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ABSTRACT
We propose a new on-line ϵ-approximation algorithm for
mining closed itemsets from a transactional data stream,
which is also based on the incremental/cumulative intersec-
tion principle. The proposed algorithm, called LC-CloStream,
is constructed by integrating CloStream algorithm and Lossy
Counting algorithm. We investigate some behaviors of the
LC-CloStream algorithm. Firstly we show the incomplete-
ness and the semi-completeness for mining all frequent closed
itemsets in a stream. Next, we give the completeness of ϵ-
approximation for extracting frequent itemsets.
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1. INTRODUCTION
Intersecting transactions in a data set is an alternative

characterization of closed itemsets [1, 3, 4], which naturally
leads to an incremental/cumulative computation of closed
itemsets in a transaction data stream. CloStream [6] is an
exact-computing on-line mining algorithm, which is a direct
implementation of the incremental intersecting approach.
Such an incremental intersection approach, however, has
great difficulties, in practice, for quitting or breaking inter-
sections in early stages, because it is difficult to predict in
advance that current intersection operations never produce
any frequent closed itemsets[1].
In this paper, we propose a new on-line ϵ-approximation

algorithm for mining closed itemsets from a stream, which is
also based on the incremental/cumulative intersection prin-
ciple. The proposed algorithm, called LC-CloStream, is con-
structed by integrating CloStream [6] algorithm and Lossy
Counting algorithm [2]. LC-CloStream succeeded in over-
coming the above difficulties using ϵ-approximation [2, 5].
We study fundamental properties of LC-CloStream algo-

rithm. Firstly we show the incompleteness and the semi-
completeness for mining all frequent closed itemsets in a
stream. Next, we give the completeness of ϵ-approximation
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for extracting frequent itemsets from a transaction streams.

2. PRELIMINARIES
Let I = {e1, e2, . . . , er} be a set of items. A non-empty

subset A of I is called an itemset (or transaction). A trans-
action stream of length N is a sequence of N transactions
⟨A1, A2, . . . AN ⟩. In this paper, we denote items as a, b, c,
. . . , and itemsets as A, B, C, . . . . We also abbreviate an
itemset {e1, e2, . . . , em} as e1e2 · · · em, for simplicity.

Let S be a stream ⟨A1, . . . , AN ⟩ and B be an itemset.
We define a multiset K(B, t) at time t (1 ≤ t ≤ N) as
K(B, t) = {Aj ∈ S | B ⊂ Aj , 1 ≤ j ≤ t}. The frequency
of B at time t, denoted as sup(B, t), is |K(B, t)|. Given a
minimal frequency threshold σ (0 < σ < 1), B is frequent
at time t in S if sup(B, t) ≥ σ · t. An itemset B is closed at
time t in S if there is no itemset C such that B ̸= C and
B ⊂ C and sup(B, t) = sup(C, t).

The following recursive relation makes it possible to incre-
mentally compute closed itemsets in a stream S. Let CIS(S)
be a set of all closed itemsets in S and ◦ be a well-known
concatenation operator of two sequences.

Proposition 1 ([1, 3]). Let S be a stream ⟨A1, . . . AN ⟩.
We have:

CIS(⟨A1⟩) = {A1}
CIS(Sk) ◦ ⟨Ak+1⟩) = CIS(Sk) ∪ {Ak+1} ∪

{B | ∃C ∈ CIS(Sk) : B = C ∩Ak+1},

where Sk is the k element prefix of S, i.e., ⟨A1, . . . Ak⟩.

CloStream [6] is an on-line exact counting algorithm for
mining closed itemsets in a stream, which uses the above
recursive relation in a straightforward way, and thus cannot
avoid a combinatorial explosion problem caused by CIS(S).

3. LC-CLOSTREAM
The LC-CloStream algorithm maintains an internal fre-

quency table TS. Formally, TS is a set of tuples ⟨B, f(B), δ(B)⟩,
where B is an itemset, f(B) is the number of occurrences
of B after the time tB when B was lastly stored in TS, and
δ(B) is the maximal error count at time tB . We write the
frequency table TS at time t as TS(t), and similarly for
f(B, t) and δ(B, t). Let SP(B, t) denote the set of super-
sets of B belonging to the frequency table TS(t), that is,
SP(B, t) = {C ∈ TS(t) | B ⊂ C}. We define maxSP(B, t)
as follows:

maxSP(B, t) = argmax
C∈SP(B,t)

(f(C, t) + δ(C, t))

The former part of LC-CloStream algorithm, i.e., in lines
5 to 18, performs the incremental intersection and the latter
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Algorithm 1 LC-CloStream algorithm

Input: a stream S = ⟨A1, A2, . . . , AN ⟩,
a relative minimal frequency threshold σ (0 < σ < 1),
a maximal permissible error ratio ϵ (0 < ϵ < σ).

Output: a family FCS of frequent closed item sets in S
1: t← 1 ▷ t is a current time
2: Initialize the frequency table TS.
3: while t ≤ N do
4: Read At.
5: for each B ∈ TS do
6: C ← B ∩At

7: if C ̸= ∅ then ▷ i.e. the case of SP(C, t) ̸= ∅
8: D ← maxSP(C)
9: if C ̸∈ TS then ▷ register C as a new entry
10: TS ← TS ∪ { ⟨C, f(D) + 1, δ(D)⟩}
11: else ▷ increase the frequency vale of C
12: TS ← (TS − { ⟨C, f(C), δ(C)⟩})

∪{ ⟨C, f(D) + 1, δ(D)⟩}
13: end if
14: end if
15: end for
16: if At ̸∈ TS then ▷ register At as a new entry
17: TS ← TS ∪ { ⟨At, 1, ϵ · (t− 1)⟩ }
18: end if
19: for each B ∈ TS do ▷ ϵ-elimination
20: if f(B) + δ(B) ≤ ϵ · t then
21: TS ← TS − { ⟨B, f(B), δ(B)⟩}
22: end if
23: end for
24: end while
25: return FCS(N) = { B ∈ TS | f(B) + δ(B) ≥ σ ·N}

part in lines 19 to 23 executes the ϵ-elimination operation,
which involves an ϵ-approximation computation.
Notice that Algorithm 1 is described declaratively for sim-

plicity, thus has the time complexity O(k2) where k is the
total number of entries in TS, while [6] gave an optimized
procedural form of the complexity O(k).
Unfortunately, LC-CloStream algorithm has a counterex-

ample for the completeness, as shown in Example 1. We
can, however, give the semi-completeness for LC-CloStream.

Example 1. Let S1 be a stream ⟨a, b, b, b, b, b, ac, ac, ac⟩ of
length 9. We suppose σ = 0.3 and ϵ = 0.2. Then, the fre-
quent closed itemsets in S1 are three itemsets a, b, ac. At
time t = 1, LC-CloStream algorithm processes the first trans-
action a and store the set a, as a new closed itemset, into the
frequency table TS. At time t = 2, LC-CloStream adds the
set b into TS, and so on. At time t = 6, LC-CloStream firstly
increase the frequency counter f(B) in TS, then the ta-
ble TS becomes to {⟨a, 1, 0⟩, ⟨b, 5, 1⟩} at this point. Next
LC-CloStream performs the ϵ-elimination rule to TS, and
delete the tuple of the closed set a since f(a, 6) + δ(a, 6) =
1 < 1.2 = ϵ · 6 holds. At time t = 7, LC-CloStream registers
the set ac to TS as a new closed set, but cannot increase the
frequency counter of the set a, because TS has the tuple of
a no longer. Thus, LC-CloStream eventually returns the set
FCS(9) = {b, ac} and fails to produce the frequent closed
itemset a.

Next, we show a semi-completeness theorem which par-
tially overcomes the deficit shown above in LC-CloStream.
Furthermore, we give completeness theorem of LC-CloStream
for frequent itemsets mining based on ϵ-approximation.

Definition 1. Let S be a stream of lengthN , B be a closed
itemset and ϵ be a maximal error ratio. We say, B is ϵ-
extendable on S if there is a closed itemset C such that
B ⊂ C, B ̸= C and sup(B)− sup(C) ≤ ϵN

Theorem 1 (Semi-completness for closed itemsets).
Let S be a stream of length N and B be a frequent closed
itemset in S. If B is NOT ϵ-extendable, then B ∈ FCS(N).

Definition 2. Let S be a stream of length N , σ be a mini-
mal frequency threshold and FCS(N) be a output produced
from S by LC-CloStream algorithm. Then we define RS(N)
as follows:

RS(N) = FCS(N) ∪ {C | ∃B ∈ FCS(N) : C ⊂ B,C ̸= ∅}

Theorem 2 (Completeness for itemsets). Let S be
a stream of length N and B be a frequent itemset in S. Then
B ∈ RS(N).

Definition 3. Let S be a stream of length N and ϵ be a
maximal error ratio. For any itemset B at time t (1 ≤ t ≤
N), we define F (B, t) and ∆(B, t) as follows:

1. if SP(B, t) = ∅, then F (B, t) = 0, ∆(B, t) = ϵ · t

2. if SP(B, t) ̸= ∅, then
F (B, t) = f(maxSP(B, t), t), ∆(B, t) = δ(maxSP(B, t), t).

We call F (B, t) + ∆(B, t) the estimated frequency of B at
time t.

Notice the estimated frequency F (B, t) + ∆(B, t) is de-
fined based on TS(t) of time t, while the counting frequency
f(B, t) + δ(B, t) depends just on TS(t − 1) of the previous
time t− 1.

Theorem 3 (ϵ-approximaton of frequency). Let S
be a stream of length N and ϵ be a maximal error ratio. For
any itemset B, we have

F (B,N) ≤ sup(B,N) ≤ F (B,N) + ϵ ·N

4. CONCLUSIONS
LC-CloStream can avoid a part of combinational explo-

sion problems in a bursty transactional data stream [5]. In
the future, we will study an efficient implementation using
a sophisticated data structure, and also have a plan to in-
vestigate a more advanced framework where the frequency
table has a fixed constant size [5].
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