerical dataset,
one can compute cluster distance by measuring the distance
(such as Euclidean distance) between cluster centroids. For
a categorical dataset, one can use any distance measure that
is used in existing categorical clustering algorithms to com-
pute cluster distance [11]. However, things become more
complicated when we have a mixed dataset, having both
numerical and categorical attributes. The distance measure
that is used in categorical datasets is quite different com-
pared to those used in numerical datasets. To compute simi-
lar IUnits, we propose a new distance measure that can treat
both numerical and categorical attributes in a uniform man-
ner. We use discretization to convert numerical attributes
into categorical attributes. Then we use a modified form of
cosine-similarity to compute IUnit similarity.

Let tf and t? be two top-k IUnits for selected attribute
values x and y, and Z be their set of Compare Attributes. We
measure the similarity of t; and t?; by summing their cosine

Algorithm 1 IUnit Pair Similarity

Input: t7: TUnit 1

Output:

t?: IUnit 2
Z: set of informative dimensions
s: similarity between the two [Units

Method:

s+ 0
for alld € 7 do
s < s+ cosine-similarity(t7 .d, t}.d)
end for
return s

similarities along each dimension d s.t. d € Z. We use the
frequency count of each attribute value in the corresponding
cluster as the attribute value’s term frequency. Since the
range of cosine-similarity function is [0, 1], the range of the
above similarity function is [0, |Z|]. Based on the specific
data domain, one can choose the IUnit similarity threshold
value 7 as some a.|Z|, where o € (0, 1).

Algorithm 2 Attribute-value Pair Similarity

Input: 7% = {1,135, ..., t; } top-k IUnits for attribute value
TY = {t¥,¢3, ..., t}} top-k IUnits for attribute value y

Output:  d: distance between T and TV
Method:

1: d«0

2: for all t? € T* do

3:  if It €TV sit. t =t? then

4: index < j s.t. t¥ = t? and argmin |j — 4|

’ J

5. else

6: index < |TY| + 1

7:  end if

8 d<d+|i—index|

9: end for

10: for all t¥ € TY do

11: if 3t € T* s.t. t =t} then

12: index < is.t. t7 = t? and argmin |j — 4

i

13:  else

14: index + |T%| +1

15: end if

16:  d < d+|j— index|

17: end for

18: return d

4.2 Finding Similar Attribute Values

If a user has preference for a Pivot Attribute value, the
user can create a CAD View where the first row contains
IUnits for the preferred value, and the remaining Pivot At-
tribute values are shown in decreasing order of similarity
to the preferred value. Two attribute values are considered
similar if their top-k IUnits lists are similar. Two ranked
IUnit lists 7% and T should be similar if they have similar
IUnits, and similar [Units have similar rank.

To the best of our knowledge, there is no existing distance
metric to compute similarity between two ranked lists hav-
ing a disjoint set of items. In Algorithm 2, we propose a
distance measure that can compute distance between two
given ranked lists by taking into consideration the similarity
between their items both in terms of information content
and rank.
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2011 Toyota Land Cruiser Base

Gray, 4 door, 4WD, SUV, 6-Speed Automatic, 5.7L
V8 32V MPFI DOHC, Stock# H114191A.

$57,210
23,409 mi.

New/Used
x Used

Body Style
xSuV

Suburban Imports of Farmington Hills ~ 12 mi. away
888-411-3661 Email Dealer

32 Photos Video

| Save/Compare Free CARFAX Report (@ Click for Specials

Make
* Chevrolet

$55,000
17,645 mi.

* Ford % 2012 Chevrolet Tahoe LT wewwy usten
Black, 4 door, 4WD, SUV,

%' 6-Speed Automatic, 5.3L V8 16V MPFI OHV
Flexible Fuel, Stocki# P2326.

x Honda

x Jeep

x Toyota

George Matick Chevrolet ~ 23 mi. away
888-795-2593 Email Dealer

Free CARFAX Report (@ Click for Specials

0 2014 Chevrolet Tahoe LTZ
83 Black, 4 door, 4WD, SUV,
6-Speed Automatic, 5.3L V8 16V MPFI OHV,
Stock# RXT0028.

$53,775
2,732 mi.

George Matick Chevrolet ~ 23 mi. away
888-795-2593 Email Dealer

§20,001

$30,001-840,000 Free CARFAX Report | € Click for Specials

$40,

$50,997
6,652 mi

$50,001-875,000 # 2012 Jeep Grand Cherokee SRT8

@l Mineral Gray Metallic, 4 door, 4WD, SUV,
5-Speed Automatic, Gas V8 6.4L/392, Stock#
328758,

Not Priced

Choose multiple

Westborn Chrysler Jeep Inc ~ 23 mi. away
888-747-8534 Email Dealer

Mileage v

10,000 or less

Save/Compare

Free CARFAX Report [@ Click for Specials |

20,000 or less =SS
Figure 1: This screen capture from cars.com repre-
sents an example of a faceted navigation interface.

In lines 2-9, we compare how IUnits in T compare to
IUnits in TY. In line 3, we check whether the list 7Y has
some IUnit which is similar to IUnit ¢f from 7. If there
is no similar IUnit (line 6), we assume that ¢7 is similar to
the IUnit that has highest rank amongst non-selected IUnits
(i.e., SY\ TY), and thus has rank [TY| + 1. In lines 3-4, if
there are multiple [Units in 7Y that are similar to t;, then
we take the IUnit whose rank is closest to rank of ¢§ in T,
which is i. In line 8, we sum the rank differences for all
IUnits in 7. Lines 10-16 show the same steps for list TY.

S. FACETED SEARCH WITH CAD VIEW

The CAD View defined above can be used with any rela-
tional database, independent of any front ends used. In fact,
we have even suggested small SQL extensions to capture this
concept. Nevertheless, we recognize that most end-users are
unlikely to be SQL programmers, and are likely to be ac-
cessing relational data through some user-friendly interface.
In this section, we consider one such popular interface, and
describe how we have integrated CAD View with it.

Shoppers in e-commerce applications are a major target
for our work: they are often exploring unfamiliar web sites
before they actually buy. Since most e-commerce web sites
use faceted navigation, that is the interface that we chose
to integrate CAD View into. Figure 1 is a screenshot of
a typical faceted interface for browsing a database of cars.
In this section, we describe a novel two-phased faceted in-
terface, called T'PFacet, which integrates CAD View with
faceted browsing.

A basic faceted interface has two main component pan-
els: a query panel and a results panel. The latter typically
occupies the majority of the screen real estate and shows
the set of currently selected items. The former is usually on
the left side, and offers both user interface controls as well
as a summary digest of the current query and result set.
This summary digest typically comprises all the attribute
values (attribute values) that appear in the selected items,
grouped by their corresponding attribute (attribute). The
tuple count for each attribute value may also be included.

To fit the CAD View within users’ limited screen space,
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we propose a slightly changed interaction model for faceted
navigation: at any one time, the interface will display either
the results panel or the CAD View. The user explicitly
toggles between them, though it is easy to imagine a system
that intelligently chooses a default view, based on the size
of query results. We imagine the user will interact with
the system in two distinct phases: the query revision phase
focuses on the CAD View, while the result set phase focuses
on the results panel, with the user exploring individual items
of interest in the result set.

Faceted navigation is an interaction based search system.
We need to modify the faceted search interface so that users
can create the CAD View or find similar components within
the CAD View using interactive search techniques. We made
the following three modifications: (i) Make each queriable
attribute selectable (using html radio buttons) so that users
can select them as Pivot Attribute, (ii) When users click on
an IUnit in the CAD View we highlight all the other similar
IUnits, and (iii) When users click a Pivot Attribute value
in the CAD View we reorder all the rows in the CAD View
in decreasing order of similarity w.r.t. the clicked attribute
value. We call the faceted interface with these changes as
TPFacet system.

6. EVALUATION

The goal of the CAD View is to facilitate exploratory
search in complex datasets. As such, the primary evaluation
of the CAD View is by means of a user study. In particu-
lar, we compare the use of the CAD View with a standard
faceted interface for three exploratory search tasks. As a
baseline for comparison, we use Apache Solr [2], which is
a popular open source enterprise search platform. Apache
Solr has support for faceted navigation and is used by many
e-commerce sites. Apache Solr has many configuration set-
tings. We chose a setting that is closest to the CAD View
query model. We discuss the user study in depth in Sec-
tion 6.2.

A secondary question is one of performance. Since the
summaries shown in the CAD View are quite complex, we
have to make sure that they can be computed in reasonable
(interactive) time for the data set complexities and sizes that
we expect. We discuss this issue in Section 6.3.

6.1 Implementation and Environment

We integrated the CAD View with Apache Solr to design
the TPFacet system (see Section 5). We input the users’
query from faceted interface, compute the CAD View and
all similarity scores in the backend server, and return the
resulting CAD View and similarity information using HTML
and Javascript. To do feature selection and clustering, we
use ChiSquare and SimpleKMeans algorithm respectively.
Both algorithms are available in Weka [13].

We used two real datasets—YAHOOUSEDCAR and MUSH-
ROOM [9]— to do the evaluation. We scraped Yahoo’s used
car site [1] to create a table comprising 40,000 tuples with
11 attributes. The MUSHROOM dataset has 8124 tuples with
23 attributes. These numbers are at the lower end of what
one sees in a typical e-commerce dataset. The CAD View
will become more valuable in datasets that have more num-
ber of attributes or tuples. The MUSHROOM dataset is very
popular in machine learning. It is simple to understand for
a non-expert, since it describes familiar properties, such as
color and smell, but has data that most of us (and all of our



users) have no knowledge of, forcing us to learn patterns by
examining the data set afresh without reliance on previous
knowledge.

6.2 User Study

We devised a diverse set of carefully specified information
exploration tasks, described in the subsections that follow,
each of which tests (some aspects of) the users’ understand-
ing of the database. These tasks roughly correspond to the
two motivating limitations discussed in Section 1. The first
two tasks correspond to Limitation 1, where we evaluate
users’ ability to perform comparisons in the form of find-
ing differences and similarities respectively. The third task
corresponds to Limitation 2, where we test users’ ability
to query non-queriable attributes using available queriable
attributes. We used the MUSHROOM data set, which was
unfamiliar to all our users.

We compare TPFacet and Solr in terms of their usability
in users’ task completion time and quality of response to
given tasks. For all the tasks we report the results using
statistical analysis.

We performed our user study using eight graduate stu-
dents from our university. As we will see in the following
subsections, statistical analysis show that the conclusions
we draw from these eight users are statistically significant.

We gave all the users a demo explaining all features of
the TPFacet and the steps to do the tasks using both the
interfaces. We allowed the users to do the tasks remotely
to minimize effect of any environmental factors. We created
3 matched pairs of tasks, one pair for each type described
below. We divided the eight users into two equal groups.
We indicate each user by their user id U1-U8. Users with id
U1-U4 were assigned to group 1 and U5-US8 to group 2. For
a task pair (A, B) we asked one of the groups to do task A
using TPFacet and task B using Solr. We reversed the task
assignment for the other group. In other words, if a task
was done by group 1 users using Solr, then the same task
was done by group 2 users using TPFacet, and vice versa.

For all the three tasks we have performed linear mixed
model statistical analysis [28]. We use Display type as fixed
effect and User ID as random effect. Computing p-values for
mixed models aren’t as straightforward as they are for linear
models. The most popular way to obtain p-value is to use
the Likelihood Ratio test as a means to attain p-values. The
logic of the likelihood ratio test is to compare the likelihood
of two models with each other. First, the model without
the factor that one is interested in (the null model) and
then the model with the factor that one is interested in.
By comparing these two models, one can determine whether
the factor one is considering is significant or not. We use
ANOVA to compare the two models.

6.2.1 Simple Classifier

This task illustrates the benefits of the CAD View in find-
ing differences between attribute values. We asked users to
build a simple classifier. Classification is an important ma-
chine learning problem where given a training data with
multiple class labels, one builds a classification model by
which one can find the set of classes (categories) a new
test observation belongs. In this task, we build a classi-
fier for binary class data. We assume a simple classification
model that consists of selecting at most two attribute values
that maximizes the number of tuples retrieved from a given
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target class, and minimizes the number of tuples from the
other class. Although problems like classification are rarely
done manually for large datasets, human ability in this task
demonstrates an understanding of crucial database themes.
We evaluate the goodness of the classifier using standard F1
accuracy score. A sample task was to build a classifier for
target class Bruises = true, where the given classes were
Bruises = {true, false}.

Solr m TPFacet

F1 Score

U1l u2 u3 u4 us ue u7 ug
User ID

Figure 2: Simple Classifier

Solr m TPFacet

Time (in min)

u1l u2 us ua us ue u7 us
User ID

Figure 3: Simple Classifier

Figure 2 shows the F1 scores for the classifiers that users
got for this task. Statistical analysis shows that TPFacet
affects the quality of classfier by (x?(1) = 5.572, p = 0.018),
increasing the F1 score by about 0.078 £ 0.0285. Moreover,
the variation in F1 score is much lower when users use the
TPFacet system as compared to Solr because the exploration
using TPFacet is more methodical. In Figure 3, we show
the time taken by the users to build the classifiers. Statis-
tical analysis shows that TPFacet affects the time taken by
(x*(1) = 8.54, p = 0.003), lowering it by about 5.44 + 1.56
minutes.

6.2.2 Most Similar Facet Value Pair

This task illustrates the benefits of the CAD View in find-
ing similar (or equivalent) attribute values. In this task, we
gave users a list of four attribute values from an attribute
and asked them to find the two most similar attribute values.
For example, given attribute = GillColor and attribute val-
ues = {buff, white, brown, green}, find the two most similar
gill colors.

In the traditional faceted interface, users can Compare
Attribute values by comparing their summary digest. We
gave users a cosine-similarity based distance metric to com-
pare the summary digests. We asked users to select each of
the given attribute values, one at a time, and compare their
summary digest. In the CAD View, we didn’t show the com-
puted similarity scores, but allowed users to use interactive
effects to find similar IUnits and attribute values.

Figure 4 shows users response quality for this task. Since
there are four attribute values, there are 6 possible attribute
value pairs. We computed the defined similarity score for
each pair and ranked them from 1 to 6, with the most simi-
lar pair being ranked as 1. Since computing exact similarity
score is very hard for humans, we purposely chose attributes
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Figure 4: Most Similar Attribute Value Pair

and attribute values that would make the task humanly fea-
sible in Solr. The similarity between gill colors brown and
white was so high as compared to other choices that all the
eight users got correct answer for this task. Group 1 users
(U1-U4) did this task using TPFacet and group 2 users using
Solr. However, the other similarity task was slightly harder.
For the other task, users U7 and U8 got the most similar
attribute value pair according to attribute value similarity
we defined in Section 4, but according to the metric defined
in this task, they turned out to be second most similar pair.
Statistical analysis shows that there is no difference in users
response quality by using the two types of interface.
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Figure 5: Most Similar Attribute Value Pair

Figure 5 shows the time users took to finish this task. Sta-
tistical analysis shows that TPFacet affects the time taken
by (x?(1) = 12.04, p = 0.0005), lowering it by about 6.00 £
1.23 minutes. All users, except user U7, finished the task
around four times faster using TPFacet as compared to Solr.
Since the users were doing this task for the first time, some
of them were trying to manually compare the IUnits. Users
could have got the desired answer for this task much faster
by just using the interactive effects, as seen in case of users
U4,U8 and U1.

6.2.3 Alternative Search Condition

This task illustrates the benefits of the CAD View in
querying non-queriable attributes using queriable attribute
values. In this task, we gave users a set of selection condi-
tions that lead to some result set R. We asked users to find
another set of selection conditions that would lead to same
result set R, but not using any of the already given selection
conditions. One can see the given selection conditions as se-
lection conditions on non-queriable attributes that the users
cannot query. Only an informed user can precisely access
the desired result set using an alternate option. A sample
task was to find an alternative selection condition using at
most two attribute values that would lead to the same result
as selecting: StalkShape = enlarged and SporePrintColor
= chocolate.

To evaluate users response quality, we checked the simi-
larity between the query result obtained from the given se-
lection condition and the users alternate selection condition.
To measure similarity between the two results, we measured
the similarity between their faceted summary digest.
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Figure 6: Alternative Search Condition

Figure 6 shows users response quality for this task. Statis-
tical analysis shows that TPFacet affects the users alterna-
tive search condition by (x*(1) = 3.28, p = 0.07), lowering
the retrieval error by about 0.329 £ 0.172. Using TPFacet
most users were able to do the task with five times lower
retrieval error. In this task pair, the task that group 1 users
did using Solr, turned out to be quite easier compared to the
one they had to do using TPFacet. We can see this differ-
ence by seeing that users U3 - U8 have very low and similar
error for this task. For the easier task, just one attribute
value was sufficient to get to the desired result set. All the
users in group 2 had come up with slightly variant solutions,
but exactly the same retrieval error (48 missing tuples out of
1344). Since TPFacet allows users to do this type of task in
more methodical approach compared to Solr, we find much
lower variation in users response quality. For the slighly
harder task, we see slight variation in retrieval error among
group 1 users who did this task using TPFacet, but the error
variation is much higher for group 2 users who did it using
Solr. Group 2 users, such as U5, U6 and U8, who had much
lower error compared to user U7 had to spend significantly
more amount of time as seen in Figure 7.

Solr m TPFacet

B
[V

H
5
i

Time (in min)

on s oo ®
‘ i

U1l u2 u3 ua us us u7 us
User ID
Figure 7: Alternative Search Condition

Figure 7 shows the time users took to finish this task. Sta-
tistical analysis shows that TPFacet affects the time taken
by (x*(1) = 2.58, p = 0.108), lowering it by about 2.00+1.14
minutes. Most users were able to do the task 1.5 to 2 times
faster using TPFacet as compared to Solr. This task re-
quired more time because users had to manually differenti-
ate the IUnits. The main benefit of TPFacet was that users
didn’t have to try various options using hit-and-trial. They
had to look through the IUnits to find the discriminating at-
tribute values, but then it was just trying very few possible
alternate choices to see which one gives the best result.

6.3 Performance

Computational time is a crucial constraint for all user fac-
ing applications because users expect almost instantaneous
response. In this subsection, we evaluate whether TPFacet
can provide interactive responses. We performed all our per-
formance experiments on the YAHOOUSEDCAR dataset with
40K tuples and 11 attributes. When users browse over e-
commerce sites, they rarely deal with result size that is more
than 30K-40K tuples and 5-10 queriable attributes. Thus



we evaluate our system using all the tuples of our used-car
dataset as query result, with all its attributes being used as
queriable attributes.

Our experiments show that TPFacet can give acceptable
performance by just using computationally efficient feature
selection and clustering algorithms. Each of our experimen-
tal graphs are based on average readings of 50 simulations,
where for each simulation we generate a different query re-
sult by randomly selecting a subset of tuples and/or at-
tributes. The default parameters in these experiments are:
the number of Compare Attribute Z = 11, the number of
generated [Units [ = 10, the number of IUnits shown k = 6,
and the number of attribute-values selected in the Pivot At-
tribute V = 5. In these experiments, we assume that if the
total size of the query result set is |R|, then each attribute
value v € V has |R|/|V| tuples.
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Figure 8: Worst Case System Performance

Figure 8 shows the total time to compute the CAD View
for different sizes of query result. In the shown graph, we
do not do any optimizations, except using a computation-
ally efficient feature selection and clustering algorithm, that
can lead to better system performance. Moreover, we chose
system parameter values to demonstrate the worst-case per-
formance of our system. For example, we kept |Z| = 11
and [ = 15. When we consider interaction between many
attributes (large |Z|) or try to compute many interactions
(large 1), then it decreases system performance, as shown
in later experiments. We divide the total time into three
parts: time to compute Compare Attribute, time to gen-
erate [Units and time for all remaining steps, such as top-k
ranking, and similarity between IUnits and attribute-values,
that we represent collectively as others. We can see that the
most computationally intensive parts of TPFacet is comput-
ing the top Compare Attribute and generating candidate
IUnits. Total time for all other steps is negligible because of
the small values of k and |V| established due to user’s display
constraint. We can see that even this naive solution is ac-
ceptable when the result size is less 15K. But as we increase
the result set size, we can see that the time to compute CAD
View increases and becomes almost 4.5 secs for 40K tuples.
Since the result set size is likely to be the largest in the ini-
tial stages of exploration, and since this is also likely to be
when the user really needs interactive response to freely try
alternatives, a multi-second response time is too slow. To
alleviate this problem, we developed several optimizations.

Optimization 1. Sampling — Sampling can improve
both feature selection and clustering. For all our attributes,
when we computed the set of top ranked Compare Attribute
using a small random sample of size 5K-10K, we always got
almost the same set, as we got from any larger sample size,
including the full dataset. As shown in Figure 8, computing
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Compare Attribute takes only 20-50 ms for 5K-10K tuples,
as compared to 1700 ms for 40K tuples. Quality of Compare
Attribute is more crucial when users are towards the end of
their exploration, and at that time even the exact computa-
tion will take very short time due to small result size. Even
if there were some degradation in quality due to sampling,
it may not matter much in the intial stages. Similarly, we
can also reduce the time for generating IUnits by generating
IUnits from a small sample.
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Figure 9: Number of Generated IUnits vs Time

Optimization 2. Varying Generated IUnits — Fig-
ure 9 shows the effect of number of generated IUnits [ on
computation time for different result sizes. We observed that
as we increased the number of generated IUnits, it increases
computation time due to increased time for clustering. For
small 10K result size, computation time is small, less than
500 ms, even when we generate 15 [Units per attribute value.
However, if the result set is large and we generate large num-
ber of IUnits, as shown in Figure 8 for 40K tuples with [ =
15, then it slows down system performance. When users are
in their beginning stages of exploration, it is hard to know
their preference because their query is too broad. Generat-
ing more [Units and finally ranking is meaningful when we
know users’ preference more precisely, which typically hap-
pens near the end-stages of exploration. Thus we generate
fewer IUnits when the result set is very large, so that we
can provide a good summary of all options. As users narrow
down their exploration, we increase the number of generated
IUnits and return better top-k [Units.

2500

2000

/7 —&—40K Tuples

30K Tuples

—&— 20K Tuples
3 4 5

1500

1000 -
—+—10K Tuples

Time (in ms)

u
<]
3

1 2
Number of Informative Facets

6 7 8 9 10 11

Figure 10: Number of Compare Attributes vs Time

Optimization 3. Fewer Compare Attributes — Fig-
ure 10 shows the effect of number of Compare Attributes
on computing clusters for different result sizes. As we in-
crease the number of Compare Attributes, it increases com-
putation time because we need to look at the interaction
between larger number of attributes. By showing few Com-
pare Attributes we can cluster even 40K tuples in less than
500 ms.

By combining all the above optimizations in creating the
CAD View, we can greatly increase the performance of TP-
Facet system. For example, we can get an CAD View for
40K tuples in less than 500 ms.



7. RELATED WORK

Exploratory search [26, 27, 24, 19] has recently become
an important research problem in IR, HCI and database
communities. We defined a new exploratory search prob-
lem in databases. In evaluating exploratory search systems
we cannot separate human behavior from the search system.
Since users have diverse background knowledge and informa-
tion need, it is difficult to evaluate exploratory search sys-
tems. Designing evaluation metrics and methodologies for
exploratory search system is a challenging research prob-
lem [26]. We presented a detailed user-study, based on
explicit exploration/understanding tasks with quantitative
measures, to evaluate our system.

The CAD View is a summary of important interactions
between attributes. Measuring attribute interactions is a
part of broader feature selection problem [12, 22, 18] in
machine learning. In databases, attribute interactions are
often measured in form of functional dependencies [8, 16]
and referential integrities. Although standard feature selec-
tion can find the interaction between attributes, a Bayesian
network [15] can provide a more accurate description of at-
tribute interactions by giving probabilistic dependencies be-
tween attributes. These techniques can be used to create
CAD Views with other types of data summaries.

Large volumes of relational data are often summarized us-
ing data warehousing and OLAP technology [10]. There are
also many data mining techniques, such as clustering [20, 3]
and decision trees [4, 6], that can group data into meaningful
groups according to some user given notion of similarity. A
central property of these algorithms is that they depend on
the data and are independent of the user’s interest. There-
fore, the results are often not related to the user’s specific
exploratory goal. In this paper, we presented a context de-
pendent summarization technique.

Faceted categorization and clustering are both grouping
techniques. Hearst [14] presents a nice comparison of how
these two techniques complement each other. Various us-
ability studies have shown that users prefer the predictable
faceted categorization over clustering [7]. In this paper, we
combined faceted browsing with clustering to build the TP-
Facet system that has benefits of both faceted navigation
and clustering.

8. CONCLUSION

In this paper, we presented an exploratory search system
for relational databases. Our solution relies on a novel data
summarization technique called the CAD View, which pro-
vides a context dependent summary of relational result set.
We showed through an extensive user study that the CAD
View can help users gain quick data familiarity with complex
datasets. Although computing the CAD View is computa-
tionally intensive, we provided optimizations that enable it
to be easily integrated with existing search interfaces, with-
out compromising system performance.
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ABSTRACT

Although existing database systems provide users an efficient means
to select tuples based on attribute criteria, they however provide lit-
tle means to select tuples based on whether they meet aggregate
requirements. For instance, a requirement may be that the cardi-
nality of the query result must be 1000 or the sum of a particular
attribute must be < $5000. In this work, we term such queries
as “Aggregation Constrained Queries” (ACQs). Aggregation con-
strained queries are crucial in many decision support applications
to maintain a product’s competitive edge in this fast moving field of
data processing. The challenge in processing ACQs is the unfamil-
iarity of the underlying data that results in queries being either too
strict or too broad. Due to the lack of support of ACQs, users have
to resort to a frustrating trial-and-error query refinement process. In
this paper, we introduce and define the semantics of ACQs. We pro-
pose a refinement-based approach, called ACQUIRE, to efficiently
process a range of ACQs. Lastly, in our experimental analysis we
demonstrate the superiority of our technique over extensions of ex-
isting algorithms. More specifically, ACQUIRE runs up to 2 orders
of magnitude faster than compared techniques while producing a
2X reduction in the amount of refinement made to the input queries.

1. INTRODUCTION

Databases provide a number of ways to efficiently select tuples
of interest to the user by constraining attributes of individual tuples,
for instance, return tuples that meet the criteria price < $50, join
results between tuples in table A and table B that match on attribute
“id," etc. However, little effort has been focused on a means of se-
lecting tuples based on whether they satisfy aggregate constraints.
For instance, select tuples with average price < $10, number of
tuples = 1000, etc. The ability to apply aggregate constraints along
with constraints on tuples’ individual attribute values is important
in many applications as illustrated below.

e In advertising campaigns (such as Example 1), the budget
restricts the number of users that can be reached [4]; as a re-
sult, the campaign manager must select users based not only
on demographics but also whether the total number of users
(i.e. the COUNT) is within the budget limit.

(©)2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
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e In a supply chain application, a requirement on the total num-
ber of parts to be ordered from suppliers translates to a con-
straint on the sum of the number of parts available with each
supplier (Example 2). As a result, queries must place con-
straints not only on part specifications but also the SUM of
the parts available.

o When analyzing large data sets through aggregates [15], users
often want to identify what input tuples produced outliers in
aggregate values (e.g. select patients who had extremely high
average cost). In this case, the user would like to place con-
straints on the AVG aggregate.

Example 1. HighStyle Designers would like to run a Facebook
U ad campaign to get more users to “like” their page. The cam-
paign budget of $10,000 will allow HighStyle to reach I million
customers. Therefore, when the campaign manager, Alice, selects
target users, she must not only constrain her search based on cus-
tomer demographics but also based on the total number of cus-
tomers who must be reached. This situation thus calls for an “Ag-
gregation Constrained Query” (ACQ).

Audience

Learn More About Targeting

Location: Audience

393,980 peopic

United States
Country
State/Province

@ city
Zip Code

= who live in the United States

= who live in Boston, MA, Seattle, WA,
Miami, FL, Austin, TX or New York, NY

= between the ages of 25 and 35 inclusive

= who are female

= who are single

= who are not already connected to
HighStyle

Boston, MA'
New York, NY

Seattle, WA * | [Miami, FL » | [Austin, TX

() Include cities within | 10 & miles

Age: 2541~ 35 Require exact age match

Gender: Al

Men
@ Women

Figure 1: Facebook Ad Creation Interface: Allows specifying
demographic criteria and view estimate of audience size.

Figure 1 shows the Facebook’s Advertising Interface? that allows
campaign manager Alice to select target users for her ad. In terms
of SQL, Alice has to run the following query:

Ql: SELECT = FROM Users

WHERE location in (’Boston’, ’'New York’,
"Seattle’, 'Miami’, ’"Austin’) AND
(gender = ’'Women’) AND (25 <= age <= 35)
AND (education "CollegeGrad’)

"http://www.facebook.com
“https://www.facebook.com/ads/create/

10.5441/002/edbt .2016.12
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AND
AND

(relationshipStatus "Single’)
(interests IN {’Retail’, ’Shopping’})

Need for Query Refinement. For Alice’s above query, Face-
book estimates the reach to be 393,980 users, i.e. only 40% of the
required 1 million users. While the results of query Q1 precisely
satisfy Alice’s selection predicates, they are far from meeting her
aggregate constraints. In fact, selection and aggregation constraints
are orthogonal in most cases. As a result, we need to refine various
query predicates in order to meet the aggregate constraints.

Current Approach. In existing systems Alice has to manually
alter her criteria to encompass more users while ensuring that the
semantics of her query are not altered. While some selection cri-
teria (e.g. gender and shopping interest) may be fixed, Alice can
try potentially infinite refinements of her predicates such as target
consumers in additional cities; alter age range; relax relationship
status; or any combination of the above. Repeatedly altering the
original query and having its size estimated is not only inefficient
for the backend, but the process is tedious and frustrating for Alice.

Desired User Experience. A much better user experience can
be provided if Alice was allowed to specify her (1) demographic
criteria (query), and (2) aggregate constraints, and the database en-
gine can then execute variations of the input query such that the
aggregate constraints are met. The output of such a search would
be a set of refined queries that change Q1 as little as possible while
meeting the aggregate constraints (in our case the audience size).
Alice would then simply pick the query that best meets her selec-
tion criteria.

In this paper, we encode ACQs by introducing two SQL key-
words CONSTRAINT and NOREFINE, where CONSTRAINT cap-
tures the aggregate constraint and NOREFINE specifies whether
the predicate should not be refined. The encoded Query Q1 is:

Q1’: SELECT x FROM Users
CONSTRAINT COUNT (x)=1M

WHERE location in (’Boston’, ’'New York’,

"Seattle’, ’'Miami’, ’'Austin’) AND

(gender = ’'Women’) NOREFINE AND (25 <=age<=35)
AND (education = ’CollegeGrad’)

AND (relationshipStatus = ’'Single’) AND

(interests IN {’Retail’,

Running Q1 will automatically generate alternate queries that
produce 1M customers and alter Q1 as little as possible.

Example 2. HybridCars Co. would like to place an order for
100,000 units of a burnished steel part having specific size, whole-
sale price less than $1000, and from suppliers who have a low ac-
count balance. On the TPC-H benchmark, HybridCars runs query
Q2 to find the suppliers with whom to place the order.

Q2: SELECT » FROM supplier, part, partsupp
WHERE (s_suppkey = ps_suppkey) AND
(p_partkey = ps_partkey) AND

(s_acctbal < 2000)

AND (p_retailprice < 1000) AND (p_size = 10)

AND

(p_type " SMALL BURNISHED STEEL’)

As in Example 1, this situation calls for an ACQ as we would
like to constrain the total number of available parts, i.e. sum of the
number of parts available per supplier (i.e. SUM(ps_availqty)) in
addition the select predicates. We can encode the ACQ as Q2’ to
produce alternate refined queries. As before, the NOREFINE key-
word associated with p_type and p_size indicate that these predi-
cates cannot be altered.

’Shopping’}) NOREFINE;

102

Q2': SELECT * FROM supplier, part,
CONSTRAINT SUM(ps_availqgty) >= 0.1M
WHERE (s_suppkey ps_suppkey) NOREFINE AND
(p_partkey ps_partkey) NOREFINE AND
(p_retailprice < 1000) AND (s_acctbal < 2000)
AND (p_size 10) NOREFINE AND
(p_type " SMALL BURNISHED STEEL’)

partsupp

= NOREFINE

Building a system to execute ACQs is challenging because the
number of possible refined queries is exponential in the number
of predicates. Hence an exhaustive search of all possible queries
is prohibitively expensive. Moreover even for aggregates such as
COUNT, finding a query that meets its constraint is an NP-Hard
problem [1]. In this paper, we limit ourselves to ACQs with nu-
merical select and join predicates, and aggregates that satisfy the
optimal substructure property (Section 2). Additionally, we focus
on the problem of expanding predicates to meet constraints, rather
than the inverse problem of shrinking queries returning too many
tuples.

Contributions. We propose a technique to efficiently execute
ACQs and our contributions are summarized as follows:

We introduce and define semantics of a new class of queries
called an Aggregation Constrained Query (ACQ). These
special purpose queries are of value in real-world applica-
tions and are amenable to clever execution techniques.

We propose a technique called ACQUIRE to execute ACQs
via query refinement. ACQUIRE auto-generates alternative
refined queries that minimize changes to the original query
while meeting aggregate constraints.

We combine the building blocks of breadth-first-search and
dynamic programming in a novel way to elegantly and effi-
ciently re-use query results. We call this Incremental Aggre-
gate Computation (Section 5).

We propose sensible default query refinement scoring and
aggregate error functions. The design principle of ACQUIRE
is general and therefore we allow user defined predicate re-
finement scoring and aggregate error functions. The func-
tions used in this work are merely sensible defaults.

Our experimental analysis on TPC-H dataset demonstrates
that ACQUIRE consistently out-performs extensions to cur-
rent techniques by up to 2 orders of magnitude. Moreover,
queries recommended by ACQUIRE are on average closer to
the original query by a factor of 2X more than the compared
techniques (Section 8).

2. PRELIMINARIES

2.1 SQL extension for ACQs

We propose to capture ACQs by using two keywords: CON-
STRAINT to describe the aggregate constraint and NOREFINE to
indicate that a predicate should not be refined. By default, we as-
sume that all predicates can be refined.

SELECT % FROM Tablel, Table2

CONSTRAINT AGG (attribute) Op X

WHERE Predicatel AND Predicate?2

AND Predicate_i NOREFINE AND Predicate_j
AND ...Predicate_n NOREFINE



The aggregate constraint is of the form AGG (attribute) Op
X, where AGG is a standard (COUNT, SUM, MIN, MAX, AVG)
or user defined aggregate function, X is a positive number and Op
is a comparison operator (=, <, <, >,and >). In this work, we
focus on the problem of expanding predicates to meet constraints,
rather than the inverse problem of shrinking queries returning too
many tuples, we therefore limit the comparison operation to =, >
,and >. Henceforth for illustrative purposes only we assume that
the aggregate constraint has an equality condition.

2.2 Query Representation

In this work, we focus on queries with numeric select, project
and join predicates of the form Q = P1 A ... A P4, where P;’s is
a predicates on relations R;... Ry. To illustrate consider query Q3
with one select and one join predicate.

Q03: SELECT » FROM A, B

WHERE A.x=B.x AND B.y < 50

For a given query Q, we divide each predicate P; into two parts:
the predicate function (P;7) and the predicate interval @&hH. "
is a monotonic function on attributes of relations R;... Ry while
P, denotes the interval of acceptable values for P;”, that is, P;~ =
(min;T, maz;T). To illustrate, if the minimum value of B.y is 0,
the predicate (B.y < 50), in @3 is decomposed into P7 =By
and P, = (0, 50). Range predicates like (10 < B.y < 50) are
rewritten as two one-sided predicates, (B.y > 10) A (B.y < 50).
This enables the refinement of one or both sides of the range pred-
icate. For equi-joins (A.z B.z) and non-equi joins (2 * A.x
< 3 % B.x), the form of PTis unchanged; however, P77 takes
the form A((P;7)1, (P;7)2), where (P;7); and (P,7)2 are sep-
arate predicate functions and A is the function measuring distance
between them. Therefore, join predicate A.x = B.x in Q3 is de-
composed into (P,”); = A.z and (P,7)s = B.xz. P, = (0,0)
signifies that values of the two functions must match exactly. For
each predicate P;, we also store a boolean value indicating whether
the predicate can be refined. Recall that ACQ’s contain an aggre-
gate function that specifies the target value of an aggregate over the
output result. We denote the target, or expected, aggregate value as
Aezp and actual aggregate value returned by the query as Aqctuai-

2.3 Measuring Query Refinement Quality

We define a query refinement score to measure the change that
has been made to the original query to obtain the refined query.
A query Q=(P1 A ... A Py) is refined to Q' by refining one or
more predicates P; € Q to predicates P’ € Q. The refine-
ment of Q" along P;, called the predicate refinement score, de-
noted as PScore;(Q, Q"), is measured as the percent departure of
(P) from P;* (Equation 1). Note that if (P, )min = (Pi%)maz
PScore;(Q,Q’) = 0. For equality join predicates, the denomina-
tor is set to 100. Measuring relative change as opposed to absolute
change in predicate intervals, compensates for the differing scales
of query attributes. While percent refinement is the default pred-
icate refinement metric used in this work, a user can override the
metric with custom (monotonic) functions without changes to our
algorithm. By computing the refinement score for each query pred-
icate, a refined query Q’ can be represented as a d-dimensional vec-
tor of predicate refinement scores, called the predicate refinement
vector or PScore(Q, Q') (Equation 2).
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PScore;(Q,Q") =

T !
(P mae | 2100 (1)

7

(P7)in) + NPT, —
[(PT) ae — (P7F)

PScore(Q,Q') = (PScore1(Q, Q') ... PScorea(Q, Q"))  (2)

The query refinement score of Q’, denoted by Q Score(Q, Q')
is defined as a monotonic function f : R% — R used to measure
the magnitude of PScore(@,Q’). We use the popular weighted
vector p-norms [7] to calculate QScore(Q, Q). Equation 3 shows
the calculation of QScore(Q, Q') using the default L; norm.

(P in —

d
Li: QScore(Q,Q") = (ZPSCOT@Z‘(Q,Q/)) 3)
i=1

Example 3. Consider the following refinement to Q3.

Q3’: SELECT = FROM A,B

WHERE A.x = B.x AND B.y < 60

The refined query @3’ expands the range of acceptable values
for B.y from (0, 50) to (0, 60). Therefore, Q3’ is represented as
PScore(Q3,Q3")= (0, 65001500 -100) and has QScore(Q3, @3")=20
for the L1 norm.

2.4 Refining Join Predicates

The advantage of representing predicates as functions (P;”) and
intervals (P;%), and defining refinement as the change in the predi-
cate interval, is that join refinement can be expressed and operated
on in the same way as select predicates. For instance, a query with
PScore(Q3,Q3")= (10, 20) indicates that the join predicate in
Q3 has been refined by 10 to become ||A.z — B.z|| < 10 and that
the B.y predicate has been refined by 10 units. Thus, the algorithm
can be applied unchanged for select as well as join queries.

2.5 Measuring Aggregate Error

To measure the difference between the expected aggregate value
Aezp and the actual aggregate value Aqctual, We use a relative error
measure defined as:

_ HAc:L‘p - Aactual”
Aezp
This measure is appropriate for aggregates such as COUNT or

AVG; however, a hinge-function that only penalizes errors on one
side is appropriate for SUM, MIN and MAX.

(Aearp - Aactual) Zf Aexp > Aactual
0 otherwise

Erra @

Erry = {

2.6 Optimal Substructure Property

In this work, we limit ourselves to aggregate functions that ei-
ther (a) have the optimal substructure property (OSP), or (b) can be
broken down into functions that satisfy the OSP. Consider any two
queries Q1 and Q2 such that all the results of query Q2 are also re-
sults of query Q1 (Q1 contains Q2). An aggregate is said to satisfy
the OSP if the value of the aggregate for the results of Q1 can be
computed without re-executing part or whole of the query Q2.

For instance, the COUNT aggregate is said to satisfy the OSP
because given queries Q1 and Q2 as defined above, the value of
COUNT for Q1 can be computed by adding the value of COUNT
for Q2 to the value of COUNT for the query (Q1-Q2). SUM, MIN



and MAX similarly satisfy the OSP, and can be addressed by our
technique. AVG, another common aggregate, can be broken down
into two aggregates SUM and COUNT which have the optimal sub-
structure property in turn, and therefore AVG can also be addressed
by our technique. STDDEY, on the other hand, does not satisfy the
OSP because even if the STDDEV for Q2’s results are known, the
results of Q2 must be re-analyzed to compute STDDEV for Q1.

2.7 Problem Definition

Given a query () and a desired aggregate value Ac.p, the prob-
lem of Aggregation Constrained Query Execution consists of
refining Q to produce alternate queries Q' that produce the aggre-
gate value A.;p while changing @) as little as possible. Formally,
we can state it as follows:

DEFINITION 1. Given database D, query (), desired aggre-
gate value Acxp, an aggregate error threshold 9, and refinement
threshold ~y, ACQ finds a set of refined queries Q’ s.t. (a) the
actual aggregate value for Q’, Aactual, satisfies: Erra < 0,
and (b) ||QScore(Q, Q;) — QScoreopt| <7, where Q; € @',
QScoreqp=min {QScore(Q, Q})| Y valid query refinements Q;
s.t. (Erra <6)}

Since the problem of attaining the required aggregate value is
NP-hard, we cannot provide formal guarantees about constraint (a)
in Definition 1. However, as demonstrated in our experiments (Sec-
tion 8), our algorithm ensures that the constraint is met practically
every time. Our proximity-driven refinement technique guarantees
that ACQUIRE will always meet constraint (b) in Definition 1.

We now turn our attention to evaluating these ACQs. As noted
in the introduction, in this paper, our major focus is on queries that
undershoot the aggregate constraint, however, we show in Section
7 how ACQUIRE can be extended to handle queries that overshoot
the constraint. Furthermore, although we use COUNT as the ag-
gregate of choice for all discussions, it is straightforward to support
other aggregates with our technique and we note any changes to the
algorithm that are required for doing so.

3. ACQUIRE: AN OVERVIEW

Given a query, the desired aggregate value, and acceptable re-
sult thresholds, ACQUIRE produces a set of refined queries that
minimize changes to the original query but also satisfy the aggre-
gate constraint. In formulating this set of refined queries, AC-
QUIRE adopts the strategy of Expand and Explore to iteratively
expand the original query and to explore refined queries with
respect to aggregate values. The expand phase ensures that re-
fined queries satisfy the refinement threshold and that queries with
smaller refinements are produced before those with larger refine-
ments. Thus, once ACQUIRE finds a query satistying the aggregate
constraint, it need not examine queries with larger refinements. The
explore phase on the other hand efficiently computes aggregate
values for refined queries via an incremental aggregate computation
algorithm. We delegate all actual query execution tasks to an evalu-
ation layer, which in this case is Postgres. However, the evaluation
layer is modular and can be replaced with other techniques such
as estimation, and/or sampling. Our incremental aggregate com-
putation algorithm exploits dependencies between refined queries
and the optimal substructure property so that for each query, AC-
QUIRE must only execute a small sub-query and then simply use
our recursive model to combine results from previous queries. To-
gether, these two techniques ensure that once a query Q has been
executed, any query Q’ that contains Q will not have to re-execute
Q. As a result, ACQUIRE can evaluate a large number of refined
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queries at a cost that is a fraction of the execution time for a single
query. Figure 2 shows the system architecture described above.

Input: Query Q,

constraint A Estimate A,y

If (Aactual!= Aexp)'
pass to ACQUIRE

exp

If current query Expand
doesn’t meet the ) ]
aggregate constraint) |de_nt'lfy new reﬁned_
expand further @ queries to explore while
@ minimizing refinement
Incrementally
compute aggregate @ Explore
ACQUIRE @
| DBMS (Postgres) | Execute highly
selective “Cell
Query”

Figure 2: System Architecture of ACQUIRE

4. PHASE I: EXPAND

As described in the previous section, the Expand phase of AC-
QUIRE is responsible for iteratively generating refined queries that
meet two criteria: (1) they satisfy the proximity threshold, and (2)
their refinement scores (QQScore values) are greater or equal to the
scores of previously generated queries.

P, [Y] Refinement

Ay
Q’5=(0,4) §c------- pommeeee peeeeee

- X
Q;=(0,0) 1 2 3
P, [Join (X)] Refinement

Figure 3: Refined Space and Generation of Refined Queries

To meet the above query generation goals, ACQUIRE uses an ab-
straction called the Refined Space to represent all refined queries.
Given an original query ) having d predicates, the Refined Space,
denoted henceforth by RS(Q), is a d-dimensional space, where the
origin represents () and the axes measure individual predicate re-
finement. To illustrate, consider a refined query @’ and assume that
the L1 norm is used to compute @ Score. Q" would then be repre-
sentedin RS(Q) as (u1, ua, . .., uq) where u; = (PScore;(Q, Q"))
Vi=1,...,d, making QScore(Q, Q") = (Zle u;). Conversely,
every point in the refined space (u1,u2, ...,uq) corresponds to
some query Q' with PScore;(Q, Q') = u;. Therefore, any d-
dimensional hyper-rectangle on R.S(Q) also corresponds to a query.

ACQUIRE divides RS(Q) into a multi-dimensional grid with
step-size 7 to avoid an exhaustive search of RS(Q) and to stay
within the proximity threshold, as illustrated by Theorem 1. Each
query on the multi-dimensional grid is called a grid query.



Theorem 1. Suppose the original query is Q and Qopt is the
optimal query meeting the aggregate constraint and having min-
imum refinement. Let RS(Q) be a multi-dimensional grid with
step-size on each axis equal to 5. Then at least one refined query
Q' lying on the RS(Q) grid will satisfy the proximity constraint
W.r L. 10 Qopt.

Proof: Let Qopt = {u1,us,...,uq} lie in some grid cell G
in RS(Q). Since the refined space grid has step-size 7, any query

Q' = {ul,ub,...,ul} on G satisfies:

[u1? — ufP| + Jug? —upP|+ .. +|ug? —ulP| < T -d=vy

= [(ur? +u2P + ... +ugP) — (WP +up? + o) <y
= |QScore(Qopt, Q)P — QScore(Q’, Q)P| < v

= QScore(Qopt, Q)P — QScore(Q', Q)P < v
(assume QScore(Qopt, Q)P > QScore(Q’, Q)P

= (QScore(Qopt, Q) — QScore(Q’,Q)) - (QScore(Qom, Q)P +
QScore(Qopt, Q)P - QScore(Q',Q) + ... + QScore(Q’, Q)P™1)
<~

=(QScore(Qopt, Q@) — QScore(Q’,Q)) < v (y> 1) u

Figure 3 depicts the refined space abstraction for query Q3 as-
suming v = 10. Since Q3 has two predicates, step-size=5 and
RS(Q3) is a 2-dimensional space with the axes respectively mea-
suring the refinements along the select and join predicates. A re-
fined query like Q3” having PScore(@3, Q3')= (0, 20) is repre-
sented as (0, 4) in RS(Q3).

The second goal of the Expand phase is to generate refined queries
in order of increasing refinement. ACQUIRE achieves this goal by
producing queries close to the origin in RS(Q) before those far
from it. In particular, the Expand phase uses breadth-first search to
generate refined queries in layers where queries in a given guery-
layer have the same (QScore. Consequently, for all L, norms ex-
cept Lo, query-layers take the form of d-dimensional planes corre-
sponding to QScore = k = QScore? = kP = (ijl uj) = kP.
For L., however, query-layers are L-shaped and intersect each
axis at kP. Figure 3 shows query-layers for Q3 assuming the L; and
Lo norms. Beginning with the query-layer with refinement 0, AC-
QUIRE generates all grid queries in the current query-layer. If no
query from the current layer satisfies the aggregate constraint, AC-
QUIRE proceeds to the next query-layer having (Q.Score increased
by 7. Since this iterative expansion model examines queries in
order of increasing refinement, ACQUIRE can stop immediately
after a query is found to meet the required constraint, thus reduc-
ing the number of queries examined by ACQUIRE. Algorithms 1
and 2 respectively describe the pseudo code for generating queries
using the L, and Lo, norms. The L, algorithm generates query-
layers using a breadth-first search while the L., norm sequentially
enumerates queries in the given layer.

Algorithm 1 GetNextQuery(Queue gueryQue)
1: int[] Qcurr = queryQue.Pop() //Indexed from 1
2: fori=1,...,ddo
3: Qnest + GetNextNeighbor(i) //Increment i-th dimension
of Qcurr by stepsize

4. if (\queryQue.Contains(Qre.¢)) then
5: queryQue.Push(Qnext)
6: return Qcyrr
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Algorithm 2 GetNextQuery(Queue queryQue, int currRef)

. if (queryQueue . Empty()) then
return queryQue.Pop()
: else
Query Qnew =0
fori=1,...,ddo
Qnewli] = currRef; queryQue Push(Qnew)
while Q.. !=null do
IncrementQuery(Qnew, 1, currRef) // enumerate
queries with i-th dim fixed at currRef and others < cur-
rRef

queryQue.Push(Qrnew)

1
2
3
4
5:
6
7
8

Theorem 2. A grid query Q; with QScore(Q, Q%) = k is in-
vestigated after all grid queries with QScore(Q,Q;) = (k — 1)
have been investigated.

Proof: Consider the refined space to be a directed graph with
the origin as the root and every grid query as a node. Every grid
query is connected to d queries obtained by incrementing one di-
mension by the unit step-size. These connections form the graph’s
edges. Then Get NextQuery for the L, norm performs a breadth-
first search on the refined space grid, guaranteeing that all queries
at distance k£ — 1 from the root are investigated before those at dis-
tance k. The result is trivially true for L, norm since our algorithm
explicitly generates queries in each query layer. |

Time Complexity. The worst case complexity of the Expand
phase is O(V + E) where V' is maximum number of refined queries
in the grid and |[E| = d - |V].

S. PHASE II: EXPLORE

The Explore phase of ACQUIRE is responsible for efficiently
computing the aggregate values of queries produced in the Expand
phase. For this purpose, we introduce a light-weight query execu-
tion methodology based on a novel, efficient incremental query exe-
cution algorithm that exploits dependencies between refined queries
using a specialized recursive model. For each query, our model re-
quires execution of only one sub-query and computes the overall
aggregate by intelligently combining partial results from previous
queries. ACQUIRE guarantees that a query is executed at most
once, irrespective of how many queries contains it.

5.1 Incremental Aggregate Computation

The principle underlying our query execution algorithm is that
refined queries often share results. Therefore, once a query re-
sult has been evaluated it must never be re-evaluated for any other
query.

Query Containment. A refined query Q'=(ul,u5, ...
said to be contained within another refined query Q"'=(u{, uy, . ..
if(ui<u/)Vi=1...d.

uq) is
 U)

Theorem 3. Ifrefined query Q' is contained within refined query
Q": (1) all results of Q' also satisfies Q". (2) Q' is guaranteed to
be generated before Q" in the Expand phase.

Proof: Let tuple 7 satisfy Q’. (1) By Equation 2:
PScore;(1,Q) < PScore;(Q,Q)Vi=1,...,d

= PScore;(1,Q)? < PScore;(Q',Q)? = u; V i =1,...,d
(PScore > 0)

= PScore;(t,Q)? < uy

= PScore;(t,Q) < PScore;(Q", Q).

Consequently, all the query results of Q' also satisfy Q”. For



(u'y, u'y) (U, ') (U, u'y)

(u'-1, u',-1)

(0,0) (0,0) (0, u’,-1)

(b)

(0,0)

(a) (c)

Figure 4: Sub-queries of a 2-D query

(2), from the definition of contained queries, @QScore(Q’, Q) <
QScore(Q", Q). Therefore, by Theorem 2, the Expand phase will
produce Q' before Q. [ |

Since all contained queries are produced and executed before
those containing them, ACQUIRE can extensively use previously-
generated query results. In particular, ACQUIRE exploits the con-
cept of query containment by constructing contained queries, called
sub-queries henceforth, that are used as units of query execution
and result sharing. We now describe the sub-queries used.

5.1.1 Query Decomposition

Consider query Q' with d predicates, represented as point (u},
..,ul) in the refined space. In addition to Q’, ACQUIRE de-
fines d specialized sub-queries contained within it, giving d + 1
queries in all. Figure 4 shows these queries for a 2-predicate query.
The first sub-query (A) corresponds to the unit square in RS(Q)
with its upper-right corner at Q'=(u1, u3), the second sub-query
(B) corresponds to a unit-width rectangle in RS(Q) with Q’ at its
upper-right corner, and the third sub-query is the entire query (C).
Similarly, for a 3-predicate query as in Figure 5, the first sub-query
(A) is the unit cube, the second (B) is a unit length and width paral-
lelepiped, the third (C) is a unit width parallelepiped, and the fourth
(D) is the entire query sub-query. For ease of exposition, we refer
to the first sub-query as cell, the second as pillar, the third as wall,
and the fourth as block, respectively.

In a d-dimensional refined space, the d + 1 sub-queries, called
O1, Oa,..., Og41, can be formally defined as shown in Equations
5-8. All d + 1 sub-queries have the same upper bound (Q' =
(ul,...,uy)), but different lower bounds. For instance, the cell
sub-query O: has a lower bound which is a unit length away from
(ul,...,uy) on all dimensions (Equation 5). The cell sub-query
corresponds to the cell in the refined space grid having (u, . .., u)
as its upper bound. Similarly, the pillar sub-query has a lower
bound with the first dimension equal to 0 and all remaining dimen-
sions j (j = 2,...,d) unit length away from u; (Equation 6). In

general, the lower bound of the j*" sub-query 0;is (0,...,0, ug -

1,...,uy — 1,). For simplicity, we will refer to an sub-query O;
corresponding to query (ul, ..., uy) as O;(ul, ..., uy).

Ol:((ull_17au/d_1)a(u/17 auzl)) (5)

O2 = ((0,uy = 1,...,ug — 1), (u1,...,uq))  (6)

0; = ((0,0,...,0,uj —1,...,ug — 1), (ui,...,ug)) (7

Oat1 = ((0,...,0), (u1,...,uz)) (8

By decomposing a query into the sub-queries defined above, we
can reuse previously obtained results. To illustrate, consider Figure
6.a where the 2-D query is decomposed into 3 sub-queries. We ob-
serve that sub-query A is the Cell(u}, ub), B is the Pillar(u}, u5—
1), and C' is the Wall(u] — 1,u5). Similarly, Figure 6.b shows
the decomposition of a 3-predicate query into the four sub-queries
A, B, C and D which are respectively the Cell(u},us,us), the
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Figure 6: Query Decomposition: (a) 2-D (b) 3-D

Pillar(u}y — 1,ub,uj), the Wall(u}, ub — 1,u}), and the Block
(ul,u5,u5 — 1). In general, a d-predicate query can be decom-
posed into the previously defined (d + 1) sub-queries:

2 — predicate Query : (9)
Os(uy, uy) = O1(uh, up) + O2(uy — 1,uh) + Os(uy,uh — 1)
3 — predicate Query : (10)
Ou(ul, ub, us) = O1(ul, uy,us) + O2(ul — 1, ul,us) +
Os(uy,uy — 1,u5) + Oa(ul, uy, us — 1)

d — predicate Query : (11)

Od+1(u,17u127-“7u;l) = Ol(ullau/%"'yu;l) +
OQ(UII - 17ul27"'7u:i) +O3(u/1’ul2 - 17u£37"'7u,d) +
oo Oggr (U, ug, .. uy — 1)

Thus, if the aggregates for the (d + 1) sub-queries have been
pre-computed, the aggregate of query Q' is the mere addition' of
these sub-aggregates. We must store only the aggregate values for
the d + 1 sub-queries. The corresponding result tuples can either
be stored in main memory or paged to disk. The above sub-query
decomposition also leads to two crucial observations: (1) The only
part of a query unique to itself is the cell; all remaining parts of
the sub-query are shared with other queries. (2) The d + 1 sub-
queries defined above belong to queries completely contained
in Q. Therefore, Theorem 3 guarantees that these queries would
have been produced and hence executed before investigating Q’.
As a consequence, ACQUIRE must only execute the cell sub-query
and can directly reuse aggregates of the remaining sub-queries.

5.1.2  Recursive Aggregate Computation

Query decomposition assumes that the aggregates for the d + 1
sub-queries have already been computed. But independently de-
termining aggregates of these sub-queries is redundant. Instead,
we present a recursive strategy to calculate the aggregates of the
sub-queries in constant time. Reconsider Figure 6 focusing now
on the relationship between sub-queries. We observe that for 2-
predicate sub-queries (Figure 6.a) the Pillar(ul,u3) is equiva-
lent to Cell(ul,us) and Pillar(ui-1,u5) combined. Similarly,
the Wall(u’,u5), which is the entire query is equal to the sum of
Pillar(uy,uy) and Wall(u},uy — 1). For the 3-predicate query,
in Figure 6.b, we have three similar recurrences as shown below.

"For aggregates like MIN/MAX, addition is replaced by the corre-
sponding MIN/MAX function, while AVERAGE = SUM/COUNT.
SUM and COUNT aggregates are computed and stored separately.
AVERAGE is computed from these values as required.
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Figure 5: Sub-queries of a 3-predicate query

2 — Recurrences : (12)
Pillar(u’,ub) = Cell(u), ub) + Pillar(u} — 1,ub)
Wall(u},uh) = Pillar(u},ub) + Wall(uf,uhy — 1) (13)
3 — Recurrences : (14)
Cell(u}, ub,us) + Pillar(u) — 1,u5, uf)
Pillar(u},ub,uy) + Wall(ul,uby — 1,u%) (15)

Wall(u),ub,us) + Block(u}, ub, us — 1) (16)

Pillar(uf,u5,uf) =
Wall(uh u27 U3)
Block(u, ub, uy) =

In general, this recursion for a d-predicate query is:

O;(ul, ...
=1,

S+l

a7

,’uél) = Oi_l(uﬁ,...

uh ,uly) wherei=2,...

/ /
O;(ul,ug, ..., u;_

Since the sub-query O; has no recurrences, its aggregate must
be computed by executing the query. However, once the aggregate
of O is determined, it takes d (constant) steps to calculate the total
aggregate for query Q.

5.1.3 Aggregate Computation Algorithm

Algorithm 3 takes as input the query Q' (ul, ..., u}) being in-
vestigated and produces its aggregate. For this, Algorithm 3 first
computes the aggregate of the Cell(uf,...,u), and then itera-
tively applies the recurrence in Equation 17 to compute aggregates
of the remaining sub-queries. The function ExecuteCellQuery
is used to compute the aggregate over a single input cell by issuing
a query to the evaluation layer.

Algorithm 3 ComputeAggregate(Query Qcurr, int d)

int[d + 1] Acurr // All arrays are indexed from 1

: Acurr[1] = ExecuteCellQuery(Qcurr)
cfori=2,...,d+ 1do

Qprev < GetPreviousNeighbour(i-1) // decrement the (i —
1) dimension of Q.. by stepsize

int[] Aprev = GetAllAggregates(Qprev)

Acurr [Z] = Acurr [7/ - 1] + Aprev [Z]

: StoreAllAggregates(Qcurr, A
: return Acyrr[d + 1]

:J}wl\)r—‘

cuTT)

6. PUTTING IT ALL TOGETHER

Algorithm 4 presents the pseudo code for the ACQUIRE frame-
work. Given an initial query ) and the refinement threshold ~y, AC-
QUIRE begins to iteratively Expand and Explore refined queries,

107

starting at the origin of the refined space and sequentially traversing
queries in subsequent layers. For each refined query, ACQUIRE
calculates the aggregate using the Incremental Aggregate Compu-
tation technique described in Algorithm 3. Once the aggregate
value Agctuar has been determined, it is compared to Ae,p. If the
aggregate is within the error threshold §, the query is stored in the
answer list (A). In this case, query search terminates with the ex-
ploration of all queries in the current layer, i.e., all alternate queries
with the same refinement score. If all queries in a layer undershoot
the constraint by more than 6, ACQUIRE explores the next higher
layer. Lastly, if any query overshoots the expected aggregate value
by more than §, we repartition the cell corresponding to the given
query and examine queries lying within. We repeat the repartition-
ing process for b iterations, where b is a tunable parameter. If, at
the end of repartitioning, no query is found to satisfy the aggre-
gate constraint, ACQUIRE returns the query attaining the closest
aggregate value.

Algorithm 4 ACQUIRE(Query Qoriginal, double Acqyp, int §, dou-
ble )

1: A =[] // Set of refined Queries

2: Queue queryQueue =[] // Data structure for traversal

3: d < Flexible predicates in Qoriginal

4: int[d] Qcurr = {0,..., 0} // Origin represents Qoriginal
5: queryQueue.push(Qcyrr)
6
7
8
9

. int minRefLayer = MAX_INTEGER_VALUE
: int currRefLayer = 0
: while (currRefLayer < minRefLayer) do
double Agctuar =ComputeAggregate(Qeurr, d) // Algo-

rithm 3
10: if( | Ae:l;p - Aactual | S 6) then
11: A.add(Qcurr)
12: minRefLayer = currRefLayer
13: else if( Aeacp > Aactual) then
14: A.add(Repartition(Q curr))
150 Qcurr = GetNextQuery(queryQueue) // Algorithm 1
16:  currRefLayer = QScore(Qcurr)
17: return A

7. EXTENSIONS

In this section, we present extensions to the framework that ac-
commodates some of the limitations of our approach.

7.1 Preferences in Refinement

Along with the NOREFINE keyword used to identify and pre-
serve rigid constraints, ACQUIRE allows users to set preferences



on which predicates should be refined. This can be easily done by
specifying a Ly, norm which sets appropriate weights on various
predicates. Similarly, users can also supply maximum refinement
limits on predicates. While we provide several avenues for user
control, user intervention is not required and each tunable parame-
ter is provided an appropriate default setting.

7.2 Contracting Queries With Too Many Re-
sults

ACQUIRE with minor modifications handles queries that gen-
erate foo many results. This is achieved by constructing a query
Q!:r, with each predicate of the original query @ set to its mini-
mum value. Since Q,;, will produce too few results, we can now
construct a refined space bounded by Q and Q.,;,. ACQUIRE
now traverses the refined space to find queries that meet the cardi-
nality constraint, this time minimizing refinement with respect to
Q instead of Q/ ;-

United States

Restaurants

California New York

Mediterranean San Francisco Bay Area New York City

N AN

Middle-Eastern Greek - South Bay  Penninsula

t t f t

Falafel Gyro - Sunnyvale  San Mateo . Manhattan ...

Figure 7: Ontology for Categorical Data

7.3 Non-numeric Predicates

The focus of this work is to handle numeric predicates. Measur-
ing refinement distance between categorical data points is in itself a
challenging problem, requiring the analysis of taxonomy informa-
tion. However, ACQUIRE can be extended to support categorical
predicates by plugging in the appropriate means for measuring the
distance between any two categorical values. For example, Figure
7 depicts sample ontology trees related to food preferences and lo-
cation. The refinement distance between the original query desiring
places that serve Gyro to restaurants that have any Mediterranean
cuisine may be defined based on the relative depths of the two
nodes. In general, the roll-up operation on an ontology tree corre-
sponds to making the predicate less selective, i.e., relaxation. While
the drill down operation translates to query contraction. Given this
meta-information from the ontology tree and a distance metric, the
ACQUIRE framework can be used to refine categorical predicates.

7.4 Exploiting Indexes and Data Distribution

The algorithms discussed so far make no assumptions about the
underlying data distribution or presence of indexes on the data.
Moreover, experiments in Section 8 indicate that ACQUIRE is al-
ready 2 orders of magnitude faster than the state-of-the-art tech-
niques. However, if required, we can further boost the efficiency of
ACQUIRE by employing a specialized bitmap-like index structure
on the tables. To construct this index, we divide each attribute di-
mension into equi-width parts and create a multi-dimensional grid
on the table. We then examine the records in the table to deter-
mine which grid cell each record belongs to. In our index, each
cell is assigned a corresponding bit, which is set to 1 if the cell
contains some tuple and 0 otherwise (storing the number of tuples
may be easier for keeping the index up-to-date but requires more
space). Once constructed, this simple index structure can be used
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in the Explore phase to determine if a given cell query is empty
without actually executing the query. If the query is found to be
empty, we can safely skip it and proceed to the next, thus avoiding
unnecessary query execution costs.

8. EXPERIMENTAL EVALUATION

8.1 System Implementation

The ACQUIRE framework is built on top of Postgres. ACQUIRE
sits outside the DBMS where it performs the tasks of exploring the
refinement space, formulating queries and applying our aggregate
computation algorithm. To make ACQUIRE portable across mul-
tiple database systems, and to aid in proper comparison with com-
peting techniques, all query execution tasks are delegated to the
DBMS. We similarly implemented the compared techniques on top
of Postgres.

8.2 Alternative Techniques

We compare ACQUIRE to three extensions of existing techniques
that address the ACQ problem to varying degrees. First, we com-
pare it to Top-k which, although unable to produce refined queries,
is suited to ranking tuples in order of refinement. While it is straight-
forward to translate a COUNT constraint to Top-k, translating other
aggregate constraints (e.g. AVERAGE) is difficult if not impossi-
ble. As a result, we only study Top-k ranking for COUNT con-
straints. We use existing DBMS capabilities of ORDER BY and
LIMIT to implement Top-k, as demonstrated on generic queries (Q
and corresponding Top-k-Q) below.

Q = SELECT COUNT (*) from tablel

WHERE x <= 10 and y <= 20;

Top-k-Q = SELECT x FROM tablel ORDER BY

(case when (x <= 10) then O

else (x - 10)/(x.max - x.min)) +

(case when (y <= 20) then 0

else (y — 20)/(y.max - y.min)) LIMIT A_exp

We also compare ACQUIRE to the TQGen [11] and a simple bi-
nary search (BinSearch) technique [11]. Our experiments uses the
TQGen parameters reported in [11]. To allow for uniform compar-
isons across all methods, we do not employ sampling techniques
for TQGen. However, our experiments demonstrate that our results
hold even for small sample-size datasets (see Figure 10.a). The fi-
nal point to note is that, unlike ACQUIRE, (a) none of the above
techniques addresses aggregates other than COUNT, and (b) even
for COUNT, none of the above techniques are capable of refining
join predicates.

8.3 Methodology

To study the robustness of ACQUIRE we vary (1) dimension-
ality of refinement space, i.e., number of refinable predicates, and
combination of attributes in these predicates, (2) magnitude of ag-
gregate value discrepancy, i.e., ratio Agctyai/Aezp between the
actual aggregate value and the desired aggregate value, (3) dataset
size, (4) aggregate types, and (5) data distributions. To study the
efficiency gained by the ACQUIRE system, we evaluated the net
decrease in query execution time for various data sizes and dimen-
sionality. Finally, we evaluated the performance of ACQUIRE un-
der various settings of refinement and aggregate thresholds as well
as presence of join refinement. For each experimental setting, we
measure the time needed to return the set of refined queries, Qr,
amount of refinement (refinement score), and relative aggregate er-
ror=Erra.
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Figure 8: Performance Comparison Under Varying Aggregate Ratios: ACQUIRE, Top-k, TQGen and BinSearch

All algorithms were implemented in Java. Measurements were
obtained on AMD 2.6GHz Dual Core CPUs, and Java heap of 2GB.
We utilized the TPC-H datasets of varying sizes (1K - 10M tu-
ples). Since the standard TPC-H data is uniformly distributed (i.e.,
Z = 0), we used [3] to also generate skewed data with Z = 1. Our
test queries are TPC-H queries which have been adapted to include
only numeric range and join predicates. Query Q2 (in Example 2)
provides skeleton query that was used to evaluate the SUM aggre-
gate. For each dataset, query, and ACQUIRE settings, we define
the original aggregate A,ctuq: and the aggregate ratio %t:p“l.

8.4 Performance Comparisons

8.4.1 Effect of “4zt=2t Ratio

We first examine the effect of aggregate ratio,

Agctual
Aoy

on the

. Aue
execution time, error rate and refinement scores. A small %’*‘”
exrp

ratio implies that the original query is highly selective and needs
large refinements, while a large A%f:p”’ implies that the original
query is close to the desired query and needs only small refine-
ments. These experiments were carried out on a 1 million tuple
dataset and a query with 3 flexible predicates. The aggregate ratio
was varied between 0.1 - 0.9.

As shown in Figure 8.a, the execution time for ACQUIRE in-
creases with decreasing expansion ratio, i.e., the greater the need
to expand the query, longer it takes for ACQUIRE to reach the re-
quired aggregate ratio. While Top-k requires the same execution
time (the ranking function is unchanged and all records need to
be sorted), its execution time however is on average 3.7X more
than ACQUIRE. TQGen and BinSearch both need to explore the
same number of queries each time and hence their execution time
remains constant. ACQUIRE does consistently as well as all the
other methods, and is on average 2X faster than BinSearch and 2
orders of magnitude faster than TQGen (Y-axis is in log scale). Al-
though BinSearch shows promise with respect to execution time,
we show next that it is not robust with respect to aggregate errors.

Figure 8.b shows the relative error (average relative error for Bin-
Search) for each of the queries with changing aggregate ratio. We
do not compare Top-k because a Top-k query explicitly specifies
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the number of tuples to return and hence has no aggregate error by
definition. The BinSearch line in the graph shows that BinSearch is
extremely unstable and has high variance in aggregate errors. The
underlying reason is that BinSearch is very sensitive to the order
in which predicates are refined; even a single change to the order
can change the error by a factor of 100. To illustrate, one ordering
of predicate refinement in BinSearch produces a refinement error of
0.19 or 20% whereas another ordering produces an error of 0.002 or
0.2%. Attempting to refine the query by attempting all orderings of
predicates is computationally expensive. ACQUIRE, on the other
hand, not only produces queries consistently within the threshold
(6 = 0.05), but also does so efficiently. TQGen, in fact, produces
lower error rates than ACQUIRE. However, this reduction comes
at the cost of a 100X increase in execution time. Since both error
rates are acceptable, we prefer ACQUIRE. Lastly, in Figure 8.c we
compare the refinement scores obtained by each method. We see
that the refinement score for queries generated by other methods
are 2-3X larger than those from ACQUIRE.

8.4.2 Effects of Dimensionality

Next, we discuss the effects of increasing dimensionality, i.e. in-
crease in the number of query predicates. We used the same dataset
as before, used expansion ratio = 0.3 and varied the number of pred-
icates in the query. In execution time, we see the same trend as be-
fore where the execution time increases with increasing dimension-
ality of the query. However, for ACQUIRE, the increase is largely
linear and not exponential. For Top-k, the execution time remains
largely constant since only the ranking function changes. For TQ-
Gen, we see an exponential increase in the execution time (as num-
ber of queries executed is exponential in number of dimensions)
with the method taking 500X more time than ACQUIRE for high
dimensional queries. Thus, ACQUIRE is a much better alterna-
tive to the state-of-the-art on queries of varying dimensions. Figure
9.b once again demonstrates that BinSearch is extremely unstable
with respect to aggregate error. While some queries obtain an error
rate of 0.6%, some obtain an unacceptable error rate of 45%. This
large variance in error values produced by BinSearch indicates that
the method is unpredictable and not-robust. As a result, it cannot
guarantee any threshold on the error rate.
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In Figure 8.c exemplifies the trends in query refinement score
seen with all methods. The refinement scores of ACQUIRE are
consistently the lowest across all methods — meaning fewer changes
to the original user query and therefore more desirable. Top-k pro-
duces higher refinement than ACQUIRE. This figure also shows
that TQGen and BinSearch can have high variance in refinement
scores. Since the goal of these techniques is only to meet the ag-
gregate constraint and not to minimize refinement, this is expected.
BinSearch queries have, on average, 4.8X more refinement than
ACQUIRE queries.

8.4.3 Varying Table Size

For datasets of varying size, beginning with a 1k-tuple dataset (to
mimic a sample based approach) to a 1M-tuple dataset. As shown
in Figure 10.a the execution time for ACQUIRE and all compared
techniques increases proportionally to the size of the dataset. Rela-
tive error and refinement scores show the same trends as before.

8.4.4 Effect of Varying Data Distributions
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To study the robustness of our method, we re-ran experiments on
data with Zipfian skew = 1. Trends in results were same as above.

8.4.5 ACQUIRE Parameter Studies

In Figure 10.a and Figure 10.c, we report the performance of
ACQUIRE with respect to its internal parameters, namely the ag-
gregate threshold, the number of steps in the grid and the depth
of the search. As expected, a stringent cardinality and refinement
threshold produces proportional increases in the ACQUIRE execu-
tion time as more queries need to be explored.

8.4.6 Varying Aggregate Types

ACQUIRE framework is general and can be applied to different
types of aggregates satisfying the optimal substructure from Sec-
tion 2.6. We tested the technique for other aggregates too. Fig-
ure 11 shows the results for the SUM, COUNT and MAX aggre-
gates. We omit MIN since this can be written as the MAX(-1 *
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Figure 11: ACQUIRE’s Performance on Different Aggregates

attribute). We find that ACQUIRE successfully minimizes refine-
ment and reaches the aggregate thresholds in all the above aggre-
gates.

8.5 Summary of Experimental Conclusions

1. ACQUIRE is consistently 2 orders of magnitude faster than
TQGen and on average 2X faster than BinSearch.

2. In all experimental conditions, ACQUIRE’s aggregate error
is well below the aggregate error threshold. In contrast, Bin-
Search has very high variance in error rates, reaching up to
45% of the expected aggregate value.

3. Although, Top-k can be efficient at small-sized datasets, it
quickly becomes inefficient as data size increases. In general
Top-k is about 3.7 times slower than ACQUIRE.

4. ACQUIRE generates queries that on average have 2X better
refinement scores than a query produced by either TQGen or
BinSearch.

9. RELATED WORK

In this section, we discuss two areas of related work namely, (1)
set-based queries [6, 5, 16, 14, 13] and (2) solving the empty result
problem [9, 1, 11]. Existing set-based query evaluation techniques
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differ from our work fundamentally because they are solving a dif-
ferent problem than the one addressed in this work. For instance,
techniques proposed in [13] address the problem of recommending
“satellite items" (e.g., car charger, case) for a given item that the
customer is currently shopping for (e.g. smart phones). Alterna-
tively, [16, 5] solve the generalized the Knapsack problem [6] of
making composite recommendations of a set of items. That is, rec-
ommend the Top-k sets of items with the total cost below a given
budget and preferring the set with higher ratings. In contrast, [14]
focused on finding users (e.g. tourists) sets of results (e.g. a set
of places of interest) given a set of constraints (e.g. budget). This
is identical to the current behavior of the Facebook Ad Creation
Interface [4]. However, this approach is less than desirable (as de-
scribed in Section 1) as it would force Alice to go through hundreds
of iterations to find a meaningful query that meet the aggregate con-
straints. To summarize, techniques for set-based queries focus on
returning tuples or sets of tuples that meet a constraint. In large
scale database systems since the users are mostly unfamiliar with
the characteristics of the underlying data, they usually construct
queries that are either too strict or too broad [9]. In such scenarios,
execution techniques designed for set-based queries could poten-
tially return no results or all tuples in the database.

To the best of our knowledge, we are the first work to address
the question of recommending refined user queries that meets their
aggregate constraints. Existing query refinement techniques can be
classified into two categories namely, (1) tuple-oriented approaches,
and (2) query-oriented approaches. Table I summarizes the key re-
lated work, and whether they support all aggregate constraints and
/ or a proximity criteria.

Techniques Aggregates Proximity | Card. | Query
Supported
Tuple-Oriented:
Skyline [8], COUNT v v
Top-k [2],
Query-Oriented:
BinSearch [11], COUNT v
IQR [10]
Query-Oriented:
TQGen [11], COUNT v v
Hill-Climbing [1]
COUNT, SUM,
ACQUIRE MIN, MAX, v v v
AVG, UDA?

Table 1: Summary of the Related Work

Tuple-Oriented Techniques. Result refinement techniques [12,
8] focus only on generating the required number of results and ig-
nore the problem of generating refined queries that explain how the
result tuples were selected. The refinement criteria are crucial in
scientific and business applications. Similarly Top-k algorithms,
such as [2], while useful in many instances cannot correctly ad-
dress the ACQ problem since they can only handle COUNT aggre-
gates. To illustrate, consider a query that selects patients based on
income, blood pressure, and the amount of weekly exercise. A Top-
k based approach will obtain the required number of patients, but
these patients will likely be skewed in certain predicate dimensions
and will not be representative of the population. Thus pure Top-
k and its variations are inadequate to address the ACQ problem;
clearly demonstrated in our experiments (see Section 8).

Query-Oriented Approach. More recently in the context of
database testing [1, 11, 10] have started to focus on the problem of

2User Defined Aggregates that either satisfy the optimal substructure property (OSP)
or can be broken into functions that satisfy OSP



generating refined predicates. [10] proposed a framework that iter-
atively narrows the bounds on each selection predicate in a query
and asks the user to manually refine the predicate within the con-
strained dimensions. This approach however cannot be extended to
support the refinement of join predicates as ACQUIRE does. For
select-only queries, [11] seeks only to attain the desired cardinality
and disregards proximity. Consequently, it cannot guarantee that
the refined query has the least refinement. The BinSearch algo-
rithm [11] is heavily influenced by the order in which predicates
are refined; some orders produce accurate results whereas others
produce large errors. Unlike ACQUIRE, these techniques don’t
generate a set of alternative refined queries for the user to choose
from. To summarize, ACQUIRE is the first technique to refine se-
lect and join queries to meet the dual constraints of proximity to the
original query and the desired aggregate constraint.

10. CONCLUSION

We introduce Aggregation Constrained Queries that constrain
not only the tuples produced by the query, but also aggregates on
these tuples. We argue that algorithms targeting ACQs must com-
bine efficient query execution and query refinement. We propose
ACQUIRE to tackle ACQs. ACQUIRE adopts the Expand and
Explore strategy where it iteratively expands the original query to
minimize refinement and efficiently explores refined queries via a
novel incremental aggregate computation technique. The general
principle of ACQUIRE allows us to support user defined predicate
refinement scoring and aggregate error functions. ACQUIRE guar-
antees that each query is executed at most once, regardless of the
number of queries it is contained within thereby exploiting work
sharing. This enables ACQUIRE to consistently perform up to 2
orders of magnitude faster and produce queries with 2X smaller
refinement than extensions to existing techniques.
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ABSTRACT

Ranked lists are an essential methodology to succinctly sum-
marize outstanding items, computed over database tables
or crowdsourced in dedicated websites. In this work, we ad-
dress the problem of reverse engineering top-k queries over
a database, that is, given a relation R and a sample top-
k result list, our approach, named PALEO!, aims at deter-
mining an SQL query that returns the provided input re-
sult when executed over R. The core problem consists of
finding predicates of the where clause that return the given
items, determining the correct ranking criteria, and to eval-
uate the most promising candidate queries first. To capture
cases where only a sample of R is available or when R is
different to the relation that indeed generated the input, we
put forward a probabilistic model that allows assessing the
chance of a query to output tuples that are resembling or
are somewhat close to the input data. We further propose
an iterative candidate query execution to further eliminate
unpromising queries before being executed. We report on
the results of a comprehensive performance evaluation using
data and queries of the TPC-H and SSB [14] benchmarks.

1. INTRODUCTION

Reverse engineering database queries describes the task
of obtaining an SQL query that is able to generate a spec-
ified input table, when executed over a given database in-
stance. This generic problem has various important applica-
tion scenarios, specifically for top-k database queries that
often yield valuable analytical insights. Consider, for in-
stance, business analysts who are interested in determin-
ing alternative queries that yield the same or similar query
result tuples, data scientists who try to find explanatory
SQL queries for crowd-sourced top-k rankings, or to find
the data-generating query of a sample input in order to re-
execute it on current or future database instances in cases

*This work has been supported by the German Research
Foundation (DFG) under grant MI 1794/1-1.

'PALEO is approximately the reverse of the word OLAP
and also emphasizes the goal of assembling queries based
on their data footprints (results), much like paleontologists
reconstruct and study fossils.
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Name City State[Plan[Month[Minutes[SMS[Data
John Smith |[SF CA XL |June 654 87( 1,230
John Smith |SF CA |XL |July 175 22| 900
Jane O’Neal|[LA CA | XL |April 699 15] 2,300
Jane O’Neal|LA CA |XL |June 334 10| 1,900
Richard Fox|Oakland |CA |XL |June 596 23| 1,272
Jack Stiles [San Jose |CA |XL |March 429 42]1,192
Jack Stiles |San Jose [CA |XL |April 586 8[1,275
Lara Ellis |San Diego|CA [XL |May 784 11{2,107

Table 1: Sample relation of telecommunications traffic data

where the original query has not been saved or has not
been made public, for one or another reason. The discov-
ered queries can reveal interesting properties of the input,
most importantly the constraints to tuples expressed in the
“where clause” of the query and how tuples are ranked. The
last years have brought up various research results [17, 12,
19] on reverse engineering database queries. Compared to
existing approaches that operate on input in form of full
tables, reverse engineering top-k queries adds two complex
ingredients to the re-engineering task. First, it is the rather
small input, consisting of only a few (as k is usually quite
short) ranked tuples and, second, the various ways top-k
SQL queries can be formulated, given various sorting orders
and aggregation functions.

Consider a relation Traffic, illustrated in Table 1, con-
taining cellphone-traffic data. The relation contains textual
attributes like name of the customer, the city and state the
customer lives in, and the tariff plan and the month for which
the traffic was realized. In addition, there are numerical at-
tributes that measure the customer’s traffic, like number of
minutes talked, the number of text messages (SMS) sent,
and the number of spent megabytes of data.

Lara Ellis 784
Jane O’Neal | 699
John Smith | 654
Richard Fox | 596
Jack Stiles 586

Table 2: Example input list

Table 2 shows a top-k list with two columns and five rows.
The input list does not have attribute names (or if it does,
are not correlated to the attribute names in the database
table). The first attribute is the customer’s name, while
the second is the performance attribute according to which
the customer ranking was produced. Note that there are no
empty cells in the list, all values are specified. Considering
the Traffic relation of Table 1, we can see that the input
ranking list can perhaps be generated using the following

query:
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SELECT name, max(minutes) FROM traffic
WHERE state = 'CA’

GROUP BY name ORDER BY max(minutes) DESC
LIMIT 5

This query computes the top 5 customers of the telecom-
munications company, living in the state of California, ranked
by the number of minutes talked in a single month. In gen-
eral, there can be several different queries that produce the
same results; consider for instance augmenting the above
query @@ with an additional constraint to customers with
the tariff plan “XL¢ it would leave the result unchanged
(including the order among tuples).

1.1 Problem Statement

Given a database D with a single relation R with schema
R = {A1, Az,...} and an input relation L that represents a
ranked list of items with their values. The task we con-
sider in this paper is to efficiently and effectively
determine queries ; that output tuples that resem-
ble L when executed over R.

We focus on top-k select-project queries over relation R of
the form shown in Figure 1(left). We specifically focus on a
single relation to emphasize on the intrinsic characteristics
of top-k queries, instead of considering the reverse engineer-
ing of joins, too, which has been addressed by Zhang et
al. [19] in their recent work on reverse engineering complex
join queries.

L
SELECT id, agg(value) Le | Lwv
FROM table e 100
WHERE P; and P> and ... f 90
GROUP BY id g 80
ORDER BY agg(value) LIMIT k m 70
o 60

Figure 1: Query template (left) and example input L (right)

The problem has two properties that can be relaxed or
tightened. First, it can either demand determining only one,
multiple, or all input-generating queries. Second, the notion
of a query being valid in the sense that it resembles the input
can be relaxed to a notion of approximately resembling the
input.

The problem is challenging for the following reasons: (i)
The size of the input list is rather small, it is difficult to
derive meaningful (statistical) properties in order to iden-
tify valid predicates and ranking criteria, (ii) the relevant
subset of R that features all tuples of the entities in L can
become very large, and (iii) false positive and false nega-
tive candidate queries deteriorate system performance due
to many necessary query evaluations and limit the chance
to successfully determine a valid query that generates the
input.

The presented approach, coined PALEQO, is not limited to
finding exact matches, but can almost directly be applied
to finding queries that compute a ranking L’ over R, with
L’ being similar to L. We get back to this generalization
in Section 3.3. We refer to the specific attribute in R that
contains the entities the table reports on as A. and assume
it is known a priori.

As already indicated in the template query, we focus on
predicates P of the form Py A Py--- A\ Py, where P; is an
atomic equality predicate of the form A; = v (e.g., state
”CA”). Furthermore, we denote with size of a predicate
|P| the number of atomic predicates P; in the conjunctive
clause.

The input top-k list L has two columns; L.e and L.v de-
note the entity column and the numeric score column, re-
spectively. Note that L does not contain the name of the
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column L.v or the column name of L.v is named for human
consumption (e.g., “Total traffic”, which can be total number
of minutes, SMS, or data), i.e., not corresponding to the ones
present in the database. Hence, referencing to the appropri-
ate attribute in R cannot be done by name. Table 3 shows a
summary of the most important notations used throughout
this paper.

1.2 Sketch of the Approach

A naive approach would enumerate all possible queries,
say with a limited complexity of the predicate in the where
clause, evaluate the queries one-by-one against the database
and check whether the returned results resemble the input
list. This is clearly beyond hope, even for relatively small
databases and schemas.

Our approach, conceptually, loads all tuples from R that
contain any of the entities in L. This table is called R’ and is
used in two subsequent steps, first, to determine the query
predicate and, second, to find the right attribute(s) and ag-
gregation function. In case R’ is completely given, our ap-
proach is extremely effective in determining the individual
building blocks of the desired query. When working on a
subset of R', we show how to handle large amounts of po-
tential candidate queries by introducing a suitability-driven
order among them, in order to find the desired query early.

1.3 Contributions and Outline
With this paper we make the following contributions:

e To the best of our knowledge, this work is the first
to consider the problem of reverse engineering top-k
OLAP queries. We present an efficient and effective
solution to it, in a flexible and extensible framework.

e We show how to efficiently compute promising predi-
cates using an apriori-style algorithm over R’ and how
to augment them with ranking criteria using data sam-
ples and statistics obtained from the base relation R.

e We present a probabilistic reasoning that allows or-
dering candidate queries by the likelihood that they
compute the input ranking L. This, together with a
method to skip unpromising queries dynamically at
validation time, allows finding the desired valid queries
very efficiently.

e We report on the results of a carefully conducted ex-
perimental evaluation using data and queries from the
TPC-H [16] and SSB [14] benchmarks.

This paper is organized as follows. Section 2 discusses re-
lated work. Section 3 presents the framework and key ideas
behind our approach, followed by the specific sub-problems
of identifying query predicates in Section 4, and determin-
ing the ranking attributes and aggregation function, in Sec-
tion 5. Section 6 considers handling changed data in R, and
proposes a probabilistic model to rank queries by their ex-
pected suitability to generate the input. Section 7 introduces
an incremental strategy to eliminate unpromising candidate
queries based on observed results of already executed can-
didates. Section 8 reports on the results of the experimental
evaluation and presents lessons learned. Section 9 concludes
the paper.

2. RELATED WORK

The problem of reverse engineering queries was considered
by Tran et al. [17] in their data-driven approach called Query
by Output (QBO). Given a database D and a query output
Q(D) produced by a query @, they try to find an instance-
equivalent query Q’. They focus on identifying the selection
predicates in select-project-join queries and formulate this



Base table in the database
Attribute in R

Entity attribute in R

Top-k input list

Entity column in L

Ranking column in L

Entities in A or L.e

Values in A;

Predicate (atomic or conjunctive)
Query

Result set of @@ when querying R

.
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Table 3: Overview of Notations

problem as a data classification task. For generating the se-
lection conditions they use a decision tree classifier that is
constructed in a top-down manner in a greedy fashion by
determining a “good” predicate according to which the tu-
ples are split into two classes. These two classes would then
form the root nodes of two decision trees (constructed re-
cursively).

Sarma et al. [12] explore the View Definitions Problem
(VDP) which is a subproblem of QBO in that it considers
only one relation R and there are no joins and projections.
Thus, they only try to find the selection condition of the
view V' and do this looking at the problem as an instance
of the set cover problem. From the families of queries that
they cover, we focus on conjunctive queries with a single
equality predicate and conjunctive queries with any number
of equality predicates. For both types they propose naive
algorithms that utilize the size of the attribute domains in
the view. Zhang et al. [19] compute a generating join query
that produces a table Q(D) from the tables in D. The gener-
ated join query does not have selection conditions and they
focus mostly on identifying the joins using graph structures
following foreign/primary-key links.

Shen et al. [13] study the problem of discovering a min-
imal project-join query that contains given example tuples
in its output and do not consider selections. They only han-
dle text columns with keyword search allowed on them and
introduce a candidate generation-verification framework to
discover all valid queries. By using common sub-join trees of
the candidate queries as filters they manage to improve the
efficiency of their approach.

Psallidas et al. [10] propose a candidate-enumeration and
evaluation framework for discovering project-join queries.
Their system handles only text columns and establish a
query relevance score based evaluation of candidate queries.
The system returns the PJ queries with the top-k high-
est scores and it discovers not only the queries that ex-
actly match the given example tuples. Moreover, they pro-
pose a caching-evaluation scheduler, where they dynamically
cache common sub-expressions that are shared among the
PJ queries. Join queries are orthogonal to our work and none
of the above approaches handle top-k aggregation queries.

In keyword search over databases [2], the input is a single
tuple with specified keywords as fields. The works of [5, 15]
interpret the query intent behind the keywords and compute
aggregate SQL queries. Blunschi et al. [5] use patterns that
interpret and exploit different kinds of metadata, while Tata
et al. [15] discovers aggregate SQL expressions that describe
the intended semantics of the keyword.

The principle of reverse query processing is studied in [3,
4, 6, 9], however their objectives and techniques are different.
Binning et al. [3, 4] discuss the problem of generating a
test database D such that given a query ) and a desired
result R, Q(D) = R. Bruno et al. [6] and Mishra et al. [9]
study the problem of generating test queries to meet certain
cardinality constraints on their subexpressions.
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Figure 2: System task steps

A reverse top-k query [18] returns for a point ¢ and a
positive integer k, the set of linear preference functions (in
terms of weighting vectors) for which ¢ is contained in their
top-k result. For example, finding all customers who treat
the given query product ¢ as one of their top-k favorite ele-
ments. In such cases, each customer is described as a vector
of weights. Although it appears related given the name, this
research area is not directly related to our work.

3. APPROACH

The task of reverse engineering top-k queries is split into
the following three steps, illustrated in Figure 2:

e Step 1: find the predicate P in the where clause of @
e Step 2: find the ranking criteria

e Step 3: validate queries

As the basis of further computation, we first retrieve from
relation R all tuples whose entity column contains one of the
entities of the input table L; we call the resulting table R'.

3.1 Table R’

Consider a top-k list L as shown in Figure 1. Let e; €
{e, f,g,m, 0} denote the entities in the column L.e.

By using a standard database index, such as a B+ tree,
on the entity attribute of R, we can efficiently retrieve R’
(shown in Table 4) containing all tuples from R matching
any of the entities e; € L.e. Whether the index is actually
used or the query optimizer decides to perform a table scan
is not a concern here. In any case, in this example, the query
to compute R’ is

SELECT * FROM R
WHERE A, IN [e, f, g, m, o]

For the purpose of efficient access of its data, PALEO stores
R’ in-memory in a column oriented fashion, with columns
being represented as arrays, allowing fast evaluation of ag-
gregate queries over R'. The relation R’ has k' > k number
of tuples, since it contains all tuples without (potentially)
being filtered by predicates. In fact, it is reasonable to as-
sume, without prior knowledge, that k' > k, as each distinct
entity e; can appear many times in R. We will allow to work
on a subset (samples) of R’ in Section 6, and study the con-
sequences, but for now we assume R’ in fact covers all tuples
of any entity of the input.

3.2 The Three Steps

Candidate Predicates Identification. Using the tuples in
R’ we create a set of candidate predicates that are subse-
quently augmented with ranking criteria to make up full-
fledged candidate queries.



DEFINITION 1. Candidate Predicate
We say a predicate P is a candidate predicate iff for each
entity that appears in L there is a tuple t in R’ that fullfils
the predicate. Formally,

Ve; € L.eJtuplet € R : P(t) = true Nt.e =e;

It is easy to see that a candidate predicate can potentially
produce the top-k input list. In other words, having a can-
didate predicate in the where clause is a necessary criterion
of a query to be a valid query, but it is not a sufficient cri-
terion. This is because a candidate predicate can still “let
through” tuples of other entities (that are not in the input
table L) that can be ranked higher than the tuples in L,
hence, the query is not a valid query as the output does not
match the input.

COROLLARY 1. Downward-closure (anti-monotone)
property of the candidate predicate criterion. Given
a predicate Py that is not a candidate predicate, then a pred-
icate P; such that P1 C P; (that is, all sub-predicates in Py
are also present in P;) can not be a candidate predicate.

The corollary follows immediately from the defitinion of
candidate predicates: any predicate P; with P, C P; for
another predicate P evaluates to true for a subset of tuples
for which P; evaluates to true. This property is used to prune
the searchspace in Section 4, similar to what the apriori
algorithm [1] does for the support measure.

Ranking Criteria Identification. In the second step of our
approach, we identify the ranking criteria according to which
the entiti