
Efficient Record Linkage
Using a Compact Hamming Space

Dimitrios Karapiperis*, Dinusha Vatsalan†, Vassilios S. Verykios*, and Peter Christen†
*Hellenic Open University

School of Science and Technology
Patras, Greece

{dkarapiperis, verykios}@eap.gr

†The Australian National University
Research School of Computer Science

Canberra ACT 0200, Australia
{dinusha.vatsalan, peter.christen}@anu.edu.au

ABSTRACT
Record linkage, the process of identifying similar records
that correspond to the same real-world entities across
databases, is a well-established research problem in the
database, data mining, and information retrieval communi-
ties. Computing distances between string values of records
is the key component in order to determine the similarity of
the represented entities. Due to the typically large volumes
of records, a two-step process is followed. A blocking mech-
anism is first applied for grouping similar records together,
and then a matching mechanism is performed for compar-
ing the records which have been inserted into the same
block. However, there does not exist any efficient block-
ing/matching mechanism which provides theoretical guaran-
tees for identifying similar records which consist of strings.
Towards this end, we put forth the novel notion of embed-
ding string-based records into a Hamming space, where such
a mechanism exists. The size of these embeddings is kept
as small as needed in order to guarantee the correspondence
of distances in that space to the types of errors that ex-
ist between strings, e.g., a missing or a modified character.
We build embeddings whose size is 120 bits for represent-
ing accurately four fields of a publicly available data set.
We also present a distance threshold-aware blocking tech-
nique for higher accuracy rates compared to blocking ap-
proaches which ignore the specified threshold. Our empirical
study conducted on real-world data sets shows the efficacy
achieved by our embedding method as compared to several
existing solutions.

1. INTRODUCTION
The integration of data from disparate sources is increas-

ingly being required as an important step towards the iden-
tification of similar entities across different sources. Known
as entity resolution, record linkage, and data matching, the
process of integrating data is an important problem in many
data mining and knowledge engineering applications [10]. A
wide range of real-world applications, including health-care,
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government services, crime and fraud detection, national se-
curity, and businesses, require entity resolution techniques in
order to enrich data quality and empower accurate decision
making [2].

Since unique entity identifiers, which would allow a simple
join between records, are often not available in databases,
a common practice is to use personal identifying attributes,
such as names and addresses. Due to the quadratic complex-
ity of the number of comparisons required and the commonly
large volumes of records, a two-step process is followed [29].
In the first step, a blocking mechanism is applied, which
reduces the comparison space efficiently by creating blocks
with potentially similar records. Then, in the second step,
only the records within the same block are compared with
each other. Moreover, the values of these attributes, which
are well correlated with the entities being linked, often con-
tain variations, errors, and misspellings which require the
use of approximate matching solutions [2].

A widely adopted criterion that is used to determine the
similarity between the string values of these attributes is
their edit distance [20], which is the minimum number of
character edit operations required to transform one string
value into the other. Unfortunately, thus far there does not
exist an efficient blocking/matching mechanism that works
directly on records, which contain string values, and simul-
taneously provides theoretical guarantees for identifying all
similar record pairs using the edit distance as the metric for
determining their similarity. Furthermore, computing the
edit distances for a large number of record pairs imposes a
considerable non-negligible overhead. This can be tolerated
for the traditional context of an off-line process but is not
suitable for many emerging recent applications that require
nearly real-time analysis, especially if they involve streaming
data [5, 33].

For these reasons, a common practice is to embed string
values into a metric space where such an efficient block-
ing/matching solution exists. For example, Hamming [17]
and Jaccard [18] Locality-Sensitive Hashing (LSH) based
blocking/matching mechanisms work in a Hamming and in a
Jaccard space, respectively. Representing a string as a small-
sized binary sequence in a Hamming space results in a partic-
ularly lightweight structure. Moreover, Hamming distance,
which is the number of bits in which two binary sequences
differ, can be computed very fast. These two features render
those embeddings a perfect fit for distributed and real-time
settings. One such example of a real-world application is a
health surveillance system that continuously integrates data
from hospitals and pharmacy stores by performing a large
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number of distance computations in real-time.
Also, during the matching step, it is common practice

to follow a decision model by applying to each record pair
a rule, which classifies a pair of records as a matching or
as a non-matching pair according to some distance thresh-
olds specified for each attribute. Setting such a threshold
arbitrarily or on an empirical basis may either impose ad-
ditional unnecessary running time or generate incomplete
results. LSH-based blocking mechanisms [17, 18] consider
each record as an entity ignoring completely such classifi-
cation rules during the blocking step. This record-level ap-
proach falls short in the presence of such rules, especially
when different thresholds are specified for each attribute.

In this paper, we propose an embedding method of strings
into a compact binary Hamming space where both the em-
beddings are of small size and the distances in that space
correspond to certain types of errors, e.g., an accidentally
deleted character, between strings. Therefore, one can spec-
ify accurately the threshold(s) required by the used block-
ing/matching mechanism in the embedding space. Further-
more, we adapt the blocking mechanism to the used clas-
sification rule and report the formal guarantees provided
for identifying any similar pair by using the newly adapted
mechanism. To the best of our knowledge, such an attribute-
level LSH-based blocking/matching technique has not been
proposed in the literature before.

The contributions of this paper are:

• An efficient embedding method of strings into a com-
pact Hamming space resulting in lightweight, in terms
of size, embeddings.

• A guaranteed correspondence of distances in the em-
bedding space to certain types of errors between strings.

• An attribute-level LSH-based blocking scheme, which
adapts to the used classification rule.

• An experimental evaluation of the proposed method
compared with existing embedding solutions and using
real-world data sets.

In the next section, we review the relevant literature, and
in Section 3 we formulate the problem and motivate its im-
portance. We outline the building components of our pro-
posed method in Section 4, and in Section 5 we describe this
method in detail. We empirically evaluate and compare our
approach with existing embedding solutions in Section 6,
and we conclude this paper with future research directions
in Section 7.

2. RELATED WORK
A long line of research has been conducted in record link-

age and various methods for computing similarities between
records in an approximate manner have been proposed. We
refer the interested reader to some recent surveys [2, 10].
Many techniques have been developed for the blocking and
matching step aimed at reducing the comparison space and
identifying as many similar record pairs as possible [3, 10].

For the blocking step, several approaches [6, 8, 12, 34]
have been developed with the aim of being scalable to large
data sets without sacrificing quality. Nevertheless, there are
two methods which had great impact on the research com-
munity. The first is the sorted neighborhood method [12],

including all its variants, which first sorts all records from
the participating data sets and then uses a fixed-sized sliding
window over the sorted records in order to compare the pairs
which are formulated within that window. The second is the
canopy clustering technique [6] that relies on the idea of us-
ing a computationally cheap clustering approach to create
high-dimensional overlapping clusters, from which blocks of
candidate record pairs can then be generated. These meth-
ods though do not provide any guarantees for identifying
record pairs that are similar nor scale well to large volumes
of records.

Recently, randomized blocking/matching techniques,
which mainly rely on Locality-Sensitive Hashing (LSH) [1],
have received much attention [9, 15, 17, 18]. These tech-
niques work in some metric space into which string values
are embedded preserving their initial distances as accurately
as possible. The most appealing property of these distance-
based randomized techniques is that they provide theoreti-
cal guarantees for identifying each similar record pair in the
embedding space with high probability.

For the matching step, a large body of work has also
been conducted on similarity joins [35, 36, 11, 21, 24, 25,
30, 31, 32] where efficient and scalable approximate joins
are facilitated by using several metrics during the match-
ing step such as the edit, Jaccard, and cosine metrics [2].
Especially, the authors in [35, 21, 25, 30, 31] have devised
efficient techniques for finding similar string values using
the edit distance metric, however they focus on individual
such values, whereas our work proposes a solution for find-
ing similar records, which usually consist of multiple strings.
All the above-mentioned metrics though use strings or high-
dimensional vectors of integers, which are not suitable struc-
tures for highly demanding environments either in terms of
communication or of computational cost. Three other state-
of-the-art embedding methods, introduced in [14, 18, 27],
are used as our competitors and are presented in detail in
Section 6.

3. PROBLEM DEFINITION
Let us assume that two data custodians, who own databases

A and B, respectively, engage themselves into a process for
identifying the common entities among their records. They
are allowed to make use of the services offered by an indepen-
dent party, whom we call Charlie. The two data custodians
agree to use a common set of nf attributes, each denoted by
fi where i = 1, . . . , nf , based on which they can exchange

and compare their records. We denote by u
(fi)
E the distances

between the values of attribute fi, and by ϑ
(fi)
E the speci-

fied threshold for this attribute. They also need to provide
an additional attribute, let us call it Id, for the role of an
identifier of each record. The data custodians submit their
records to Charlie whose duty is to identify any pairs of
similar records that belong to different data sets.

Definition 1 (A Similar record pair). A record
pair rA ∈ A and rB ∈ B is considered as similar if for each

attribute fi, it holds that u
(fi)
E ≤ ϑ

(fi)
E in the metric space

(E , dE), where E is the original space in which the string
values of all records of A and B exist, and dE is the edit
distance used as the metric on E.

Due to the generally large size of the data sets at hand,
Charlie will use a randomized blocking/matching mecha-
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Algorithm 1 Mapping a q-gram to a position of a q-gram
vector.

Input: a q-gram gr.
Output: The index ind in the q-gram vector.
1: ind = 0
2: for i = 1, . . . , q do
3: ch = gr[i] // Extract each character ch from gr.
4: ind = ind + ord(ch) × |S|q−i // Function ord(·)

returns the order (zero-based) of character ch in S.
5: end for

nism, which both handles efficiently large volumes of data,
and provides theoretical guarantees of performance in ap-
proximate matching by identifying each similar record pair
with a specified (high) probability. However, such known
mechanisms work in different metric spaces than E . For
this reason, Charlie embeds the string values into a Ham-
ming metric space (H, dH), where such a mechanism already
exists. Additionally, there should exist a guaranteed corre-
spondence between distances in H and the type of errors
in E by keeping the size of the embeddings in H as small as
possible. Given this correspondence, the thresholds required
can be easily specified in H, which will result in identifying
each pair of records regarded as similar in E .

Definition 2 (An Efficient Embedding Method).
Given an efficient blocking/matching mechanism in H, con-
struct an embedding method of strings from E into H, where
errors in E are identifiable in H separately for each attribute
fi using embeddings whose sizes are as small as possible
depending on the lengths of the strings in fi.

4. BACKGROUND
In this section, we outline the building blocks utilized by

our proposed scheme.

4.1 q-gram Vectors
A q-gram vector is a deterministic structure for repre-

senting a string value in the Hamming space. Such struc-
tures have been used in [18] and [19] for representing dis-
tinct attribute values and whole records, respectively. Each
position of a q-gram vector represents a distinct q-gram
which is a group of q consecutive characters in a string
value. By assuming that the alphabet S of q-grams is the
set of the upper-case letters, the size of a q-gram vector
is m = |S|q = 26q positions. Let us denote a bijection
F : {gr1, gr2, . . . , grm} → {0, . . . ,m − 1}, which maps each
q-gram for a certain alphabet S to an integer, termed also
as the index ind of that q-gram. The logic behind F is il-
lustrated in Algorithm 1. Therefore, by this mapping, we
obtain a set of indexes, denoted by Us, that indicates which
positions of the respective q-gram vector will be set to 1.
Figure 1 illustrates how a string is represented by a bigram1

vector. A record-level q-gram vector is built by concatenat-
ing the corresponding attribute-level q-gram vectors and its
size is m = nf ×m. The space in which these record-level
q-gram vectors exist is H = {0, 1}m.

4.2 Hamming LSH-based Blocking/Matching
Due to the large number of records that occur in many

of today’s databases, the randomized Hamming Locality-
Sensitive Hashing (LSH) technique [1], denoted by HB, is

1Bigrams are the q-grams with q = 2.

1...00

JO OH HN

...1...1...BV =

 indexes of the positions

For s=’JOHN’, F(‘JO’)=248, F(‘OH’)=371, and F(‘HN’)=195. 
Thus, Us={248, 371, 195}.

0-th  1-st  ... 195-th 248-th 371-st... ...

...
AA AB HN JO OH

Figure 1: Representing the string ‘JOHN’ as a bigram vector
denoted by BV .

Table 1: Interpretation of the most used variables through-
out this paper.

Tl An independent blocking group where l =
1, . . . , L used by the HB.

hl A composite hash function used to specify the
bucket of some Tl into which a c-vector, de-
fined in Section 5.2, is stored.

K The number of base hash functions used by a
hl.

Us The set of indexes of the respective q-grams of
a string s.

dS The metric applied on space S where S ∈
{H, Ĥ, E,J}.

uS Distance measured by using metric dS .

ϑS The specified distance threshold in space S.

mopt The optimal size of a record-level c-vector.

nf The number of common attributes which par-
ticipate in the linkage process.

fi An attribute where i = 1, . . . , nf . When used
as a superscript in parentheses, it denotes the

attribute-level value, e.g., u
(fi)
H , K(fi), h

(fi)
l

etc.
b(fi) The average number of q-grams of the values

of the corresponding attribute fi.

used as the blocking/matching technique in order to iden-
tify each similar pair of record-level q-gram vectors, which
exist in H, with high probability. Mechanism HB utilizes
L independent hash tables, termed also as blocking groups.
Each hash table, denoted by Tl where l = 1, . . . , L, consists
of key-bucket pairs where a bucket hosts a linked list which
is aimed at grouping similar q-gram vectors. Moreover, each
hash table has been assigned a composite hash function hl

which consists of a fixed number K of base hash functions.
A base hash function applied to a q-gram vector returns the
value of its j-th position where j ∈ {0, . . . ,m − 1} chosen
uniformly at random.

Definition 3 (A Hamming LSH family). A family φ
of composite hash functions has the following key prop-
erty for any pair of record-level q-gram vectors denoted by
QV1,QV2 ∈ H whose Hamming distance is uH [1]:

If uH ≤ ϑH then Pr[hl(QV1) = hl(QV2)] ≥ pK , (1)

where p denotes the success probability of a base hash func-
tion and is equal to p = 1− ϑH

m
.

Intuitively, the smaller the Hamming distance is, the higher
the probability for a hl to produce the same result. The re-
sult of a hl, which constitutes the blocking key, applied to
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<0011>

<0111>

h1=< 0, 50,100, 301 >

h2=< 0, 51, 100,301 >

10...0 ...1...1...BV=

0111
...
...

0011
...
...

A1
T1

T2

A1

Figure 2: Hashing a record-level bigram vector BV, with
Id=‘A1’, by h1 and h2. For illustration purposes, we set
K = 4 and L = 2.

a q-gram vector specifies into which bucket, termed also as
block, this q-gram vector will be stored2. Figure 2 illustrates
how a record-level bigram vector is hashed.

During the matching step, we scan the buckets of each Tl

and formulate pairs of q-gram vectors, which belong to dif-
ferent data sets. By using this redundant blocking scheme,
we amplify the probability of identifying similar q-gram vec-
tors, but we also increase both the utilized space and the
running time in order to store the generated Tl’s. We there-
fore determine the optimal number of the Tl’s that should
be utilized by setting [1]:

L = d ln(δ)

ln(1− pK)
e. (2)

Each similar q-gram vector pair will be returned with high
probability 1 − δ, as δ is usually set to a small value, say
δ = 0.1. The value for K can be set empirically since the
correctness of the scheme is guaranteed by setting L appro-
priately. In [16], a method for choosing the optimal value for
K is presented, where the authors by sampling record pairs
and by experimenting with several values for K, choose the
value that minimizes the estimated running time. The value
of K can be set empirically since the completeness, with
respect to the identification of the matching pairs, of the
mechanism is guaranteed by Equation (2), by deriving the
optimal value for L. The value of K should be sufficiently
large because otherwise the blocking keys will not reflect the
variations of the bit sequences of the q-gram vectors. The
direct side-effect of this deficiency will be the generation of
a small number of buckets in each Tl, which will be over-
populated by mostly dissimilar pairs.

Not surprisingly though, q-gram vectors render inefficient
and cumbersome the HB mainly due to their sparsity as
will be explained in Section 5.2. In that section, towards
mitigating this sparsity and reducing their size, we propose
an alternative embedding scheme of the string values into H
in order to leverage the efficiency of HB.

5. AN EFFICIENT EMBEDDING METHOD
In this section, we instantiate our method, termed as cBV-

HB, which relies on embedding string values by using their
respective q-grams into a compact Hamming space. The
reason for choosing this space is twofold. Firstly, we argue
that by corresponding types of errors in E to distances in
H, one can easily specify the distance threshold(s) required
by HB. Secondly, the HB mechanism is a fast and accu-
rate method as experimentally demonstrated in [17], and it

2More precisely, we store only the corresponding Id ’s.

1...1...

JO ON ES

...1...1...BV1 =

s1=’JONES’, Us1={248, 377, 342, 122}
NE

JO ON AS

s2=’JONAS’, Us2={248, 377, 338, 18}

NA

1...1... ...1...1...BV2 =

JO ON NS

1...1... ...1...BV2 =

s2=’JONS’, Us2={248, 377, 356}

(a) substitute operation

(b) delete (insert) operation

122-nd 248-th 342-nd 377-th

18-th 248-th 338-th 377-th

248-th 356-th 377-th

Figure 3: The indexes in bold indicate the differing bigrams
between s1 and s2, which result in distances being equal to 4
and 3 in H for the substitute and delete (insert) operations,
respectively (m = 676).

works in Hamming spaces. We next (a) illustrate the cor-
respondence between distances in H and types of errors in
E by using the q-gram vectors, (b) propose an embedding
method which can be used by HB for efficient identification
of similar record pairs, and (c) present an attribute-level
LSH-based blocking technique which brings the importance
of the classification rule into the blocking step.

5.1 Corresponding Types of Errors in E to Dis-
tances in H

An error between a pair of string values is formally quan-
tified by edit distance. In the literature, several variants of
edit distance exist using different perturbation operations, as
the errors are termed in the edit distance context3. We con-
sider the basic perturbation operations (substitute, insert,
and delete) defined for the Levenhstein distance [20] and cor-
respond these basic operations to distances inH by using the
q-gram vectors. We present an illustrative running exam-
ple where the initial error-free string value is s1=‘JONES ’,
unless otherwise stated and we set q = 2 (bigrams). The
perturbed values are stored in variable s2. In this example,
we use two bigram vectors, denoted by BV1 and BV2 for
representing s1 and s2, respectively.

Substitute perturbation operation: This type of per-
turbation operation changes a single character in s1 and ma-
terializes the main reason for errors and misspellings com-
monly found in string values. Assume the value s2=‘JONAS’,

3We use the terms perturbation operation and error inter-
changeably. Usually, a perturbation operation occurs inten-
tionally and an error unintentionally.
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the distance uH between BV1 and BV2 is 4, as shown in
Figure 3, due to the 4 differing bigrams, which are ‘NE’
and ‘ES’ in s1 and ‘NA’ and ‘AS’ in s2

4. Distance may
be smaller in case a differing bigram overlaps with a com-
mon bigram. For instance, by perturbing s1 = ‘SHANNEN’
as s2 = ‘SHENNEN’, we produce two differing bigrams in
s1, which are ‘HA’ and ‘AN’, and two more in s2 namely
‘HE’ and ‘EN’. The latter though overlaps with a common
bigram found in both s1 and s2. Therefore, only bigrams
‘HA’, ‘AN’, and ‘HE’ affect uH which in this case is 3.
We conclude that for this type of perturbation operation
uH ≤ 4× uE .

Delete and insert perturbation operations: Another
common error that emerges when typing string values is the
omission of a character. This causes the generation of a
smaller number of bigrams for s2. As an illustration, by
setting s2 = ‘JONS’, we get two differing bigrams in s1,
which are ‘NE’ and ‘ES’ and only 1 in s2, which is ‘NS’
(see Figure 3). Hence, for the delete operation, it holds that
uH ≤ 3 × uE . Likewise, the insert is quite similar to the
delete operation (s2 = ‘JONEAS’) since it is essentially as
a delete operation in s1.

The above-mentioned observations, which hold for any q-
gram vector pair with q ≥ 2, lead to the definition of an
upper bound for a distance uE which corresponds to a uH
scaled by a constant factor α:

uH ≤ α× uE . (3)

The factor α depends on the type of the applied pertur-
bation operation, as explained before, and determines the
deviation between distances from E to H, commonly termed
as distortion [13].

In the Jaccard space J , which consists of the sets Us where
s stands for each possible string value, by using the Jac-
card metric [2] the distance between s1 = ‘JONES’ and
s2 = ‘JONAS’ is uJ = 1 − |Us1 ∩ Us2 |/|Us1 ∪ Us2 | '
0.667. Comparing though s1 = ‘WASHINGTON’ with s2 =
‘WASHANGTON’, the distance is affected by the length of
the strings resulting in uJ ' 0.364. In contrast, the Ham-
ming distance is constantly uH = 4 in both cases. Hence
using the Jaccard metric, one should take into account the
length of strings in order to set the threshold appropriately.
This task is not easy or sometimes is not feasible at all.

5.2 Embedding Strings into a Compact
Space

In this subsection, we propose an embedding method,
which preserves the distances from E , into a compact space
that consists of small-sized embeddings. These embeddings
can be particularly useful in highly demanding distributed
environments, which deal with large volumes of records, for
efficient communication. Our method adapts the size of the
q-gram vectors to the expected number of characters that
a record holds as needed. For example, the average num-
ber of bigrams for the LastName attribute of the NCVR
database [4], which is a large publicly available data set
that we will use in our experiments in Section 6, is only
5.0 bigrams. Therefore, the generated attribute-level bigram
vectors would be quite sparse due to the few bigrams pro-
duced by each string value. This sparsity though has neg-
ative effects during the application of the HB. The hl’s by

4We pad the first and the last character, e.g., ‘ JONES ’ in
order to include all the characters in 2 bigrams.

1...10

JO OH HN
g(195)

g(248)
g(371)

...1...cBV =

indexes of the positions 

s=’JOHN’, Us={248, 371, 195} 

0-th 1-st ... 10-th ... 35-th ...

Figure 4: Representing the string ‘JOHN’ as a c-vector de-
noted by cBV .

sampling randomly bit positions from such q-gram vectors
mostly choose 0’s, which has as a side-effect the formula-
tion of a small number of overpopulated buckets. Thus, the
HB boils down to an inefficient all-pairs comparison process.
Moreover, by assuming nf attributes, the size of a record-
level q-gram vector would be quite large, namely O(nf ×m)
bits. On account of these drawbacks, we embed the string

values of each attribute into a new space Ĥ which also uses
the Hamming metric. This space consists of compact q-gram
vectors, termed as c-vectors, which are of size m(fi) � |S|q,
that will be exactly specified later, for each attribute fi.
We introduce the dependency of the size of c-vectors on the
average number b(fi) of q-grams of the values of the cor-
responding attribute fi. This dependency will allow us to
be as efficient as possible by adjusting the sizes accordingly
and simultaneously preserving the distances from H. To-
wards this end, we hash the indexes in Us of a string value s
by randomly chosen, pairwise independent hash functions of
the form g(x) = [(ax+b) mod P ] mod m, where x ∈ Us, P
is a large prime number (e.g., 231−1) and a, b are randomly
chosen integers from (0, P ).

Figure 4 shows the creation of a c-vector by hashing the
bigrams of a string. However, during the hash operations
of the elements of Us, a number of collisions may occur if
two elements of Us hash to the same index in the c-vector.
This happens because the number of all possible q-grams is
much larger than m(fi). A collision is formally defined as
g(x) = g(y) for any x, y ∈ Us with x 6= y and the probabil-
ity Pr[g(x) = g(y)] is 1

m(fi)
. By considering the guarantees

quoted in the previous section, the collisions, in which dif-
fering q-grams of a pair of c-vectors participate, affect the

distances in Ĥ. These collisions result in misleadingly clas-
sifying non-matching as matching pairs.

As an illustration, let us assume the c-vectors with q = 2,
generated by the values s1 = ‘JONES’ and s2 = ‘JONAS’ of

an attribute fi. We expect the distance to be u
(fi)
H = u

(fi)

Ĥ
=

4 due to the differing bigrams generated by the suffices ‘NES’
and ‘NAS’. However, if during the hash operations of s2, the
results corresponding to the bigrams ‘NA’ and ‘AS’ collide,

then the u
(fi)

Ĥ
will be 1 bit less than the u

(fi)
H . Therefore, the

value for m(fi) should be adequately specified so that both
the HB can be efficiently applied and the distances should
be preserved.

The phenomenon of collisions is described in the Birthday
Paradox Problem [23] on which the following lemma relies.
In the calculations below, we drop superscript (fi) for better
readability.
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Lemma 1. The expected number of collisions E[c] by hash-
ing b q-grams for attribute fi to a c-vector with size m is:

E[c] = b− E[v], (4)

where E[v] denotes the expected number of positions which
both hold 1 and no collisions have occurred.

Proof. The indexes of positions of a c-vector, represent-
ing a string s of an attribute fi, are uniformly chosen by
g(·), therefore the probability of choosing any position for
each x ∈ Us is 1

m
. Let the indicator variable Ij denote for

the position with index j, where j ∈ {0, . . . ,m−1}, the con-
tent in that position. The probability that a certain position
with index j is not chosen (Ij = 0) after hashing b q-grams
is:

Pr[Ij = 0] = (1− 1

m
)b. (5)

Thus, the probability that the position with index j is finally
chosen is Pr[Ij = 1] = 1− Pr[Ij = 0]. The expected number
v of positions holding 1 is:

E[v] =

m−1∑
j=0

E[Ij ] = mE[Ij ] = m(1− (1− 1

m
)b). (6)

Then, by subtracting E[v] from b, we arrive at the desired
result.

Let us denote by ρ the maximum number of collisions we
can tolerate during the generation of the c-vectors. Then,
using ρ and the above lemma, we state the following theo-
rem:

Theorem 1. By expecting b q-grams in the corresponding
strings, the optimal size of the c-vectors for some attribute
fi is:

mopt = d b− ρ
1− e−r

e, (7)

where E[c] ≤ ρ with confidence 1− r.

Proof. We first specify the value of ρ and expand Equa-
tion (4) by using Equation (6) as follows:

E[c] = b−m(1− (1− 1

m
)b) ≤ ρ⇒

m(1− (1− 1

m
)b) ≥ b− ρ.

(8)

By using the fact that −(1 − 1
m

)b ≥ −e
−b
m , we derive an

upper bound for the left hand side of the second inequality in
(8) which is written as:

m(1− e−
b
m ) ≥ b− ρ. (9)

We then substitute b
m

with a constant r, where r < 1 since
it always holds that b < m. This constant denotes the ratio
between the number of q-grams to the size m. Intuitively,
smaller values for r increase our confidence, quantified as
1−r, that collisions will not occur at the cost of a larger size
m. Finally, we solve for m in (9), and derive the optimal
size, as illustrated in Equation (7), where we keep only the
equal sign, since we want to be as optimal as possible.

In Section 6, we show experimentally that by setting r <
1/3, we just increase mopt without earning a lot in terms of
accuracy.

Algorithm 2 Matching the c-vector pairs formulated in the
buckets of the Tl’s.

Input: cBVB ∈ B
1: C ← new UniqueCollection()
2: // C is a collection of unique Id ’s.
3: for l = 1, . . . , L do
4: Id list← Tl.get(hl(cBVB))
5: // Object Id list is a linked list of Id ’s.
6: for i = 1, . . . , Id list .size() do
7: Id← Id list[i]
8: if (not C.contains(Id)) then
9: cBVA ← retrieve(Id)

10: rule(cBVA, cBVB)
11: // A classification rule applied for each c-vector pair.
12: C.add(Id)
13: end if
14: end for
15: end for

Table 2: Primitive operations used by Algorithm 2.

get(x ) Return the linked list, to which the specified
key x is mapped.

size() Return the size of a linked list.

contains(x ) Return true if the unique collection contains
element x.

retrieve(x ) Retrieve a c-vector with Id = x from the data
store.

add(x ) Add value x to a unique collection.

For example, by assuming b(f1) = 5.1 and b(f3) = 20.0
from Table 3, by setting in (7) ρ = 1 and r = 1/3, we derive

values m
(f1)
opt = 15 and m

(f3)
opt = 68, respectively. We use the

ceiling function d·e to m
(fi)
opt because the size of a c-vector

should be an integer.
For each attribute, Charlie transforms the strings he re-

ceives from Alice and Bob into c-vectors using the optimal

size m
(fi)
opt by sampling randomly and uniformly strings from

the data sets and computing b(fi). By concatenating the
attribute-level c-vectors, Charlie then builds the record-level
structures, whose size mopt is compact and adapted to the
needs of each attribute.

5.3 Outline of the Blocking/Matching Step
Let us denote by cBVA and cBVB the record-level c-

vectors which belong to data sets A and B, respectively.
We first hash each cBVA and store its Id in the buckets
of the Tl’s. Then, we hash each cBVB to the Tl’s in or-
der to formulate c-vector pairs for performing the distance
computations. Due to the redundant blocking model that
we follow, certain pairs of c-vectors might be formulated in
several Tl’s. On account of this redundancy, we incorporate
a de-duplicating mechanism in HB in order to prevent the
repetitive distance computations of duplicate pairs as can
be seen in Algorithm 2. For each bucket that cBVB maps
to, we retrieve the Id’s already stored therein (line 4), and
query them against a collection of unique elements5 (line
8). If an Id is not found in that collection, then the cor-
responding distance computation is performed otherwise it
is dropped. Table 2 quotes a description of each primitive
operation used by Algorithm 2. We have to note that our
method is capable of handling an arbitrary number of data

5This collection is instantiated by a HashSet object in Java
programming language.
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sets (two or more) belonging to different data custodians.

5.4 Attribute-level LSH-based Blocking
Mechanism HB assumes record-level c-vectors where by

sampling randomly and uniformly their bits builds the Tl’s.
During the matching step, a decision model is applied in
order to classify the formulated record pairs as matching
or as non-matching. In its simplest form, a decision model
might be a classification rule, which applies a logical con-
dition to the values of each attribute by comparing them
to an attribute-level threshold. Therefore, there is no guar-
antee that c-vector pairs are formulated according to the
classification rule during the blocking step. For instance, by
using the attributes in Table 3, a classification rule might
be (uf1 ≤ 4) ∧ (uf2 ≤ 8)6. This rule is more strict to errors
in the values of the first attribute while being more tolerant
to errors in the values of the second attribute. HB though
is unaware of that rule, and uses the underlying values of
attributes on an equal basis. In this subsection, we propose
a method for adjusting the HB mechanism to the classifica-
tion rule. This adjustment has as a result the formulation
of c-vector pairs which are much closer in terms of distance
to the logic of the classification rule.

To begin with, the hash functions during the blocking step
should use each attribute separately rather than sampling
bits uniformly from the record-level c-vectors. To this end,
we choose a value for each attribute-level K(fi), in the same
sense as we have described in Section 4.2. A K(fi) specifies

the number of base hash functions for each h
(fi)
l which work

on the attribute-level c-vectors corresponding to attribute
fi. By assuming (a) nc attributes, where nc ≤ nf , that
participate in each rule, (b) independence among the string
values of each attribute, and (c) the attribute-level success

probability of a base hash function is p(fi) = 1 − ϑ(fi)

m
(fi)
opt

, we

state the following definitions for any pair of record-level
c-vectors that exhibit distances u(fi) ≤ ϑ(fi) as follow:

Definition 4 (AND operator). By using the AND
operator (∧) on certain attributes in the classification rule,
the probability of a record-level c-vector pair to collide into
the same bucket of a Tl is:

p∧ ≥
nc∏
i=1

(p(fi))K
(fi)

. (10)

Using the AND operator, the structure of the blocking
groups used, described in Section 4.2, is maintained. The
blocking keys for each fi are concatenated resulting in a
compound blocking key that is finally inserted into some Tl.

Definition 5 (OR operator). By using the OR op-
erator (∨) on certain attributes in the classification rule, the
probability of a record-level c-vector pair to collide into the

same bucket of any T
(fi)
l is:

p∨ ≥ (p(f1))K
(f1)

+ (p(f2))K
(f2)

− (p(f1))K
(f1)

× (p(f2))K
(f2)

.
(11)

Without loss of generality, in Equation (11), we show only
the case where nc = 2 attributes. For a larger number nc

of attributes, the inclusion-exclusion principle [22] should be
used.
6We drop the space subscript from distances and thresholds,

since from now on we focus on Ĥ.
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Figure 5: Applying attribute-level hashing to a c-vector cBV
which consists of 2 attribute-level c-vectors. For illustration
purposes, we set K = 4 (K(fi) = 2) and L = 2.

When using the OR operator, the structure of the blocking
groups changes considerably. For each attribute fi, which is
part of the OR rule, for each blocking group, we build an

independent hash table, denoted by T
(fi)
l , that stores the

blocking keys of this specific attribute. Therefore, given nc

attributes in the OR rule, we end up with L×nc hash tables.
Intuitively, one would classify a c-vector pair as a matching

one, if this pair is formulated in at least one T
(fi)
l , regardless

of the remaining outcomes.

Definition 6 (NOT operator). By using the NOT
operator (¬) on a certain attribute, the probability of any
pair of record-level c-vectors not to collide into the same

bucket of a T
(fi)
l is:

p¬ ≥ 1− (p(fi))K
(fi)

. (12)

The NOT operator assumes one attribute fi and thus one
hash table for each blocking group. One would assume the
true value as outcome, if a certain pair has not been formu-

lated in the corresponding T
(fi)
l ’s.

These revised probability bounds adjust the number L
of the blocking groups7 used by substituting pK in Equa-
tion (2). The new value of L is larger using an AND rule,
and smaller using an OR rule than the standard record-
level LSH-based blocking approach. Using these operators,
we build the basic classification rules which are depicted in
Figure 5. The blocking group of the NOT operator does not
include any modifications because we just change what we
consider as a true outcome.

In addition, by using these basic rules and their corre-
sponding blocking groups, we may compose compound clas-
sification rules which consist of several subrules. Such com-
pound rules might be:

• C1 = [(u(f1) ≤ ϑ(f1)) ∧ (u(f2) ≤ ϑ(f2))] ∨ [(u(f3) ≤
ϑ(f3)) ∧ (u(f4) ≤ ϑ(f4))] where two separate blocking
structures for the AND subrules should be built. The
first blocking structure comprises the blocking groups
of attributes f1, and f2, while the second one con-
tains the attributes f3, and f4. During the blocking
mechanism, the blocking keys will be built from the

7The value of L may vary among the blocking structures
used.
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corresponding attribute-level c-vectors and will be in-
serted into the corresponding Tl’s. Since an OR oper-
ator joins the two subrules, a pair will be returned if it
will be formulated in the blocking structure of either
subrule. Thus, during the matching phase, for each c-
vector from data set B, we formulate all possible pairs
in all the corresponding buckets. Then, a pair is con-
sidered as a matching one, if it is formulated in either
blocking structure.

• C2 = [(u(f1) ≤ ϑ(f1)) ∨ [(u(f2) ≤ ϑ(f2))] ∧ [(u(f3) ≤
ϑ(f3)) ∨ (u(f4) ≤ ϑ(f4))] where four separate blocking
structures for the OR operators should be built. The
main difference between C1 and C2 is that using C2, a
pair should be formulated in both blocking structures
of the subrules in order to be considered as a matching
pair.

• C3 = (u(f1) ≤ ϑ(f1)) ∧ [¬(u(f2) ≤ ϑ(f2))]. Using C3, a
pair is returned if it is formulated in the blocking struc-
ture for f1, but not found in the blocking structure for
f2.

The space needed for building the blocking groups of a
rule using an AND operator is O(L), while using an OR
operator is O(nc × L).

6. EVALUATION
In this section, we describe the experimental settings, the

baseline methods, the data sets used, as well as the achieved
results. We conducted experiments using two publicly avail-
able real-world databases which are (a) the NCVR database
[4] and (b) the DBLP bibliography database8. By using
both these data sets, which exhibit different properties such
as the average lengths of string values, we obtain several in-
sights through the experimental results. The attributes used
are listed in Table 3.

We developed a software prototype which by using as in-
put the above-mentioned databases, extracts records and
creates two data sets, denoted by A and B, respectively,
where one can specify the perturbation frequency, number
of perturbation operations, and number of perturbed records
inB for each chosen record inA. We apply (a) a light pertur-
bation scheme, termed as PL, where we perturb the values
of one randomly chosen attribute, and (b) a heavy scheme,
termed as PH, where we apply one perturbation to the values
of the first two attributes and two perturbations to the val-
ues of the third attribute. We notate the thresholds for each
perturbation scheme as ϑ

(fi)
PL and ϑ

(fi)
PH regardless of the used

space. The number of records in A (and B) is 1, 000, 000,
while the probability of choosing a record from A in order to
apply a perturbation scheme and then place it in B, is set to
0.5. The experiments were executed on a dual-core Pentium
PC with 32 GB of main memory. The software components
are developed using the Java programming language (JDK
1.7) and are available from the authors.

Quality measures. The Pairs Completeness (PC ), Pairs
Quality (PQ), and Reduction Ratio (RR) measures [3] are
employed to evaluate the quality of both our method and
the baseline methods which are discussed in detail below.
The set of truly matching record pairs is denoted by M

8http://dblp.uni-trier.de/xml/

Table 3: Attribute-level parameters used for each type of
data set by using bigrams.

attribute b(fi) m
(fi)
opt K(fi)

NCVR f1=FirstName 5.1 15 5
f2=LastName 5.0 15 5
f3=Address 20.0 68 10
f4=Town 7.2 22

mopt = 120

DBLP f1=FirstName 4.8 14 5
f2=LastName 6.2 19 5
f3=Title 64.8 226 12
f4=Year 3.0 8

mopt = 267

and the set of identified matching pairs by M. The accu-
racy in finding the matching record pairs is indicated by
the PC measure, which is equal to PC = |M ∩ M |/|M |.
The PQ measure shows the efficiency in generating mostly
matching pairs with respect to candidate pairs, namely
PQ = |M ∩ M |/|CR|, where CR is the set of candidate
pairs. The RR metric indicates the percentage in the re-
duction of the comparison space A × B, which is equal to
RR = 1.0−|CR|/|A×B|. We ran each experiment 50 times
and plotted the average values of these measures in the fig-
ures shown below.

6.1 Baseline Methods
We compare our approach cBV-HB with three state-of-

the-art embedding approaches for record linkage. The first is
the h-CC algorithm of HARRA [18], where two de-duplicated
data sets are linked. In this approach, all attribute values of
a record are represented by a single bigram vector. However,
setting the same position of a bigram vector by identical bi-
grams, which belong to different attributes, may lead to am-
biguous evaluation of distances and consequently to reduced
accuracy. HARRA employs the Min-Hash LSH-based block-
ing/matching mechanism which uses the Jaccard metric, as
described in Section 5.1, for performing the distance com-
putations. Since HARRA selects arbitrary values for K and
L, by experimenting for better results, we set L = 30 and
L = 90 (K = 5) for each perturbation scheme, respectively.
We performed several distance computations using the vec-
tor space that HARRA works, where one cannot focus on
separate attributes, using perturbed string values and ended
up choosing ϑPL = 0.35 and ϑPH = 0.459 as a nice balance
between accuracy and efficiency. During the blocking phase,
we hash those vectors by applying random permutations of
their indexes and we choose the index of the minimum non-
zero element of these permutations as the result of each base
hash function. However, we mostly end up with an index
holding 0, which implies that more elements of each permu-
tation should be used until we find an index that is set to 1.
As a result, similar records are inserted into different buck-
ets. The blocking and matching mechanisms are conducted
iteratively and separately for each Tl. When two records are
classified as a matching pair, they are subsequently excluded
from the remaining iterations.

9All thresholds are set after experimenting exhaustively us-
ing the initial and corresponding perturbed values.
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Another method we compare our approach with is BfH
presented in [17], which uses the HB, as described in Sec-
tion 4.2, on Bloom filters. A Bloom filter is a data structure
used to represent the elements of a set in order to support
membership queries efficiently in terms of time and space
required. It has been shown in [27] that by embedding
string values into Bloom filters, distances from the origi-
nal space are preserved. More specifically, a Bloom filter is
a bitmap array initialized with zeros and created by hashing
the bigrams of a string value by using independent compos-
ite cryptographic hash functions such as MD5 and SHA1
[26]. Field-level Bloom filters are created using a size of 500
bits by using 15 cryptographic hash functions for each bi-
gram, as proposed in [27]. We set K = 30 and δ = 0.1 while

thresholds are set as ϑ
(fi)
PL = 45 (L = 4), ϑ

(f1)
PH = ϑ

(f2)
PH = 45,

and ϑ
(f3)
PH = 90 (L = 43). We have to note that these

attribute-level thresholds are used only during the matching
step. A key observation for the Bloom filter space, which
is a high-dimensional binary Hamming space, is that dis-
tances are affected by the number of bigrams. For exam-
ple, using the field-level Bloom filters, described before, the
Hamming distance between ‘JOHN’ and ‘JAHN’ is 54. In
contrast, the Hamming distance between ‘SCALABILITY’
and ‘SCELABILITY’ is equal to 37. This variation in dis-
tance, although in both cases there exists a single error in
the initial string values, causes difficulties in specifying ef-
fectively the distance threshold.

Finally, we compare cBV-HB with the StringMap al-
gorithm [14] which is used to embed string values into a
Euclidean space. Initially for each attribute, StringMap it-
erates the strings of both data sets in order to form d or-
thogonal directions (axes). Each such direction is specified
by two strings, termed as pivots, whose distances are as far
from each other as possible. Yet, the process of specifying
the pivot values is quite expensive since it includes several
iterations of the data sets. Then, for each string, we com-
pute its coordinates on these d axes, which results in a vector
of values of dimensionality d. As the authors suggest [14],
dimensionality d is set to 20 for each attribute and thresh-

olds ϑ
(fi)
PL = 4.5, ϑ

(f1)
PH = ϑ

(f2)
PH = 4.5, and ϑ

(f3)
PH = 7.7, for

each scheme respectively. We utilize the Euclidean LSH-
based blocking/matching mechanism [17], specifically devel-
oped for finding similar points in Euclidean spaces. As in
BfH, the above-mentioned thresholds are used only during
the matching step. The value ofK is set to 5 which generates
L = 29 and L = 194 blocking groups [7] for each perturba-
tion scheme, respectively. We call this method SM-EB due
to the combination of StringMap and the blocking/matching
mechanism used.

6.2 Experimental Results
Accuracy. In the first series of experiments, for the rules:

• C1 = (u(f1) ≤ ϑ(f1)) ∧ (u(f2) ≤ ϑf2) ∧ (u(f3) ≤ ϑ(f3)),

• C2 = [(u(f1) ≤ ϑ(f1))∧(u(f2) ≤ ϑ(f2))]∨(u(f3) ≤ ϑ(f3)),
and

• C3 = (u(f1) ≤ ϑ(f1)) ∧ [¬(u(f2) ≤ ϑ(f2))],

we measured the PC and PQ rates of our attribute-level
blocking and compare them with the rates of the standard
LSH-based approach, which, as described in Section 4.2,
during the blocking phase samples bits uniformly from the

rules
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Figure 6: Attribute-level Pairs Completeness and Pairs
Quality evaluation using the NCVR-based data sets.
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Figure 7: Evaluation of accuracy by setting several values
to confidence r, from Equation (7), and measuring the PC
rates using the NCVR-based data sets (K = 35).

whole record-level c-vector. Clearly, Figure 6(a) shows that
by using this rule-aware blocking phase, the PC rates are
constantly higher than those using the standard LSH-based
blocking approach. Nevertheless, the largest difference lies
in C3 where the standard approach is unable to articulate
the NOT operator, comparing and discarding rather late
any such non-matching pairs. Conversely, those pairs, in
the rule-aware blocking phase, are not formulated at all and
are never brought for comparison. The PQ rates, illustrated
in Figure 6(b), for C1 are lower than the standard approach
due to the larger number of blocking groups required. For
C2, the utilization of two hash tables in a blocking group, be-
cause of the OR operator, drops initially the PQ rates which
balance later, during the matching phase, due to the better
quality of the formulated pairs. We then experimented by
setting several values to confidence r, for less collisions from
Equation (7), and measured the corresponding PC rates.
Since we want to be as optimal as possible, the choice of
r = 1/3 exhibits both high PC rates and the sizes of the
c-vectors are kept to a desired level. As can be seen in Fig-
ure 7, we do not gain a lot in terms of accuracy by setting
r < 1/3.

Running time. By choosing several values for K we
measure the elapsed running time. Specifically, for both per-
turbation schemes we vary K between 20 and 40, which re-
sults in generating different values for L10 (blocking groups).
Figure 8(a) clearly illustrates that there is a near-optimal
value of K, which is 30 for both perturbation schemes, that
minimizes the running time. This is quite reasonable be-
cause by increasing K we adjust the selectivity of our block-

10As shown in Section 4.2, L depends on K, δ, ϑĤ, and mopt .
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Figure 8: Running time evaluation using the NCVR-based
data sets.

ing mechanism, i.e., buckets are populated with Id ’s corre-
sponding mostly to similar c-vectors. The consequence of
higher selectivity is a decrease in running time due to the
smaller number of the formulated c-vector pairs. Neverthe-
less, there is a value for K (K = 35) where the time needed
for building the blocking groups dominates the total running
time which starts to increase.

Comparison with the baseline methods. For the
next set of experiments, we first measured the average num-
ber b(fi) of bigrams of string values for each attribute listed
in Table 3. We underline the difference in the values of b(fi)

between the two sources of data sets and evaluate its impact
on the experimental results which follow below. For scheme
PL, since there is a single perturbation operation, we set

K = 30, δ = 0.1, and ϑ
(fi)
PL = 4, which generate L = 6,

and L = 3 blocking groups, without applying attribute-level
blocking, for each source of data sets used. For scheme PH,
we apply attribute-level blocking by using the rule C1, as
defined previously, and the parameters in Table 3. We set

the thresholds as ϑ
(f1)
PH = ϑ

(f2)
PH = 4, and ϑ

(f3)
PH = 8, which

yield L = 178 and L = 62 blocking groups, respectively.
In Figure 8(b), we evaluate the time needed in order to

embed the data sets into the space required by each method.
The bigram vectors used by HARRA require the least amount
of time because a single vector is used for the bigrams gen-
erated of the whole record with the side-effects in accuracy,
which will be discussed below. The vectors utilized by SM-
EB exhibit a large amount of time due to the distance com-
putations performed for specifying the pivots.

Figures 9(a) and 9(b) show that the PC rates of our
method are constantly above 95% by using both sources of
data sets. These figures also indicate that cBV-HB is the
only method which exhibits stable PC rates regardless of
the source of data sets used. Furthermore, by applying PH
in the presence of a certain classification rule our method
adjusts to it during the blocking step by generating the re-
quired number of blocking groups separately for each at-
tribute as the rule defines. However, this attribute-level ad-
justment requires a larger number of blocking groups, which
results in reduced PQ rates due to the larger number of the
formulated pairs (Figures 10(a) and 10(b)).

The PC rates of SM-EB are rather low, as Figure 9(a)
suggests, especially when using PH. This happens due to the
insufficient distance-preserving property of the used embed-
ding method. This insufficiency has also another drawback,
which is the population of blocks with truly non-matching
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Figure 9: Pairs Completeness (accuracy) evaluation.
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Figure 10: Pairs Quality evaluation.

pairs. These pairs, although being similar in the Euclidean
space, exhibit large distances in the original space, which
results in low PQ rates, as can be clearly seen in Figures
10(a) and 10(b).

In HARRA, the early removal of records in each itera-
tion may lead to missed matching pairs as well, since those
records do not participate in the subsequent iterations. Ini-
tially, the PC rates of HARRA were below 0.77. We had to
increase considerably the number of blocking groups11 in or-
der to achieve better rates, which were approximately equal
to 0.82 as shown in Figure 9(a). However, the side-effect of
increasing the number of blocking groups was the low PQ
rates as illustrated in Figures 10(a) and 10(b). Especially
by using the DBLP-based data sets, the larger number of
bigrams combined with the utilization of a single bigram
vector for all attributes in a record increased considerably
the probability of comparing bigram vectors with identical
bigrams belonging to different attributes. This disambigua-
tion, as expected, deteriorated the PC rates which fell below
0.75 (Figure 9(b)).

The Bloom filters, which are used by BfH, seem to pre-
serve the initial distances from the original space, as con-
firmed by the high PC rates. However, the accuracy guar-
antees, provided by the HB, refer to the Bloom filter space
and there is no study in the literature that corresponds dis-
tances from that space to distances in E with a specified
distortion. The authors in [17] provide only some empiri-
cal observations with respect to this correspondence without
any rigorous justifications. The dependency of distances, in
the Bloom filter space, on the length of the initial string

11We actually doubled the number of blocking groups in or-
der to give more chances to similar records to be grouped
together.
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Figure 11: Evaluating Pairs Completeness by focusing on
each type of perturbation operation by using the NCVR-
based data sets.
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Figure 12: Evaluating the efficiency of each method by using
the NCVR-based data sets.

values, as demonstrated previously, explains the increased
accuracy by using the DBLP-based data sets (Figure 9(b)).

On the contrary, distances in Ĥ depend only on the type of
error and by no means on the length of the initial string val-
ues. The PQ rates of BfH are slightly higher than cBV-HB
mainly due to the larger number of the cryptographic hash
functions used for creating the Bloom filters, which results
in a larger number of positions set to 1. These bit patterns
hashed by the hl’s produce a larger number of buckets in
each Tl, which host a smaller number of pairs than cBV-
HB.

Another factor that does not affect the PC rates of our
method is the type of the applied perturbation operation as
demonstrated in Figures 11(a) and 11(b) by applying PL
and PH, respectively. Our method attains excellent perfor-
mance and the PC rate barely falls below 0.95 only when
applying the substitute operations. In general, we observe
that all methods exhibit a lower PC rate for pairs which
have been perturbed by the substitute operation, which in-
dicates a higher distortion in all spaces. For PH, only BfH
exhibits comparable performance, as can be seen in Figure
11(b). However, the two operations performed in the val-
ues of the Address attribute resulted in missing some pairs
especially when both were substitute operations.

Figure 12(a) illustrates together the RR and the PC rates
so that one can easily evaluate the efficiency of each method.
RR is high for all the compared methods except for SM-

EB where the formulated blocks are overwhelmed by non-
matching pairs. The reduction of the comparison space
though keeps up with high accuracy only for cBV-HB and
BfH, where our method performs better than BfH in terms
of accuracy by at least 5%. Overall, this provides additional
validation of the robustness and practicality of our method.
These high RR rates affect the running time positively which
is below 5 minutes for PL for both methods, as depicted in
Figure 12(b). By applying PH though, the running time
increases due to the larger number of blocking groups gen-
erated for this perturbation scheme. In HARRA, the early
pruning of records in each iteration reduces the running time
but the results are far from accurate. As expected, SM-EB
exhibits the highest running time by a large margin among
all the compared methods due to the large number of the
formulated vector pairs.

7. CONCLUSIONS AND FUTURE EXTEN-
SIONS

In this paper we have proposed a method to embed strings
into a compact binary Hamming space in order to apply HB
which is an efficient blocking/matching mechanism. The
embeddings are of small size, e.g., a record of four strings is
represented by 120 bits, and simultaneously the initial dis-
tances are preserved as the supporting set of experiments
confirmed. Furthermore, we have adapted the LSH-based
blocking mechanism to the used classification rule for highly
accurate results. We have considered and provided formal
guarantees for rules using the AND, OR, and NOT oper-
ators. In addition, we have also demonstrated the use of
compound classification rules, which include several sub-
rules. For the future, we aim to investigate a distance-
preserving and lightweight embedding method for the Jaro-
Winkler metric, which was specifically developed for mea-
suring distances between attributes that denote personal in-
formation such as names, surnames, or addresses. We also
aim to extend the experimental part by comparing the ef-
fectiveness of our method with the baselines in identifying
records with missing or non-standardized values. The initial
results indicate that by applying PH, the gain in accuracy
compared to the baselines is larger. Another interesting re-
search avenue could be the adaptation of our method to the
privacy-preserving context by applying two-party techniques
[28]. The compact data structures used for representing the
records could be an ideal fit in the protocols introduced in
[17, 19] which are used for comparing those records in a
secure manner.
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