
Finding All Maximal Cliques in Very Large Social Networks

Alessio Conte1, Roberto De Virgilio2, Antonio Maccioni2,
Maurizio Patrignani2, Riccardo Torlone2

1Università di Pisa, Pisa, Italy
conte@di.unipi.it

2Università Roma Tre, Rome, Italy
{dvr, maccioni, patrigna, torlone}@dia.uniroma3.it

ABSTRACT
The detection of communities in social networks is a chal-
lenging task. A rigorous way to model communities consid-
ers maximal cliques, that is, maximal subgraphs in which
each pair of nodes is connected by an edge. State-of-the-art
strategies for finding maximal cliques in very large networks
decompose the network in blocks and then perform a dis-
tributed computation. These approaches exhibit a trade-off
between efficiency and completeness: decreasing the size of
the blocks has been shown to improve efficiency but some
cliques may remain undetected since high-degree nodes, also
called hubs, may not fit with all their neighborhood into a
small block. In this paper, we present a distributed approach
that, by suitably handling hub nodes, is able to detect maxi-
mal cliques in large networks meeting both completeness and
efficiency. The approach relies on a two-level decomposition
process. The first level aims at recursively identifying and
isolating tractable portions of the network. The second level
further decomposes the tractable portions into small blocks.
We demonstrate that this process is able to correctly de-
tect all maximal cliques, provided that the sparsity of the
network is bounded, as it is the case of real-world social net-
works. An extensive campaign of experiments confirms the
effectiveness, efficiency, and scalability of our solution and
shows that, if hub nodes were neglected, significant cliques
would be undetected.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscella-
neous; G.2.3 [Discrete Mathematics]: Applications—
Maximal clique enumeration

Keywords
Community detection, maximal clique enumeration, scale-
free networks

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0
EDBT ’16 March 15-18, 2016, Bordeaux, France.

1. INTRODUCTION
The detection of groups of densely connected nodes, usu-

ally called communities, is used to reveal fundamental prop-
erties of networks in a variety of domains such as sociology,
bibliography, and biology [13, 18, 29]. A rigorous way to
model communities considers maximal cliques, that is, max-
imal subgraphs in which any pair of nodes is connected by an
edge. Maximal clique enumeration (MCE) is a paradigmatic
problem in computer science and, due to its known com-
plexity, several solutions have been proposed to deal with
real-world scenarios [6, 14, 16, 33, 34].

When very large networks are involved, state-of-the-art
strategies consist of decomposing the network into blocks
that are independently processed in a distributed and par-
allel environment [8, 10, 14, 20, 31, 36, 38]. A crucial aspect
of this approach is the choice of the size m of the blocks.
Clearly, m is bounded by the dimension of the memory, but
it has been shown that artificially reducing m to values as
low as 1/100 or 1/1000 of the available memory results in
a more efficient computation [8, 9, 10]. On the other hand,
if the size of the blocks is too small, the effectiveness of the
approach is compromised. In fact, consider a node n such
that the graph induced by its neighborhood does not fit into
a block. We call such a node hub. In any block of the de-
composition a portion of the neighborhood of n will be nec-
essarily omitted and, consequently, some maximal cliques
involving n may remain undetected and some non-maximal
cliques could be erroneously found.

Hence, while fixing the size of the blocks, state-of-the-
art decomposition approaches also need to find a trade-off
between efficiency and effectiveness. Even if efficiency is not
an issue, effectiveness can be jeopardized since real-world
social networks often contain nodes whose degree (i.e., the
number of incident edges) is so high that their neighborhood
does not fit into main memory altogether.

Actually, high degree nodes are connatural in scale-free
networks, where the degree distribution of the nodes follows
a power law. This property implies that the number of nodes
with h connections to other nodes decreases exponentially as
h increases and that the set of nodes with arbitrary high de-
gree is not empty [2]. Several works in literature show that
social networks, such as Facebook and Twitter, are scale-
free [12, 35]. It has also been shown that scale-freeness is
exhibited whenever the network has a growth mechanism
based on preferential attachment [3, 11], that is, when new
connections are distributed among nodes according to how
many connections they already have. Hence, as social net-
works grow, this property is expected to be exacerbated.

 

 

Series ISSN: 2367-2005 173 10.5441/002/edbt.2016.18

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.18


In this paper, we address these limitations by proposing
an approach to the problem of maximal clique enumeration
in very large social networks that meets both the require-
ments of completeness and efficiency. The approach lever-
ages on sparsity, another property of real-world networks,
which basically means that the network can have very dense
areas but, overall, nodes and edges are of the same order of
magnitude.

Our solution is based on a two-level decomposition of
the network. The first-level decomposition aims at recur-
sively identifying and isolating tractable portions involving
non-hub nodes only. Intuitively, this operation allows us to
“brake” hub nodes by progressively decreasing their degree.
The second-level decomposition suitably splits tractable por-
tions of the network into small blocks that can be handled
separately. Within a block, we then select the most promis-
ing state-of-the-art algorithm for enumerating its maximal
cliques. A suitable procedure allows us to recognize and fil-
ter out those that are not maximal for the overall network.
We formally show that this process is able to correctly de-
tect all maximal cliques, provided that the sparsity of the
network is bounded, as it is the case of real-world social
networks.

We have performed a large number of experiments over
data from real-world social networks showing that our ap-
proach is effective, efficient, and scalable. The experimenta-
tion confirms that in order to have an efficient computation
it is convenient to choose a relatively small size of the blocks,
which further increases the number of hub nodes. The ex-
periments also confirm that, if hub nodes were neglected,
significant cliques would remain undetected.

Summarizing, the contributions of this paper are the fol-
lowing.

• We propose a distributed approach to maximal clique
enumeration in large social networks based on a novel
decomposition strategy that, by suitably handling
high-degree nodes, is able to progressively identify and
isolate tractable portions of the network;

• We formally prove the correctness and the complete-
ness of the approach;

• We provide experimental evidence of the efficiency and
scalability of our solution and show that, if high-degree
nodes were neglected, significant cliques would be un-
detected.

The rest of the paper is organized as follows. In Section 2
we provide a general overview of our technique. Section 3
describes in depth the two-level decomposition algorithm,
Section 4 describes the computation of the maximal clique
on a single block of the decomposition, and Section 5 pro-
vides the theoretical basis for the whole approach. In Sec-
tion 6 we illustrate our campaign of experiments. Section 7
surveys the related work and Section 8 contains our conclu-
sions.

2. OVERVIEW AND INTUITION
Our approach is based on a decomposition of the input

network in smaller subgraphs called blocks that can par-
tially overlap with each other. As we have discussed in the
Introduction, this requires a careful choice of the size of the
blocks, depending on hardware limitations and performance

A

J
H D

E G
F S

X
L

Z
R

P
Y

W U

Figure 1: Feasible nodes (white) and hub nodes
(red) when m = 5.

issues. Whichever the choice, let m be the maximum number
of nodes that can fit in a block. The value of m identifies two
types of nodes in the network: (i) the set Nh of hub nodes
having degree greater or equal than m (i.e., those nodes that
would not fit into a block with all their neighbors) and (ii)
the set Nf of feasible nodes having degree less than m.

Consider, for example, the network in Figure 1 and sup-
pose m = 5. The set Nh consists of the red-coloured nodes
D, S, and E of degree 7, 5, and 5 respectively, whereas Nf

consists of the remaining white nodes.
Now, let Cf be the set of all maximal cliques of G involving

at least one node in Nf and let Ch be the set of all maximal
cliques in the network Gh induced1 by the nodes in Nh.
For example, in the network in Figure 1 we have that Cf

includes the cliques {A, J,H} and {H,F,D}, as they both
involve feasible nodes, while Ch includes the clique {D, S,E},
since Gh consists only of the nodes D, S, E and of the edges
between them.

Our approach is based on the intuition that the set of all
maximal cliques of the network G can be obtained from Cf

and Ch alone. This is confirmed by Lemma 1 in Section 5,
which establishes that the set of the maximal cliques of G
is the union of Cf and the set C′h obtained by filtering out
from Ch any clique that is contained into a clique of Cf .

This result suggests that if we process separately the nodes
in Nf and the nodes in Nh, no clique is left out. We then
obtain an effective decomposition strategy which is also effi-
cient since the neighbors of a feasible node fit into a block of
size m by definition, while the degree of the nodes in the in-
duced graph Gh is strongly reduced since Gh only involves
a limited number of nodes in scale free networks. For in-
stance, in the network of Figure 1, Gh is the cycle {D, S,E}
and its maximum degree is two.

Regarding the computation of the cliques in Cf and Ch

we proceed as follows.

Cf : As in [10], we compute a suitable partition of Nf and
add to each set S of the partition the neighborhood
in G of the nodes in S. The obtained sets of nodes,
together with the edges between them, form the blocks
of the decomposition. Observe that a node (including

1We recall that the subgraph of G = (N,E) induced by a
set of nodes N ′ ⊆ N is the restriction of G to the nodes in
N ′ and the edges between them.

174



the hub ones) may be included into several blocks as a
neighbor node, together with a subset of its edges. Dif-
ferently from [10], we allow for blocks of heterogeneous
size and high connectivity that can be processed inde-
pendently in an efficient way. Then, taking advantage
of a decision tree, we apply on each block the most
promising MCE algorithm based on the block charac-
teristics. For instance, if the block is sparse, we find
the maximal cliques with the algorithm in [17], while
if the block is dense we adopt the algorithm described
in [34].

Ch: We apply the whole approach recursively to Gh by
partitioning its nodes Nh into two sets N ′f and N ′h of
feasible and hub nodes, respectively. This is possible
since the degree of the nodes in Nh is strongly reduced.
The recursion produces a sequence of sets N ′f , N ′′f ,
N ′′′f , . . . of decreasing size until there are no more hub
nodes remaining.

In Section 5 we prove that, under the hypothesis that the
input graph is sparse enough, this recursive process con-
verges, in the sense that it ends with a bipartition involving
only tractable nodes. In addition, in Section 6, we report
that in all our experiments on real-world data sets the pro-
cess needed at most a few recursive steps.

Summarizing, our approach consists of the following.

1. First level decomposition: we identify the set Nf

of feasible nodes of G, whose degree is less than m, and
the set Nh of hub nodes of G, whose degree is greater
or equal than m.

2. Recursive call: if Nh is not empty, we build the sub-
graph Gh of G induced by the nodes in Nh and apply
recursively the whole process to Gh.

3. Second level decomposition: given a set of feasible
nodes Nf we compute a set of blocks by partitioning
Nf and by adding to each node of a block its neighbors.

4. Block analysis: we apply a suitable MCE algorithm
to each block generated by the second level decompo-
sition to compute all its maximal cliques. The MCE
algorithm is chosen from a collection of alternatives,
taken from the literature, based on the properties of
the block, as described in Section 4.

5. Filtering: the output is obtained by taking the union
of the maximal cliques computed in step 4 and those
computed in step 2, filtering out redundant cliques.

In the following sections we will describe in more detail the
various steps of this strategy.

3. NETWORK DECOMPOSITION
Algorithm 1 (FIND-MAX-CLIQUES) describes our recursive

procedure for computing maximal cliques. The CUT proce-
dure (line 1) performs the first-level decomposition while the
BLOCKS procedure (line 2) performs the second-level decom-
position. In this section we describe in detail both of them.

Algorithm BLOCK-ANALYSIS (line 5) is discussed in Sec-
tion 4. Procedure induced (line 6) accepts as input a graph
G and a subset Nh of its nodes and computes the subgraph
of G induced by Nh. Procedure filter (line 7) accepts as
input two sets Ch and Cf of cliques and outputs all cliques
in Ch that are not contained into some clique of Cf .

Algorithm 1: FIND-MAX-CLIQUES: Overall algorithm

Input : A graph G = 〈N,E〉 and a block size m.
Output: The set C of the maximal cliques of G.

〈Nf , Nh〉 ← CUT(G,m); /* 1st level decomp. */1

B ← BLOCKS(G, Nf , m); /* 2nd level decomp. */2

Cf ← ∅;3

foreach b ∈ B do4

Cf ← Cf∪ BLOCK-ANALYSIS(b);5

Ch ← FIND-MAX-CLIQUES(induced(G,Nh),m);6

C′h ← filter(Ch, Cf);7

return Cf ∪ C′h;8

3.1 First level decomposition
Algorithm 2 describes the CUT procedure that is respon-

sible of identifying the set Nf of feasible nodes and the set
Nh of hub nodes. This is done by means of the procedure
isfeasible (also called by procedure BLOCKS) that takes as
input a set of nodes, the graph G and the maximum block
size m and checks whether the union of the given nodes and
all their neighborhoods in G has less than m elements. The
set Nh of hub nodes is simply obtained, at line 5, as the
difference between the nodes of G and Nf .

Algorithm 2: CUT: First-level decomposition

Input : A graph G = 〈N,E〉 and a block size m.
Output: The sets Nf and Nh of feasible and hub nodes

of G, respectively.

Nf ← ∅;1

foreach n ∈ N do2

if isfeasible({n},G,m) then3

Nf ← Nf ∪ {n};4

Nh ← N −Nf ;5

return 〈Nf , Nh〉;6

3.2 Second level decomposition
Algorithm 3 describes the BLOCKS procedure, responsible

of decomposing the input graph G into tractable blocks of
maximum size m. The input graph G is assumed to have
maximum degree m − 1. Here, we model blocks similarly
to [10] but allow for blocks of heterogeneous sizes and lever-
age the adjacency of the nodes to put dense subgraphs into
the same block. Hence, this step, in addition to distribut-
ing the computational load into tasks that could be accom-
plished separately in a distributed environment, also pre-
processes the input producing internally homogeneous and
compact chunks.

Blocks are defined sequentially in a greedy way. Each
block will have kernel nodes, border nodes, and visited
nodes. Each node of Nf is kernel node in exactly one block
(i.e., kernel nodes form a partition of Nf ). All the nodes of
G that are adjacent to at least one kernel node of a block B
and that are not kernel nodes of B are divided into border
nodes and visited nodes of B, where visited nodes are those
nodes that have been already used as kernel nodes for some
previously defined block. The block is completed with all
the edges among its nodes, irrespectively of the type.

For instance, consider again the network in Figure 1.

175



A

J

H D

F

B1
H

D

F

B2

B6L S B7G E

B11

W

S
B10

Y E
B9

P D

B5R D

B8
Z D

B3U S

B4
X E

Figure 2: An example of graph decomposition ob-
tained by focusing on the feasible nodes of the net-
work of Figure 1.

Nodes D, E, and S are identified as hub nodes by proce-
dure FIND-MAX-CLIQUES and will be processed in a subse-
quent recursive call of the same procedure. Figure 2 shows
a possible decomposition of the network in eleven blocks ob-
tained by focusing on the remaining non-hub nodes. In the
figure kernel nodes are white, border nodes are green and vis-
ited nodes are double-marked. Note that all feasible nodes
(white-filled in Figure 1) occur in exactly one block as ker-
nel nodes (white-filled in Figure 2). Also, observe that each
block of Figure 2 includes all the neighborhood of the kernel
nodes. However, the hub nodes (D,E, and S) never occur
as kernel nodes in any block. Instead, their neighborhood
has been distributed among the various blocks. Finally, note
that every maximal clique occurs in at least one block: this
is an important property that allows us to independently
process each block. If a maximal clique occurs in more than
one block, only the occurrence without visited nodes will be
considered. This is the case, for instance, for the maximal
clique {H,F, D} that is detected both when processing B1
and when processing B2, but is discarded in the latter case
since it contains a visited node.

We start to build a block B by picking a node n from Nf

(line 4 of Algorithm 3) and adding it to the set K of kernel
nodes of B (line 8). We then build: (i) the set V of visited
nodes (line 9), composed of neighbors of nodes in K that are
already used as kernel nodes in a previously defined block
(we maintain these latter nodes in K̄, which is updated at
line 7), and (ii) the set H of border nodes (line 10), composed
of neighbors of K that are not yet visited. Then we proceed
by selecting one node of Nf that is a border node of B
and transforming it into a kernel node of B (line 10). In
order to produce blocks that correspond to dense graphs,
we order the candidate border nodes based on the number
of their adjacency with kernel nodes, and we stop either if
we exceed the limit m by adding further nodes (line 5) or if
all candidate border nodes have a number of adjacency with
kernel nodes below a specified threshold.

4. MAXIMAL CLIQUES COMPUTATION
In order to find all maximal cliques in a block of the de-

composition, we rely on a framework that leverages on a
collection of algorithms taken from the literature with the
goal of improving the overall performance of the computa-
tion.

The MCE problem has been subject of extensive study
since the early 70’s [6, 8, 10, 17, 21, 23, 34]. None of the

Algorithm 3: BLOCKS: Second-level decomposition

Input : A graph G = 〈N,E〉, a set Nf of feasible
nodes, and a block size m.

Output: A set of blocks B.

K̄ ← ∅; B ← ∅;1

while Nf 6= ∅ do2

K,H, V ← ∅;3

n← select(Nf);4

while isfeasible(K ∪ {n},G,m) do5

Nf ← Nf − {n};6

K̄ ← K̄ ∪ {n};7

K ← K ∪ {n};8

V ← N(n) ∩ K̄;9

H ← N(n)− V ;10

n← select(Nf ∩H);11

B ← B ∪ induced(G, K ∪H ∪ V );12

return B;13

available algorithms outperforms the others in every pos-
sible instance of the problem. However, some approaches
tend to excel on graphs having specific properties. For ex-
ample Eppstein et al. [17] propose an algorithm that runs in
near-optimal time on graphs having small degeneracy2. On
the contrary, this algorithm does not perform well on dense
graphs where the degeneracy tends to be higher. On these
graphs, the algorithm proposed by Tomita et al. [34] tends
to be more efficient.

Our approach attempts at predicting, for each block, the
best-fit among the available MCE algorithms, that is the
one that achieves the best performance on it. The intuition
behind this approach is that large heterogeneous networks
yield blocks with very different characteristics, so that any
algorithm would be suboptimal in a non-negligible portion
of the blocks.

In order to efficiently predict the best-fit algorithm for a
block, we first identified a set of easy-to-compute parame-
ters to describe the block properties. Second, we selected a
set of supporting data-structure and state-of-the-art MCE
algorithms. Third, we measured the performance of each
combination of data-structure/algorithm on a collection of
heterogeneous graphs. Finally, we used the results as a train-
ing set to produce a decision tree aimed at selecting the best
combination for a given block.

The parameters we used to classify blocks are the follow-
ing: (a) number of nodes; (b) number of edges; (c) density;
(d) degeneracy; and (e) the maximum value d∗ for which
the graph has at least d∗ nodes with degree greater or equal
than d∗. Parameter d∗ can be computed in linear time and,
intuitively, provides an estimate of the size of the densest
portion of the graph, which we expect to dominate the per-
formance of a search algorithm.

We considered three different data structures to represent
the graph: adjacency matrices, bitsets, and adjacency lists
(the latter including the inverted-table structure described
in [17]).

As for the MCE algorithms, we implemented the follow-
ing:

• BKPivot: one of the original algorithms proposed by

2See Section 5 for a formal definition of degeneracy.

176



Algorithm Matrix Lists BitSets
BKPivot [6] 7 0 2
Tomita [34] 5 3 12
Eppstein [17] 0 2 0

XPivot 7 12 0

Table 1: Performance of the MCE algorithms.

Bron and Kerbosch [6]. It uses a pivot to avoid redun-
dant recursive calls. The node of highest degree in the
candidate set P is chosen as the pivot.

• Tomita: a variation of BKPivot by Tomita et al. [34].
It uses as pivot the node u that maximizes the size of
N(u)∩P , where N(u) denotes the neighborhood of u.

• Eppstein: the algorithm by Eppstein and Strash [17].
It is based on a degeneracy ordering of the nodes to
achieve a better complexity on sparse graphs.

• XPivot: a variation of BKPivot proposed by us. Like
Tomita, it chooses the node that maximizes the size
of N(u) ∪ P , but the node u is chosen from the set of
already visited nodes.

In Table 1 we show a performance comparison of the data-
structure/algorithm combinations described above on a col-
lection of 50 graphs, both synthetic (generated according
to the models of Erdös-Renyi, Barabási-Albert and Watts-
Strogatz models [2]) and real-world (taken from the SNAP
project [22]). In particular, the table shows how many times
a specific combination resulted the best performing among
all the alternatives. It is apparent that no algorithm out-
performs all the others in all cases.

Table 2 shows the maximum and minimum values of the
adopted parameters in the collection and confirms that the
graphs have heterogeneous properties.

Metric Min value Max value
nodes 50 685230
edges 199 6649470
density 0.00027 0.89

degeneracy 10 266
d∗ 15 713

Table 2: Ranges of adopted parameters for the cho-
sen graphs.

We divided the graph collection in training and testing set
with an 80/20 ratio. We then used the training set and the
above parameters to generate the decision tree in Figure 3,
launching the recursive partitioning algorithm in [32]. Each
internal node of the tree contains a predicate on the param-
eters and has two children, associated with the predicate be-
ing true or false on the current block. Each leaf of the deci-
sion tree contains a data-structure/algorithm combination.
Traversing the tree from the root to a leaf according to the
values of the predicates yields the data-structure/algorithm
combination that is the best-fit for the block.

The testing set was used to evaluate the effectiveness of
this approach. Figure 4 shows the total time taken by our
approach to process the testing set and the five best per-
forming combinations. Note that the use of the decision

degeneracy > 25

#nodes < 8558 [Matrix / XPivot]

falsetrue

degeneracy > 52

[BitSets / Tomita] [Matrix / BKPivot]

falsetrue

true

[Lists / XPivot]

false

Figure 3: The decision tree for selecting the most
suitable MCE algorithm.

0	  

100	  

200	  

300	  

400	  

500	  

De
cis
ion
	  Tr
ee
	  

[M
atr
ix/
BK
Piv
ot]
	  

[Bi
tSe
ts/
To
mi
ta]
	  

[M
atr
ix/
Xp
ivo
t]	  

[M
atr
ix/
To
mi
ta]
	  

[Li
sts
/X
piv
ot]
	  

Am
e(
se
c)
	  

Figure 4: Times to compute cliques with or without
a decision tree.

tree achieves better performance than any other algorithm
taken singularly.

Algorithm 4 describes in detail the BLOCK-ANALYSIS pro-
cedure that computes all maximal cliques of the block given
as input.

First, a suitable MCE procedure is identified by using the
decision tree described above (line 1).

As described in Section 3.2, the purpose of Algorithm 4
is to find all maximal cliques that have at least one node in
K, but no node in the set V of visited nodes of the input
block. In line 3 we initialize V̄ with V . For each node k
in the set K of kernel nodes of the input block, Algorithm
MCE(k, P, V̄ ) enumerates all maximal cliques that contain k
and no node in V̄ as long as all the neighbors of k are in
P ∪ V̄ . One can observe that all neighbors of k are either
in the set H of border nodes of the input block, or in K
or in V̄ . Therefore, procedure BLOCK-ANALYSIS detects all
maximal cliques containing a node of K and no node in V .
Finally, after k is visited, it is added to V̄ since all cliques
containing k have been found.

5. THEORETICAL BASIS
In this section we prove under what conditions our ap-

proach is correct and complete. Namely, Lemma 1 proves

177



Algorithm 4: BLOCK-ANALYSIS: Clique detection

Input : A block 〈N = K ∪H ∪ V,E〉.
Output: The maximal cliques C of B that have at least

one node in K, but no node in V .

MCE← bestfit(B);1

P ← K ∪H;2

V̄ ← V ;3

foreach k ∈ K do4

Nk ← N(k) ∩ P ;5

C ← C ∪ MCE(k, P ∩Nk, V̄ ∩Nk);6

P ← P − {k};7

V̄ ← V̄ ∪ {k};8

return C;9

that FIND-MAX-CLIQUES (Algorithm 1 in Section 3) actually
computes all maximal cliques of the input network. Theo-
rem 1, instead, shows that FIND-MAX-CLIQUES terminates its
recursive calls whenever the input network is sparse.

Sparsity is a well known property of social networks and
can be formally measured in terms of their low degener-
acy [35]. The degeneracy of a network, also called coreness,
is the highest value d for which the network contains a d-
core3. Hence, a network with a low degeneracy is inherently
sparse. The degeneracy of a network can be easily com-
puted, even in a distributed environment (see, e.g., [4]), and
it is usually much lower than the maximum degree of the
network. Indeed, real-world social networks have low de-
generacy [35].

Lemma 1. Let N1 and N2 be any bipartition of the nodes
of a graph G. Let C1 be the set of the maximal cliques of G
containing at least one node of N1 and let C2 be the set of
maximal cliques of the subgraph of G induced by the nodes in
N2. The set of the maximal cliques of G is the union of C1

and the set C′2 obtained by filtering out from C2 any clique
that is contained into a clique of C1.

Proof. Let K be a maximal clique of the network. We
show that K is in C1 ∪ C′2. We have two cases: (i) at least
one node of K is in N1 or (ii) all nodes of K are in N2. In
the first case K belongs to C1 and, hence, it is also in the
union of C1 and C′2. In the second case K is in C2 and, since
by hypothesis K is maximal, it is also in C′2, and hence in
the union of C1 and C′2.

Conversely, let K be a clique in the union of C1 and C′2.
We show that K is a maximal clique. Suppose, for a con-
tradiction, that K′ is a clique containing K and having a
vertex v in addition to the vertices of K. One of the follow-
ing three cases applies: (a) at least one node of K belongs
to N1; (b) all nodes of K belong to N2 and v also belongs
to N2; or (c) all nodes of K belong to N2 and v belongs to
N1. In Case (a), both K and K′ belong to C1, contradicting
the hypothesis that C1 is composed of maximal cliques. In
Case (b), both K and K′ belong to C2, contradicting the
hypothesis that C2 is composed of maximal cliques. Finally,
in Case (c), K belongs to C2 while K′ belongs to C1. How-
ever, since K is contained into K′, K does not belong to C′2,
contradicting the hypothesis that K belongs to the union of
C1 and C′2.

3The d-core of a graph is obtained by recursively removing
nodes with degree less than d.

v1 v2 v3 v4 v5 v6 v7 v8

H5

. . .

Figure 5: The construction for m = 4 of graph Hn

used to prove Statement 2 of Theorem 1.

The following theorem shows that, if the network is sparse,
the recursive algorithm FIND-MAX-CLIQUES converges, in the
sense that it ends with a bipartition involving only tractable
nodes.

Theorem 1. Let G be a graph and let Gi, with i =
1, 2, 3 . . . be a sequence of subgraphs of G such that G1 = G
and Gi, for i > 1 is the graph induced by the nodes of Gi−1

of degree greater or equal than m. Let the degeneracy d of
G be strictly less than m + 1.

1. There is a value q such that all Gj, with j ≥ q, are
empty graphs.

2. There exists a graph with n nodes for which q is Ω(n).

Proof. Statement 1 is proved by observing that graphs
Gi, with i > 1, are obtained from G by iteratively removing
nodes of degree less or equal than m. For i large enough,
such iterative removal coincides with a recursive removal
and, hence, leads by definition to the (m + 1)-core of G,
which is the empty graph since d < m + 1.

Statement 2 is proved by producing a graph Hn with n
nodes and whose degeneracy is d < m+1 such that q ∈ Ω(n),
as follows. Start from H1 composed of the isolated node v1
and, for j = 2, 3, . . . , n, obtain Hj by adding a node vj to
Hj−1. For j ≤ m + 1 connect vj to all previously inserted
nodes, so that, Hj , with j ≤ m + 1, is a complete graph on
the first j nodes (see Figure 5 where m = 4). For j > m+ 1
connect vj to the previous m nodes that have lower degree.
It is easy to check that:

(a) vj has degree m in Hj , for any j > m+1. For example,
in Figure 5 node v6 has degree 4 in H6.

(b) vj−1 has degree m + 1 in Hj , for any j > m + 2. For
example, in Figure 5 node v6 has degree 5 in H7.

(c) v1, v2, . . . , vj−2 have degree greater than m in Hj , for
any j > m + 3. For example, in Figure 5 nodes
v1, v2, . . . , v6 have degree greater than 4 in H8.

Therefore, for j > m+3, the three conditions (a),(b), and (c)
hold and the removal of all nodes of degree less or equal than
m from Hj only removes vj , yielding Hj−1. This implies
that: (i) recursively removing all nodes of degree less or
equal than m from Hn yields the empty graph, i.e., the
degeneracy of Hn is less than m + 1 and (ii) Ω(n) removals
are needed to obtain the empty graph from Hn.

178



Network # of nodes # of edges Maximum degree
twitter1 2,919,613 12,887,063 39,753
twitter2 6,072,441 117,185,083 338,313
twitter3 17,069,982 476,553,560 2,081,112
facebook 4,601,952 87,610,993 2,621,960
google+ 6,308,731 81,700,035 1,098,000

Table 3: The data sets used in the experimentation.

Theorem 1 proves that, in order to guarantee that all max-
imal cliques are detected, FIND-MAX-CLIQUES only requires
that m is chosen to be greater than d − 1, where d is the
degeneracy of the network (Section 6 shows how to pick
a good value for m). We remark that, although the very
special graph described in the proof of Theorem 1 requires
Ω(n) recursive steps, in all our experiments with real-world
data sets the process needed at most a few of them (see
Section 6).

6. EXPERIMENTAL RESULTS
We implemented our approach for maximal clique enu-

meration into a C++ system using OpenMPI v1.8 library.
This section reports the results of the experimentation of
the system.

6.1 Benchmark Environment
We deployed our system on a 10-nodes time-shared clus-

ter, where each machine is equipped with 8 GB DDR3 RAM,
4 CPUs 2.67 GHz Intel Xeon with 4 cores and 8 threads,
running Scientific Linux 5.7, with the TORQUE Resource
Manager process scheduler. The system is provided with the
Lustre file system v2.1. The performance of our system has
been measured with respect to data loading (i.e., decomposi-
tion), and all maximal cliques computation time (i.e., block
analysis).

For our experiments we used some of the largest avail-
able social networks (see Table 3) taken from SNAP [22]
and from the Koblenz Konect repositories4. In particular
we considered three portions of the “follower network” of
Twitter (labeled twitter1, twitter2 and twitter3 in Ta-
ble 3), the friendship network of Facebook enriched with
posts to user’s wall (labeled facebook), and “circles” data
from Google+ (labeled google+). All these data sets are
scale-free networks and provide a significant number of hub
nodes. Figure 6 shows a truncated degree distribution of all
considered data sets: as discussed in the Introduction, all
networks follow a power law for which most of the nodes
(i.e. 91% of the total, on average) provide a degree included
in the range [1, 20]. Nevertheless, on average, in each data
set the amount of possible hub nodes (i.e. they provide the
maximum degree) represents the 3% of the total set of nodes.

6.2 Network Decomposition
We distributed the input data set among the ten machines

of our cluster: each data set is locally split into files whose
records contain triples in the format 〈n1, e, n2〉, where n1

and n2 are the labels of the nodes and e is the label of the
edge between them. To speed-up the process we encoded
node and edge labels with hashes.

4Available at http://konect.uni-koblenz.de/downloads/
\#rdf

0,E+00	  
2,E+05	  
4,E+05	  
6,E+05	  
8,E+05	  
1,E+06	  
1,E+06	  
1,E+06	  
2,E+06	  
2,E+06	  
2,E+06	  
2,E+06	  
2,E+06	  
3,E+06	  
3,E+06	  
3,E+06	  
3,E+06	  
3,E+06	  
4,E+06	  
4,E+06	  
4,E+06	  

0	   2	   4	   6	   8	   10	   12	   14	   16	   18	   20	  

#n
od

es
	  

degree	  

Twitter2 Twitter1 Twitter3 Google+ Facebook 

Figure 6: Truncated degree distribution of data sets.

On each data set we ran Algorithm FIND-MAX-CLIQUES

three times on each machine and measured the average time
used to produce the blocks (including the I/O time). Fig-
ure 7 shows for each data set the average time to perform
the two-level decomposition with respect to the ratio m/d,
where m is the maximum number of nodes in a block and d is
the maximum node degree. In the experiment we considered
five ratios (i.e. 0.9, 0.7, 0.5, 0.3, and 0.1) obtained by de-
creasing m. As the block size limit decreases, the number of
blocks increases and consequently it increases also the time
to perform the decomposition. It also causes the increase
of the number of hub nodes as well as the increase of the
number of maximal cliques involving hubs (see Section 6.3).

We remark that for m/d ∈ {0.5, 0.9} all data sets re-
quired two iterations of the first-level decomposition, while
for m/d ∈ {0.1, 0.3} all data sets were decomposed after
three iterations. This confirms what formally enunciated in
Theorem 1. The results in Figure 7 confirm the feasibility
of the approach.

1,E+02	  

1,E+03	  

1,E+04	  

1,E+05	  

0,
9	  

0,
7	  

0,
5	  

0,
3	  

0,
1	  

0,
9	  

0,
7	  

0,
5	  

0,
3	  

0,
1	  

0,
9	  

0,
7	  

0,
5	  

0,
3	  

0,
1	  

0,
9	  

0,
7	  

0,
5	  

0,
3	  

0,
1	  

0,
9	  

0,
7	  

0,
5	  

0,
3	  

0,
1	  

-m
e	  
(s
ec
)	  

ra-o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  block	  (m)	  	  
and	  the	  maximum	  node	  degree	  (d)	  

twiFer1	  

twiFer2	  

twiFer3	  

facebook	   google+	  

Figure 7: Times to compute the decomposition.

6.3 Clique computation
For evaluating the computation times of our approach we

ran Algorithm BLOCK-ANALYSIS three times on all blocks and
measured the average overall time (including the I/O time).
Figure 8 shows the average response time in seconds to com-
pute all maximal cliques with respect to the values 0.9, 0.7,
0.5, 0.3, and 0.1 for m/d. All times refer to a serial pro-

179



0	  

20	  

40	  

60	  

80	  

100	  

120	  

0,9	   0,7	   0,5	   0,3	   0,1	  

)m
e	  
(s
ec
)	  

ra)o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  block	  (m)	  	  
and	  the	  maximum	  node	  degree	  (d)	  

	  twi+er1	   	  twi+er2	   	  twi+er3	   facebook	   google+	  

Figure 8: Times to compute all maximal cliques.

cessing (i.e., they do not account for the speed-up due to
simultaneous computations on distributed platforms).

Efficiency. Our experiments confirm that the running
times benefit from relatively small values of m. The fact that
the overall performance is improved when smaller blocks are
involved is likely due to the efficiency of the clique detec-
tion algorithms on small instances. Hence, it can be argued
that the decomposition phase is playing the role of a pre-
processing step for the MCE problem, producing blocks that
can be regarded as approximate solutions to be refined by
an exact MCE algorithm.

For small values of m/d (i.e., 0.3 and 0.1) we have many
blocks and the performance of the entire process are affected
by an increasing overlap among the neighborhood of each
block and an increasing communication overhead among the
machines of the cluster. As shown in Figure 8, the value
m/d = 0.5 is a common “saddle point” for all data sets.

Effectiveness. Figure 9.(a) and Figure 10.(a) show the
number of cliques computed with respect to the same five
ratios used above and Figure 9.(b) and Figure 10.(b) show
the average size of the cliques. In all the figures, white bars
denote maximal cliques computed from the blocks built from
the feasible nodes, while gray bars refer to maximal cliques
computed from the blocks built from the hub nodes. Fig-
ure 9.(a) and Figure 10.(a) clearly show the contribution of
our approach: in all the experiments we had a non-negligible
number of maximal cliques involving hub nodes only, that
could be omitted or could induce the erroneous detection of
non-maximal cliques if the techniques described in this pa-
per were not adopted. In particular, as the ratio between
the block size and the maximum node degree decreases, the
portion of maximal cliques involving only hub nodes is sig-
nificantly increased (i.e. reducing m artificially increases the
number of hub nodes).

Figure 9.(b) and Figure 10.(b) focus on the size of the
produced cliques. It turns out that the sizes of the cliques
involving only hub nodes are comparable with (and, in aver-
age, greater than) the sizes of the cliques involving feasible
nodes. This is more apparent when the ratio m/d is smaller

(i.e., 0.3 and 0.1). Furthermore, observe that the cliques
involving only hub nodes are comparable in size with the
biggest cliques contained in the network. Hence, even when
the cliques computed on the hub nodes are a small percent-
age, they are among the most significant when their size is
considered.

In order to better estimate how much significant are the
maximal cliques composed exclusively of hub nodes, we fo-
cused on the 200 largest maximal cliques. Figure 11 shows
the percentage of maximal cliques computed on the feasi-
ble nodes and the percentage of maximal cliques computed
on the hub nodes (with respect to the same five values
of m/d used for Figures 9 and 10). The percentage of
maximal cliques computed on the hub nodes grows signif-
icantly around the value 0.5m/d. In particular, for values
of m/d ∈ [0.1, 0.5], the percentage of maximal cliques com-
puted on hub nodes is between 20% and 80% for all data
sets. This confirms that decreasing the block size for boost-
ing efficiency has a dramatic impact on the number of sig-
nificant maximal cliques that would be lost if the techniques
described in this paper were not adopted.

7. RELATED WORK
Despite a long research history, the MCE problem has re-

cently re-emerged as one of the key research topics of graph
mining. Due to the NP-completeness of the problem, tradi-
tional algorithms for enumerating maximal cliques rely on
pruning techniques in order to reduce the search space and
speed up the execution [27, 33]. With the increasing dimen-
sion of nowadays social networks such algorithms are not
satisfactory anymore because the size of the input network
often exceeds the available memory.

To address this issue, new approaches have been intro-
duced [8, 10, 30, 36, 38, 7]. They usually rely on a decompo-
sition phase that splits the graph into (partially overlapping)
blocks and on distributed computation on the independent
blocks to detect all the maximal cliques therein.
ExtMCE [8, 38] is the first algorithm that handles graphs

that do not fit into main memory. It starts the search
for maximal cliques from a sub-portion of the whole graph,
called H*-graph. However, ExtMCE works under the assump-
tion that the H*-graph fits into main memory, which may
be again too restrictive with real-world networks.

The same authors improved their approach introducing
the EmMCE algorithm [10] that takes advantage of paralleliza-
tion to reduce I/O overhead and to distribute computation
loads. As confirmed also by our experimentation, in [10] it
is shown that producing blocks of much smaller size than
the available memory yield better time performance. At
the same time, though, algorithm EmMCE assumes that the
neighborhood of each node fits within a block. This clearly
poses a trade-off between efficiency and correctness. In fact
when the neighborhood of a node does not fit into a sin-
gle block some of its maximal cliques may be discarded and
some non-maximal cliques could be erroneously detected.
Furthermore, even if efficiency was not an issue, correctness
and completeness are lost whenever the graph has nodes
of degree so high that their neighborhood does not fit into
main memory. Trying to address this problem in [10] it is
suggested to decompose the graph considering nodes in in-
creasing degree order. This results into artificially augment-
ing the size of a graph fitting into a block, since, when a hub
node is chosen as a kernel node, its neighborhood would be

180



1,E+00	  

1,E+02	  

1,E+04	  

1,E+06	  

1,E+08	  

1,E+10	  

0,9	   0,7	   0,5	   0,3	   0,1	  

#m
ax
im

al
	  c
liq

ue
s	  

ra;o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

twiJer1	  

0,9	   0,7	   0,5	   0,3	   0,1	  
ra;o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

twiJer2	  

0,9	   0,7	   0,5	   0,3	   0,1	  
ra;o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

twiJer3	  

(a) Number of computed cliques

0	  

5	  

10	  

15	  

20	  

0,9	   0,7	   0,5	   0,3	   0,1	  

av
er
ag
e	  
cl
iq
ue

	  si
ze
	  (#

no
de

s)
	  

ra<o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

twiFer1	  (max	  clique	  size	  =	  27)	  

0,9	   0,7	   0,5	   0,3	   0,1	  
ra<o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

twiFer2	  (max	  clique	  size	  	  =	  31)	  

0,9	   0,7	   0,5	   0,3	   0,1	  
ra<o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

twiFer3	  (max	  clique	  size	  	  =	  33)	  

(b) Average number of nodes per clique

Figure 9: The results of the experimentation on twitter1, twitter2, and twitter3 data sets. White bars refer
to cliques computed from the feasible nodes while gray bars refer to cliques containing only hub nodes.

1,E+00	  

1,E+02	  

1,E+04	  

1,E+06	  

1,E+08	  

1,E+10	  

0,9	   0,7	   0,5	   0,3	   0,1	  

#m
ax
im

al
	  c
liq

ue
s	  

ra;o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

facebook	  

0,9	   0,7	   0,5	   0,3	   0,1	  
ra;o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

google+	  

(a) Number of computed cliques

0	  

5	  

10	  

15	  

20	  

0,9	   0,7	   0,5	   0,3	   0,1	  

av
er
ag
e	  
cl
iq
ue

	  si
ze
	  (#

no
de

s)
	  

ra<o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

facebook	  (max	  clique	  size	  	  =	  21)	  

0,9	   0,7	   0,5	   0,3	   0,1	  
ra<o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

google+	  (max	  clique	  size	  	  =	  18)	  

(b) Average number of nodes per clique

Figure 10: The results of the experimentation on facebook and google+ data sets. White bars refer to cliques
computed from the feasible nodes while gray bars refer to cliques containing only hub nodes.

181



largely composed by visited nodes, and edges among visited
nodes could be omitted from the block. Nevertheless, all
neighbors of a hub node need to be stored into the block as
before, and the block size limit still hinder correctness.

Chang et al. [7] find all maximal cliques in polynomial
delay: cliques are found one after the other and the time-
complexity of finding the next clique in the sequence is poly-
nomial. They improve over the previously polynomial-delay
fastest algorithm for MCE [24] by using a strategy that par-
titions the graph into low and high degree nodes.

The authors in [38] focus on the skews of the parallel com-
putation of cliques, since the analysis of few blocks takes
far more time than the rest. They also propose algorithms
that can incrementally update the maximal cliques when the
graph is updated.

Xing et al. [36] use a recursive algorithm, called BMC, for
partitioning the network into blocks. Then, they use an algo-
rithm based on MapReduce to compute the cliques present
in each block. Since BMC generates blocks having similar
size, inter-block cliques are skipped and the approach is not
complete. Gregori et al. [20] and Rossi et al. [30] find the
maximal k-cliques and the largest cliques in a parallel way,
respectively. These approaches can not be adapted to find
all maximal cliques.

Computations over massive networks often take advan-
tage of distributed graph processing systems such as Graph-
Lab/PowerGraph [19] and Pregel/Giraph [25]. They pro-
vide: (a) a fault-tolerant infrastructure for processing dis-
tributed data; (b) a graph partitioning technique; and (c) an
abstract computational model for implementing algorithms.
While we could benefit from the infrastructures and abstract
models, the partitioning techniques of such systems (point
(b) above) are not suitable in the MCE context. They usu-
ally use random partitioning (i.e., hash partitioning) which
is proven to be the worst possible partitioning for scale-free
networks [15]. Instead, as shown in Section 6, we benefit
from a decomposition that produces dense chunks of differ-
ent size.

Maximal Clique Enumeration is especially used for detect-
ing communities in social networks. Several approaches for
community detection, rely on a relaxed concept with respect
to the enumeration of maximal cliques and consider each
subgraph that approximates a clique as a community [29,
39, 28, 1]. In the remaining part of this section we briefly
review some of them.
WalkTrap [28] computes random traversals to individuate

communities. The heuristic idea of WalkTrap is that a ran-
dom path would likely stay “trapped” inside a subgraph of
highly connected nodes. The random path cliques do not
give any warranty on the quality of the solutions as, choos-
ing randomly, they might not retrieve a tight community.

There are several approaches that find communities as the
subgraphs resulting from the clustering of the edges in the
network (see, for example, [1]). They uniquely assign each
individual to a cluster. Clearly, this assumption is not suit-
able for social networks where an individual may belong to
multiple communities. To face this aspect, a series of works
have been proposed in order to allow overlapping communi-
ties (see the survey in [37]).

Differently from all approaches mentioned above, SCD [29]
employs a parallel strategy to detect the subgraphs that
maximize the number of contained triangles, since this mea-
sure is indicative of how tight is a community. In [39] it is

introduced the concept of k-mutual-friend to find communi-
ties and, additionally, it is described a system to browse the
communities in a visual manner.

Finally, there are approaches that retrieve communities in
terms of k-plexes, which are relaxations of cliques in which
a node can miss at most k neighbours [5, 26].

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a novel technique for

computing all the maximal cliques of an arbitrarily large
network in a distributed environment. The approach re-
lies on a two-level decomposition strategy that allows us to
achieve efficiency by suitably lowering the size of the blocks
without jeopardizing completeness. This is confirmed by a
number of theoretical results showing the correctness and
completeness of the technique over sparse graphs, a natural
property of real-world social networks.

An extensive campaign of experiments conducted over
real-world scenarios has shown the efficiency and scalability
of our proposal. We have also demonstrated experimentally
that, if our technique was not adopted, a significant portion
of the most relevant cliques would have been lost.

In the future, we plan to explore the possibility of extend-
ing our approach to relaxed definitions of communities, such
as k-cliques, k-clubs, k-clans, and k-plexes. We are also in-
terested in studying an incremental version of our approach
that takes into account the evolution of the social network.

Acknowledgements
The authors are grateful to Lorenzo Dolfi and Gabriele De
Capoa for their contribution in the development of the tools
described in this paper. Research supported in part by the
MIUR project AMANDA “Algorithmics for MAssive and
Networked DAta”, prot. 2012C4E3KT 001.

9. REFERENCES
[1] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link

communities reveal multiscale complexity in networks.
Nature, 466(7307):761–764, 2010.

[2] R. Albert and A.-L. Barabási. Statistical mechanics of
complex networks. Rev. Mod. Phys., 74:47–97, 2002.

[3] A.-L. Barabási and E. Bonabeau. Scale-free networks.
Scientific American, 288(5):50–59, 2003.

[4] V. Batagelj and M. Zaversnik. An o(m) algorithm for
cores decomposition of networks. CoRR,
cs.DS/0310049, 2003.

[5] D. Berlowitz, S. Cohen, and B. Kimelfeld. Efficient
enumeration of maximal k-plexes. In SIGMOD, pages
431–444, 2015.

[6] C. Bron and J. Kerbosch. Finding all cliques of an
undirected graph (algorithm 457). Commun. ACM,
16(9):575–576, 1973.

[7] L. Chang, J. X. Yu, and L. Qin. Fast maximal cliques
enumeration in sparse graphs. Algorithmica,
66(1):173–186, 2013.

[8] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu.
Finding maximal cliques in massive networks by
h*-graph. In SIGMOD, pages 447–458, 2010.

[9] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu.
Finding maximal cliques in massive networks. ACM
Trans. Database Syst., 36(4):21, 2011.

182



0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

0,9	   0,7	   0,5	   0,3	   0,1	  

m
ax
im

al
	  c
liq

ue
s	  (
%
)	  

ra;o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

twiHer1	  

0,9	   0,7	   0,5	   0,3	   0,1	  
ra;o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

twiHer2	  

0,9	   0,7	   0,5	   0,3	   0,1	  
ra;o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

twiHer3	  

(a)

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

0,9	   0,7	   0,5	   0,3	   0,1	  

m
ax
im

al
	  c
liq

ue
s	  (
%
)	  

ra;o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

facebook	  

0,9	   0,7	   0,5	   0,3	   0,1	  
ra;o	  (m/d)	  between	  the	  maximum	  size	  of	  a	  
block	  (m)	  and	  the	  maximum	  node	  degree	  (d)	  

google+	  

(b)

Figure 11: An analysis of the 200 largest maximal cliques of each data set. White bars represent the
percentage of these cliques computed from the feasible nodes while gray bars represents the percentage of
these cliques containing only hub nodes.

[10] J. Cheng, L. Zhu, Y. Ke, and S. Chu. Fast algorithms
for maximal clique enumeration with limited memory.
In KDD, pages 1240–1248, 2012.

[11] K. Choromański, M. Matuszak, and J. Miekisz.
Scale-free graph with preferential attachment and
evolving internal vertex structure. Journal of
Statistical Physics, 151(6):1175–1183, 2013.

[12] A. Cui, Z. Zhang, M. Tang, and Y. Fu. Emergence of
scale-free close-knit friendship structure in online
social networks. CoRR, abs/1205.2583, 2012.

[13] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local
search of communities in large graphs. In SIGMOD,
pages 991–1002, 2014.

[14] N. Du, B. Wu, L. Xu, B. Wang, and X. Pei. A parallel
algorithm for enumerating all maximal cliques in
complex network. In ICDM Workshops, pages
320–324, 2006.

[15] Q. Duong, S. Goel, J. M. Hofman, and S. Vassilvitskii.
Sharding social networks. In WSDM, pages 223–232,
2013.

[16] D. Eppstein, M. Löffler, and D. Strash. Listing all
maximal cliques in sparse graphs in near-optimal time.
In ISAAC, pages 403–414, 2010.

[17] D. Eppstein and D. Strash. Listing all maximal cliques
in large sparse real-world graphs. In SEA, pages
364–375, 2011.

[18] S. Fortunato. Community detection in graphs. CoRR,
abs/0906.0612, 2009.

[19] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and

C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, pages 17–30,
2012.

[20] E. Gregori, L. Lenzini, and S. Mainardi. Parallel
k-clique community detection on large-scale networks.
Trans. Parallel Distrib. Syst., 24(8):1651–1660, 2013.

[21] I. Koch. Enumerating all connected maximal common
subgraphs in two graphs. Theor. Comput. Sci.,
250(1-2):1–30, 2001.

[22] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, 2015.

[23] K. Makino and T. Uno. New algorithms for
enumerating all maximal cliques. In T. Hagerup and
J. Katajainen, editors, Algorithm Theory - SWAT
2004, volume 3111 of Lecture Notes in Computer
Science, pages 260–272. Springer Berlin Heidelberg,
2004.

[24] K. Makino and T. Uno. New algorithms for
enumerating all maximal cliques. In SWAT, pages
260–272, 2004.

[25] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.
Dehnert, I. Horn, N. Leiser, and G. Czajkowski.
Pregel: a system for large-scale graph processing. In
SIGMOD, pages 135–146, 2010.

[26] B. McClosky and I. V. Hicks. Combinatorial
algorithms for the maximum k-plex problem. J. Comb.
Optim., 23(1):29–49, 2012.

[27] P. R. J. Österg̊ard. A fast algorithm for the maximum

183



clique problem. Discrete Applied Mathematics,
120(1-3):197–207, 2002.

[28] P. Pons and M. Latapy. Computing communities in
large networks using random walks. J. Graph
Algorithms Appl., 10(2):191–218, 2006.

[29] A. Prat-Pérez, D. Dominguez-Sal, and J.-L.
Larriba-Pey. High quality, scalable and parallel
community detection for large real graphs. In WWW,
pages 225–236, 2014.

[30] R. A. Rossi, D. F. Gleich, A. H. Gebremedhin, and
M. M. A. Patwary. Fast maximum clique algorithms
for large graphs. In WWW (Companion Volume),
pages 365–366, 2014.

[31] I. Stanton and G. Kliot. Streaming graph partitioning
for large distributed graphs. In SIGKDD, pages
1222–1230, 2012.

[32] T. M. Therneau and E. J. Atkinson. An introduction
to recursive partitioning using the RPART routines.
Technical report, Division of Biostatistics 61, Mayo
Clinic, 1997.

[33] E. Tomita and T. Kameda. An efficient
branch-and-bound algorithm for finding a maximum

clique with computational experiments. J. Global
Optimization, 44(2):311, 2009.

[34] E. Tomita, A. Tanaka, and H. Takahashi. The
worst-case time complexity for generating all maximal
cliques and computational experiments. Theor.
Comput. Sci., 363(1):28–42, 2006.

[35] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow.
The anatomy of the facebook social graph. CoRR,
abs/1111.4503, 2011.

[36] J. Xiang, C. Guo, and A. Aboulnaga. Scalable
maximum clique computation using mapreduce. In
ICDE, pages 74–85, 2013.

[37] J. Xie, S. Kelley, and B. K. Szymanski. Overlapping
community detection in networks: The state-of-the-art
and comparative study. ACM Comput. Surv.,
45(4):43, 2013.

[38] Y. Xu, J. Cheng, A. W. Fu, and Y. Bu. Distributed
maximal clique computation. In International
Congress on Big Data, pages 160–167, 2014.

[39] F. Zhao and A. K. H. Tung. Large scale cohesive
subgraphs discovery for social network visual analysis.
PVLDB, 6(2):85–96, 2012.

184


	Finding All Maximal Cliques in Very Large Social NetworksAlessio Conte, Roberto De Virgilio, Antonio Maccioni, Maurizio Patrignani, Riccardo Torlone

