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ABSTRACT
Microblogging platforms such as Twitter provide low cost
access to an immense reserve of authoritative professionals,
opinion leaders and hobbyists for a wide range of topics. Yet,
as microposts are short and incredibly diverse, many of these
experts are hidden. In this paper, we present e#, a system
to retrieve experts automatically for a given set of keywords.
Our design targets exhaustivity: e# can detect previously
undetectable experts. The core idea is to enhance a state-of-
the-art expert detection algorithm with a graph of expertise
domains. Our system produces this graph from hundreds
of Gigabytes of Web search query logs and behavioral data,
processed in a distributed, parallel fashion. We provide a
detailed description of our architecture, including an orig-
inal SQL-based community detection algorithm. We then
benchmark our system with 750 queries, using crowdsourc-
ing. We observe that e# finds many more experts than a
state-of-the-art baseline.
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1. INTRODUCTION
Microblogging offers a mighty, low-cost means to disse-

minate and consume knowledge. Platforms such as Twitter
let political analysts comment elections, sports journalists
explain why their favorite team fell short, and technology
fans criticize the weight of a new phone. In this paper, we
investigate the problem of expertise detection: we want to
retrieve experts from microblogs, given a topic expressed as
a set of keywords. For example, suppose that we wish to
learn more about American football from Twitter. Given a
set of keywords such as 49ers or NFL as input, can we return
a list of all the authoritative Twitter accounts?

Expertise detection systems must achieve high precision
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and high recall. Precision measures the purity of the re-
sults. It is the proportion of experts returned by the system
which are relevant to the topic. On Twitter, achieving high
precision is challenging because the data contains an extra-
vagantly large range of topics and vocabulary: it contains
spam, fake accounts, but also many ambiguities. In our ex-
ample, the simple term football designates a different sport
in Europe and America. Recall measures the exhaustivity
of the results. It is the proportion of relevant experts on
the whole microblogging platform detected by our system.
Recall is challenging because tweets are short. An expert
in 49ers is likely to be an expert in West Coast football
too, because the 49ers is a popular football team from the
US West Coast. Yet, as tweets cannot contain more than
140 characters, the chance to have both expressions in the
same post is low. Therefore, a search for 49ers may miss
the experts for West Coast football.

Expertise detection has been studied for decades, but in a
very different context: initially, it focused on finding experts
from enterprise documents, in order to smoothen collabora-
tion between employees. The corpora were small, hetero-
geneous and the queries were very specific (e.g., FORTRAN
developer). With social media, the context is different: the
topics of interest can be narrow (e.g., 49ers draft) or broad
(e.g., sports). The corpora are homogeneous (all messages
have the same format), but their scale is massive. Also,
the requirements in terms of precision and recall are differ-
ent. In enterprise settings, the aim was to initiate profes-
sional collaborations, thus false positives were very costly.
Most studies on expertise retrieval targeted precision, re-
call came as distant second [4]. In contrast, our users are
looking for information sources, not collaborators. Hence,
they value depth and variety, while false positives are rela-
tively cheap. This shifts the balance towards recall. Unfor-
tunately, achieving high recall is also much harder on social
media, because microposts have a short length and an im-
mense vocabulary.

How can we detect experts with both high recall and high
precision? We present e#, a system to detect previously
undetectable experts. Our strategy is based on query ex-
pansion, well known in the context of document search but
seldom used for expert detection. We operate in two steps,
offline and online. Offline, we build a collection of linked
topics of expertise from Web data. Online, we exploit this
collection to augment incoming queries, and feed the result
to a precision-based expert detector. We obtain a variety of
high quality experts.
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Figure 1: Overview of e# - our system augments an input query with related queries, inferred from the
search log of a commercial search engine.

Two questions remain. First, how do we collect and link
topics of expertise? We propose to exploit the search query
log of a commercial search engine. This source gives us a
massive, time-relevant collection of keywords. We infer the
semantic associations between the terms with search and
click behavior. Second, how do we exploit this collection?
Our approach is to partition the search terms into commu-
nities, that is, groups of strongly related keywords. We then
use these groups to enrich the queries. Because of the scale
of the datasets involved, the engineering effort is non trivial.
We present an original implementation of modularity maxi-
mization, a framework to detect communities in graphs. The
advantage of our approach is that it can directly be imple-
mented in (parallel) declarative languages such as Hive, Pig,
Microsoft’s SCOPE or even SQL.

To summarize, here are our contributions:

• We present our pipeline e#, which combines search
query log analysis, community detection and query ex-
pansion at scale.

• We introduce a parallel, distributed algorithm to in-
fer clusters of related keywords from large Web search
logs.

• We describe a complete experimental evaluation, with
real-life examples and a crowdsourcing study. We present
our results on 750 queries from many different topics.

The rest of this paper is organized as follows. In the fol-
lowing section, we give an overview of e#. We then present
the base expertise detection algorithm on which we built e#.
In the fourth section, we detail how e# builds collections of
related keywords to expand the queries. We expose how our
system matches queries and expertise domains in the fifth
section. We present our experiments in the sixth section.
We then describe related works and conclude.

2. OVERVIEW
The main idea behind e# is to enhance an existing expert

detection algorithm with a collection of expertise domains.
Figure 1 gives an overview of our pipeline. It depicts two
stages: an offline stage, during which we build the collection,
and an online stage, during which we exploit it.

The offline stage can itself be decomposed in two steps.
First, we process a search query log. Using search terms

and clicks, we build a weighted graph, in which each vertex
represents a keyword and each edge represents a semantic
association. Then, we detect communities in this graph,
with a custom SQL-based algorithm. Each of the communi-
ties we obtain describes a topic of expertise, exploitable for
query augmentation.

During the online stage, we run the actual query augmen-
tation: we match the query with a topic of expertise from
the database, and append the corresponding keywords. We
then run a detection algorithm presented previously in the
literature [14]. Section 3 presents the algorithm.

Thanks to the query log, our collection of domains is in-
herently current. For instance, at the time of writing, it
contained keywords related to new technological products
(smart watches or VR glasses) or upcoming media events
(e.g., Star Wars VII). This is particularly useful when deal-
ing with social media. Also, entries often come in many
variants (e.g., football, fotbal, foot, etc...). This variety
improves the robustness of our system at little CPU cost.

3. PRELIMINARIES - BASELINE
In this section, we present the algorithm on which we built

e#. Expertise detection involves two main challenges: can-
didate selection and expertise ranking. Candidate selection
is the problem of finding candidate experts for a given topic.
Expertise ranking is the problem of determining the strength
of expertise given textual evidence. To solve both problems,
we use a method proposed recently by Pal and Counts [14],
shown to be competitive for Twitter data. The framework
was simplified for production purposes, it currently runs in
a commercial environment.

We implemented candidate selection on Twitter as follows.
A candidate expert is either an author of a tweet, or a person
mentioned in a tweet. In both cases, the tweet must match
the query. By default, a tweet matches a query if it contains
all of its terms after lower-casing [4, 14].

For expertise ranking, we first compute features of textual
evidence, and then rank the candidates on these features. In
their paper, Pal and Counts evaluate a dozen features. We
kept those which they present as important: the topical sig-
nal (TS), the mention impact (MI ), and the retweet impact
(RI ). These features are defined as follows:
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TS =
#tweets by user on topic

#tweets by user

MI =
#mentions of user on topic

#mentions of user

RI =
#retweets of user ′s tweets on topic

#retweets of user ′s tweets

The first two feature, TS and MI, measure how much the
user is specialized in the topic of interest. The third feature,
RI, measures the influence of the user.

Before we perform the ranking, we normalize and aggre-
gate the features. To normalize the features, we compute
their z-score. For instance, if µTS is the average of TS and
σTS its standard deviation, we compute zTS = x−µTS

σTS
. In

practice, the features appear to be log-normally distributed.
Therefore, we take their logarithm to obtain Gaussian distri-
butions. To aggregate the scores, we used a weighted sum,
using the authors’ guidelines.

In their paper, Pal and Counts propose an optional fil-
tering step, based on cluster analysis. This step is compu-
tationally expensive, and it is contrary to our objective of
improving recall. Therefore, we discarded it in our imple-
mentation.

4. COLLECTING TOPICS OF EXPERTISE
In this section, we describe how we build our collection of

expertise domains. During the extraction phase, we derive
a graph of semantic relationships from the search query log.
During the clustering phase, we detail how to decompose
this graph into communities, using a parallel, modularity-
based approach.

4.1 Extracting Semantic Relationships
To build our collection of related topics, we exploit the

search log of a commercial search engine. We chose this
source because it is intrinsically current and exhaustive.

How can we infer semantic connections between terms
from a search log? We propose to exploit the URLs clicked
for each keyword. This approach lets us detect non-obvious
semantic associations, and it is practical to implement [1].
Consider a vector space where each dimension represents a
URL from the query log. In this space, we associate each
query to a vector. Each component of the vector represents
the number of clicks on the URL. To obtain the similarity
between two terms, we can compute the cosine distance be-
tween the two vectors which represent them. If we compute
the distance between every possible pair of terms, we obtain
a term similarity graph. In this weighted, undirected graph,
each vertex represents a query, and the edges describe their
similarity. We illustrate this operation with Figure 2. This
graph gives us the material for our next step: the community
detection.

In practice, a few adjustments are necessary. For instance,
we remove all the queries which appear less than 50 times
per month, to reduce noise and save space. Even after this
operation, the same term can appear with dozens, sometimes
hundreds of variants (e.g.., san francisco, #sanfrancisco,
sf, . . . ). We leave these queries unchanged (no stemming,
or correcting), in order to capture as many different cases as
possible.
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Figure 2: Extracting the similarity between terms
from the search log.

4.2 Detecting High-Level Domains
Once the similarity graph is built, our next step is to

create groups of related keywords. We solve this problem
with community detection. The idea is to identify groups
of queries which are densely connected to each other, but
loosely connected to the rest of the graph. We assume that
if a group of keywords obeys such a property, then we can
use it to expand queries. The network analysis literature
contains dozens of ways to formalize this notion [10]. We
base our system on modularity maximization [13], which is
simple and widely studied. We first present the original se-
quential algorithm, proposed by Newman et al., then we
introduce our parallel variant.

4.2.1 Modularity Maximization
Overview. Consider an undirected graph G = (V,E).

For the sake of presentation, we consider that this graph is
not weighted, but that more than one edge can connect two
nodes1. Consider a set of vertices C ⊂ V . The modularity
measures how densely connected C is. To compute it, we
count the number of edges within the set, and compare to
what we would expect if the edges were drawn randomly
between G’s vertices, preserving the vertex degrees. The
modularity is the difference between these two terms. Let
E describe the expected value:

Modularity = #edges− E[#edges] (1)

Partition G’s vertices into p partitions C1, . . . , Cp. If we
sum the modularities of each of these partitions, we obtain
the total modularity :

TMod({C1, . . . , Cp}) =
∑
i∈1..p

Mod(Ci) (2)

1We can convert the similarity graph described in the pre-
vious section into this representation. To do so, we rescale
and discretize the weights to obtain integers. Then, we cre-
ate one edge for each unit.
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This is our objective function. A high value indicates that
we found many dense communities. A low value means that
either the graph does not contain any community, or that
the partitioning is sub-optimal.

Computing the Modularity. We defined the modular-
ity as the difference between the number of edges within a
set of vertices and the expected number of edge within this
set. To obtain the first quantity, we can simply count. Now,
how do we obtain the second one?

For a set of vertices C, the variable mC describes the
number of edges and E[mC ] the expected number of edges.
We have:

Mod(C) = mC − E[mC ] (3)

We want to compute E[mC ]. Draw an edge at random
between two vertices of G. Let PC describe the probability
that the edge connects two vertices of C, and let mG denote
the number of edges in the graph. We obtain:

E[mC ] = mG ∗ PC (4)

Let’s compute the probability PC . Let DG = 2 ∗ mG

represent the sum of all the degrees of all the vertices of the
graph, and let DC represent the sum of all the degrees of the
vertices in C. For a given edge, the probability that one of
the endpoints ends up in the set C is DC/DG . Therefore,
the probability of having both endpoints in the community
is:

PC = (DC/DG)2 (5)

Putting everything together, we obtain:

Mod(C) = mC −mG ∗ (DC/DG)2 (6)

Note that the modularity is often normalized: many authors
use Mod(C)/mG instead of Mod(C). As mG is a constant,
this approach is equivalent to ours.

Greedy Heuristic. Maximizing modularity is a NP-
hard problem [13]. The seminal single-machine heuristic,
presented by Newman et al., operates in a greedy, bottom-
up manner. We initialize the algorithm by assigning each
vertex to its own community. Then, at each iteration, we
find the two closest communities, and merge them. We stop
when we cannot improve the score anymore, or when we
have reached a satisfying number of communities.

The critical part of the algorithm is to define “closest”.
According to Newman, two communities are close if merg-
ing them leads to an improvement in the global modularity.
Formally, if C1 and C2 describe these communities, we have:

∆Mod = Mod(C1 ∪ C2)−Mod(C1)−Mod(C2) > 0 (7)

Instead of computing the three terms of this equation sep-
arately, we can use a computational shortcut [13]. If m1↔2

represents the number of edges between C1 and C2, we have:

∆Mod = m1↔2 − E[m1↔2] (8)

Let D1 and D2 represent the sum of degrees of C1 and C2’s
vertices. We obtain the second term as follows:

E[m1↔2] =
D1 ∗D2

2 ∗mG
(9)

4.2.2 SQL-based Modularity Maximization
To deal with the scale of commercial search engine query

logs, we developed a custom variant of Newman’s procedure.
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FootballNFL

San Francisco

49ers

California SF Bridge

FootballNFL

San Francisco

49ers

California SF Bridge

0. Input Graph 1. Neighborhood Creation

2. Neighborhood Separation 3. Aggregation

Figure 3: First iteration of our modularity optimiza-
tion algorithm on a fictive example. The shaded tri-
angles represent neighborhoods.

Compared to previously published frameworks such as [17],
our approach can be directly implemented in a SQL-like lan-
guage such as Hive, Microsoft’s SCOPE or Pig. Therefore,
we can parallelize it with standard map-reduce relational
operators [5].

As previously, we initialize the algorithm by assigning each
vertex to a community. Then, we repeat the following three
steps:

1. For each community, list all the neighbor communities.
Two communities are neighbors if (a) they are con-
nected and (b) if we union them, the total modularity
increases (∆Mod > 0). We obtain several neighbor-
hoods, one for each community.

2. The neighborhoods found in Step 1 are overlapping:
one community may belong to several neighborhoods.
To remediate this, take each community, list all the
neighborhoods to which it belongs and keep the closest
one (∆Mod is as large as possible).

3. For each neighborhood, aggregate all the communities
into one large, new community
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neighbors = select c1.query as query1,
c2.query as query2,
distance

from graph
inner join communities c1 on query2
inner join communities c2 on query1
where ModulGain(query1,query2) > 0;

partitions = select query2,
argmax(distance, query1)

from neighbors
group by query2;

communities = select query1 as comm_name,
query2 as query;

Figure 4: Body of the community detection algo-
rithm in pseudo-SQL. The table Graph(query1,
query2, distance) represents the graph, and
Communities(comm_name, query) represent the commu-
nities (the foreign key relationships are underlined).

We illustrate these steps in Figure 3, and present the pseudo-
code in Figure 4.

4.2.3 Parallelization and Optimization
We presented our algorithm in pseudo-SQL. This approach

is declarative: we rely on the data management system to
effectively parallelize the code. We now discuss a few query
processing methods to achieve good performance.

The most time consuming operation is the join between
the communities and the graph, necessary to list the neigh-
borhoods (the first query in Figure 4). If the nodes have
enough main memory, we can speed it up with a replicated
join: we replicate and index the communities table at each
node. Then, we split the graph table, broadcast the par-
titions, and execute the join at each node. If this is not
possible, we must chain two map-side joins. We cluster the
tables communities and graph on the join keys (first query1,
then query2), send each partition to a node, then perform
the join at each node.

The following two operations (grouping and renaming) are
much simpler, and can be executed in one map-reduce pass.
The mappers emit the tuples with the key query2, then the
reducers perform the aggregation and the renaming.

5. QUERY MATCHING
We now describe how to retrieve a community for a given

query. Our approach is based on exact match: we find the
community which contains the query terms exactly and in
order, after lower-casing. Once we identified the relevant
community, we run the expert search for all the related terms
separately. We then union the results and rank the experts.
This approach is purposely conservative, and it is straight-
forward to implement.

An advantage of production query logs is that terms often
come in hundreds of variants, with alternative spellings and
mistakes. This improves the flexibility of the matching at
little computational cost.
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algorithm.
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Figure 6: Distribution of the community sizes.

6. EXPERIMENTS AND EVALUATION
We now describe our experiments with e#. We first present

the topics we extracted from a month of search queries. We
then demonstrate e#’s effectiveness with a crowdsourcing
study.

6.1 Topics of Expertise
We described how to extract topics of expertise with com-

munity detection. In this section, we illustrate our methodo-
logy with real world data. We use a full month of web search
query logs (May 2014, US only, 998 GB). The graph we ob-
tain contains approximately 60 million edges (1.45 GB). We
describe our hardware setup in Section 6.3.

Figure 5 shows how many topics our algorithm finds af-
ter each iteration. We see that it starts with lots of tiny
communities, then the count decreases very fast. Roughly,
the procedure converges after 6 iterations. Figure 6 shows
the distribution of the topic sizes. We observe that a large
majority of communities contains between 2 and 10 queries
(around 60%). We also found around 20% of orphans. We
have very few communities with more than 50 items.

Figure 7 shows three groups of related keywords. To
obtain this figure, we plotted the community which con-
tains the term 49ers (in dark blue), along with its three
closest communities - in light blue, light green and dark
green. The 49ers community contains many non-trivial
keywords: alternative spellings (niners), related activities
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Set Name Count Examples
Sports 100 49ers, hernandez, buffalo bills, nascar, baltimore ravens
Electronics 100 bluetooth, ipad mini, garmin, xbox, vacuum cleaners
Finance 100 nasdaq, dow futures, msft, quotes, bloomberg
Health 100 scoliosis, asthma, diabetes, bmi, bulimia
Wikipedia 100 world war II, aashiqui 2, lycos, beyonce, albert einstein
Top 250 250 sarah palin, mapquest, honda, antonov225, saudi arabia

Table 1: Queries used for our crowdsourcing study.

Figure 7: Graph and communities around the term “49ers”.

(49ers draft), or players (bruce ellington, vernon davis).
We see that the query-log distance lets us detect semantic
associations - we could not have detected these relations
with a string-based distance. The three other groups con-
tain topics which are somehow related to the 49ers, but not
closely enough to be used in query expansion. The light blue
community contains topics related to San Francisco tourism.
This is not surprising, because the 49ers is the official team
of the city. The light green one mentions “SF Gate”, which
is a popular San Francisco newspaper (with a thick sports
section). The dark green set focuses on Colin Kaepernick, a
star player in the 49ers.

6.2 Impact on Expertise Retrieval
In this section, we demonstrate e#’s effectiveness on Web

data with a crowdsourcing study.

6.2.1 Experimental Setting
We compare two algorithms: Pal and Counts’ algorithm,

detailed in the second section of this paper, and e#. To
test the algorithms, we used queries which reflect popular
interest in many different domains. Our assumption is that
if a topic is popular on the Web in general, then it is likely
to be popular on social media too. We used six sets, de-
scribed in Table 1. The sets Sports, Electronics, Finance
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Algorithm Screen Name Description Verified Followers

Baseline
SF49ersAllNews All news about San Francisco 49ers False 1,821
Tim Kawakami Tim Kawakami is a Mercury News sports columnist True 45,924
Matt Barrows Matt (that’s me) covers the 49ers for The Sacramento Bee. True 36,271

e#
Tre9er 49ers/NFL/Draft Tweets. Host of NinersNation.com .. False 4,651

NinersGoldRush Your source for all breaking 49ers news ... False 4,135
Red n Gold Huge #49ers fan. LET’S GO #NINERS! False 537

Table 2: Selected experts for the query 49ers. The flag Verified comes from Twitter, it attests the authenticity
of a popular account.

Algorithm Screen Name Description Verified Followers

Baseline
Huawei Club Official Twitter handle for Huawei Club India... False 1,589

The Internet Patrol The Internet Patrol is your source for Internet news. False 179
TekspeczDotnet [...] where technology is not a passion, but an obsession. False 87

e#
LuguLake LuguLake believe tech shouldn’t drift apart people ... False 3,215

HavitAworldnet HAVIT is specialized in PC and entertainment ... False 879
Bluesound High-res Music. Wireless. Everywhere. False 1,308

Table 3: Selected experts for the query bluetooth speakers.

Algorithm Screen Name Description Verified Followers

Baseline
Arthur Hogan Chief Market Strategist -Dad-SOX Fan False 409

CNBC Newsroom ... recognized world leader in business news True 92,014
WorldEconRecon Breaking Financial News | Investment Analysis False 7,470

e#
ET Commodities Your most trusted resource for timely news... True 15,733

MarketWatch Tracking the pulse of the markets... True 1,119,485
The Exchange We promote financial literacy, through Hip Hop. False 3,830

Table 4: Selected experts for the query dow futures.

Algorithm Screen Name Description Verified Followers

Baseline
Amer. Diabetes Assn. Leading the fight to #StopDiabetes ... True 73,905

Diabetes 101 Get Educated About Type 1 Diabetes. False 3,829
DiabetesNews.com The Most Comprehensive Diabetes News ... False 47,402

e#
amidiabetic (Stuart) Stuart #T1 diabetic, trying to help others False 58,451

Eliot LeBow Psychotherapist & Certified Diabetes Educator False 1,813
Diabetesview We deliver the latest Diabetes news everyday False 6472

Table 5: Selected experts for the query diabetes.

Algorithm Screen Name Description Verified Followers

Baseline
National Interest ... premier international-affairs magazines. False 12,340

Franz-Stefan Gady Foreign Policy Analyst, Occasional Reporter ... False 1,054
EmperorTigerstar ...YouTube channel about maps and history False 116

e#
ProjectBugle The First World War Commemoration Project False 36

Wales Remembers 1914-1918 Sharing stories, history, information False 1,166
WWI in Africa What happened in Africa should not stay in Africa. False 392

Table 6: Selected experts for the query World War I.

Algorithm Screen Name Description Verified Followers

Baseline
Ron Devito Sarah Palin supporter; LAN Infrastructure PM False 171

Sarah Palin News Palin news and opinion from Palin-focused sites. False 19,897
Jer A Governor @SarahPalinUSA Conservative Supporter! False 821

e#
Sarah Palin News All news about Sarah #Palin False 1,651
TheDean’sReport .. issues of the day from an honest [...] point of view False 7,108
Truthyism News Truthyism is a news and media organization False 177

Table 7: Selected experts for the query Sarah Palin.
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Data set Baseline e# Improvement
Sports 0.87 0.96 10%
Electronics 0.89 0.98 10%
Finance 0.94 0.97 3.1%
Health 0.82 0.98 19%
Wikipedia 0.83 0.87 4.8%
Top 250 0.64 0.86 35%

Table 8: Proportion of queries for which at least one
candidate expert was found, before and after query
expansion.

and Health contain the 100 most popular search terms from
a commercial search engine, for each category. The set
Wikipedia contains the title of the top 100 Wikipedia pages
visited in 2014. It gives us an alternative view of popular
interests. To increase diversity, we added the set Top 250,
which contains the top 250 queries of a commercial search
engine for July 2014. In total, we used 750 different queries.

We provide some examples of experts for the queries 49ers,
bluetooth, dow futures, diabetes, World War I, and Sarah
Palin in Tables 2, 3, 4, 5, 6 and 7 respectively. We observe
that the experts are diverse: among others, we notice jour-
nalists (CNBC Newsroom), individuals (Arthur Hogan), sup-
port groups (Diabetes 101) and local associations (Wales
Remember).

To assess the quality of the results, we were assisted by 64
crowdworkers, provided by a commercial third party. Eva-
luating expertise is a challenge for two reasons. First, the
workers themselves must have some knowledge of the topic
to recognize other experts. Second, the task is somehow
subjective. We strived to incorporate these considerations
in our experimental design. For each query, we generated
up to 15 experts per algorithm and interleaved the results.
To avoid worker fatigue, we chunked the resulting sets into
smaller sets of at most 6 experts. We also randomized the
order to prevent the position bias. We asked the workers to
spot “non-experts”, that is, accounts from which they could
not get any objective information about the topic of inter-
est. We chose to exclude “non-experts”, rather than validate
experts, because we assumed that the former task requires
less background knowledge than the latter. We gave exam-
ples, encouraged high response times, presented links to the
Twitter pages, and gave crowdworkers the option to ignore
questions for which they were not confident. We filtered
spammers with trivial preliminary questions. We set up
the experiments such that each expert was reviewed by 3
different workers, and aggregated the results with majority
voting.

6.2.2 Impact on Recall
In Table 8, we present the impact of query expansion on

the size of the result sets. We show the number of queries
for which at least one expert was found, before and after
expansion. We note that in all six cases, we obtain a neat
improvement. We notice the smallest performance gain with
the Finance set: the baseline results are already very high,
and e# only brings a 3% improvement. We observe the
most dramatic effects with Top 250: e# answers 35% more
queries. This result is not surprising: we trained e# on the
search log from which the queries come from, therefore we
expected it to perform well.
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Figure 8: Effect of the query expansion on the num-
ber of experts per query.
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Figure 9: Impact of the z-score on the number of
experts for the set Top 250.

Figure 8 present a finer view of e#’s impact on the num-
ber of experts retrieved for each query set. It presents the
number of queries for which the algorithms return n experts
or more, with n varying between 0 and 14. For instance,
the leftmost bars show that 100% of queries have 0 hits or
more. The rightmost bars show the number of queries for
which our algorithms found 14 experts or more. In almost
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Figure 10: Size vs. quality trade-off. The impurity
is the proportion of results marked as non relevant
by the judges.

every cases, we observe that query expansion improves the
number of experts found (in average of about 10%, up to
30%). We conclude that our expansion strategy works: it
does improve recall.

6.2.3 Impact on Precision
The major challenge in query expansion is to enhance re-

call without hurting precision. Indeed, query expansion may
weaken the quality of the retrieved experts. This degrada-
tion has multiple sources: it comes from noise in the corpora,
noise in the clustering, or errors in the expansion (e.g., dis-
ambiguation problems). In this section, we study the extent
of this penalty.

Before we present our results, recall that our algorithm
needs to be tuned. The users must choose a minimum z-
score, under which the experts are rejected. This threshold
defines a trade-off between precision and recall: a low value
will lead to many low quality experts, a high value will lead
to a few excellent experts. We illustrate this effect for Top
250 in Figure 9.

Figure 10 compares the quality of the experts found for
different levels of recall. For a given number of experts per
query, it returns the impurity, that is, the proportion of ex-

Step VMs Runtime Read Write
Extraction 65 38 min. 998 GB 2.6 GB
Clustering 65 2 hours 2.6 GB 94 MB
Expansion 1 < 100 ms.
Detection 1 < 1 sec.

Table 9: Resource consumption for one iteration
(September 2015)

perts marked as non relevant by the crowdworkers. We ob-
serve that the difference between the algorithms is very sub-
tle. It is maximal for the first few results of the set Sports,
it is almost imperceptible for Finance and Health. In the
dataset Electronics, e# performs slightly better than its
competitor. In conclusion, the accuracy penalty incurred
by e# is minimal, if not negligible. We can improve expert
detection recall with minimal losses in precision.

6.3 Resource Consumption
We now provide hints about the resource consumption of

e#. The offline part of our system runs weekly on a pro-
duction cluster. Table 9 reports statistics for one iteration
(September 2015). It must be noted that our environment is
completely virtualized, and thus performance depends heav-
ily on availability: a relational operator can use between one
and hundreds of virtual machines, depending on its nature
and the cluster’s workload. Besides, we have no control over
the underlying hardware. The data center comprises servers
with 12 x86-64 cores, between 32 and 64 GB main memory
and SSD drives with 1 to 3 TB. But each of these servers
can handle dozens of virtual machines. The collection of
expertise topics produced by e# weighs about 100 MB. We
store and index it in SQL Server 2014, which allows us to
query it in a few milliseconds. We refer the reader to Pal and
Counts [14] for more details about the final query detection.

7. RELATED WORK
Our work bridges two fields of study: expertise retrieval

and query expansion. It is, to our knowledge, the first at-
tempt to augment expert search with an external thesaurus.

7.1 Expertise Retrieval.
Researchers have been interested in detecting experts for

several years now, in particular since the problem was in-
troduced at TREC in 2005 [2]. An extensive review was
written by Balog et al. in 2012 [4]. The two oldest ap-
proaches are the candidate model and the document model.
In the candidate model, a textual profile is created offline
for each candidate (for instance, by aggregating all the doc-
uments authored by the candidate). Then, these profiles
are ranked with traditional IR model [7]. The document
model operates the other way around. First, a set of rele-
vant documents is identified for the query. Then, the algo-
rithms find the associated people and rank them according
to the relevance of the documents and their degree of asso-
ciation [15]. More recently, authors have proposed alterna-
tive models. Discriminative models such as the Arithmetic
Mean Discriminative model are robust and they can inte-
grate heterogeneous, arbitrary features [9]. Graphs models
have also gained popularity. For instance, Serdyukov et al.
have shown the effectiveness of random walks on “expertise
graphs” [18].
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Jianshu et al. is, to our knowledge, the first team to
have published work about expert detection on Twitter [20].
Their system is based on a graph describing the topical sim-
ilarity between the users. To detect authorities, they run a
variant of PageRank on this graph for each topic. An alter-
native was proposed by Pal et al. [14]. We introduce a pro-
duction version of their framework. Recent work has studied
how to incorporate location data into expertise retrieval, fo-
cusing on “local” experts rather than “general” experts [6].

As our framework is based on query expansion, we do not
compete with any of these approaches. Our system can work
with any Expertise Retrieval system.

7.2 Query Expansion.
Authors have proposed query expansion methods for decades

in document search. Researchers were already building“classes
of similar terms”to improve search before 1960 [16]. To mea-
sure the proximity between terms, they used co-occurence in
the training documents. Qiu et al. proposed a notable im-
provement with “concept-based” query expansion [16]. The
main idea was to represent the terms by points in a vector
space, where each dimension represents a document. From
this representation, it was possible to build a so-called sim-
ilarity thesaurus. Recent publications have shown that ex-
ternal source of knowledge can also improve search, such as
WordNet [19] or ontologies [12].

Our work differs from all of the above because we use a
query log. This source of data is relevant for two reasons.
First, it is relatively easy to manipulate: we do not have
to process the whole collection of documents (in our case,
this would mean the whole Web). Second, it is constantly
renewed; thus, we believe that the microblogging vocabulary
is better captured by this source than by existing ontologies.
Other authors have used query logs for query expansion,
such as Cui et al. [8]. They observe that if a set of documents
is frequently selected for a certain keyword, then their terms
are probably strongly correlated to this keyword. However,
they still use the underlying documents.

It seems that little work was presented on query expan-
sion in the context of expertise retrieval. Macdonald et al.
have mostly focused on local query expansion, i.e., using top
ranked documents for pseudo-relevance feedback [11]. Balog
et al. have presented ways to incorporate external evidence
of expertise into language models [3]. These lines of work
are complementary to ours, but they are not overlapping.

8. CONCLUSION
We introduced an approach for expertise detection on so-

cial media that emphasizes recall. We showed that finding
related domains of interests can be expressed as a graph
community detection problem. We presented a parallelized
implementation and showed the evaluation results on a large
Twitter data set. Our findings demonstrated that e# can
increase the number of experts without losing quality. Fu-
ture work includes expanding into other social networks such
as Quora and Facebook, and exploring different community
detection paradigms.
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