
Model Kit for Lightweight Data Compression Algorithms

Juliana Hildebrandt, Dirk Habich, Patrick Damme, Wolfgang Lehner
Technische Universität Dresden

Database Systems Group
01189 Dresden, Germany

firstname.lastname@tu-dresden.de

ABSTRACT
Modern database systems are very often in the position to
store and efficiently process their entire data in main mem-
ory. Aside from increased main memory capacities, a further
driver for in-memory database systems has been the shift
to a column-oriented storage format in combination with
lightweight data compression techniques. In recent years, a
lot of lightweight data compression algorithms have been de-
veloped to efficiently support different data characteristics.
Therefore, database systems should include a large number
of these algorithms. To enable this, we introduce our novel
modularization concept including our model kit implemen-
tation for lightweight data compression algorithms.

1. MOTIVATION
With an ever increasing amount of data in almost all ap-

plication domains, the storage requirements for database
systems grow quickly. In the same way, the pressure to
achieve the required processing performance increases, too.
To tackle both aspects in a uniform way, data compression
plays an important role. On the one hand, data compres-
sion drastically reduces storage requirements. On the other
hand, data compression also is the cornerstone of an efficient
processing capability by enabling ”in-memory” technologies.
As shown in different papers, the performance gain of in-
memory data processing is massive because the operations
benefit from its higher bandwidth and lower latency [1].

Especially for the use in in-memory database systems, a
variety of lightweight compression algorithms have been de-
veloped. These algorithms achieve good compression rates
with little computational effort for compression as well as de-
compression. The main classes of lightweight data compres-
sion techniques are dictionary compression (DICT), delta
coding (DELTA), frame-of-reference (FOR), null suppres-
sion (NS), and run-length encoding (RLE) [2, 3]. The al-
gorithms in each class evolve further and the development
activities increase over the years, whereas the concept of the
classes are interweaved in new algorithms.

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Generally, this multitude of algorithms exists because it
is impossible to design an algorithm that automatically pro-
duces optimal results for any data. In order to support and
to implement a wide range of these algorithms in a database
system, a unified approach for the specification or engineer-
ing is desirable. In our current research, we have focused
on that aspect by developing a novel compression scheme
consisting of a few number of modules. Our poster pre-
sentation at EDBT comprises an in-depth explanation of
this compression scheme. As we are going to show, our
compression scheme is quite suitable to modularize a va-
riety of lightweight data compression algorithms in a sys-
tematic manner. That means, our approach offers an effi-
cient and an easy-to-use way to describe, to compare, and
to adapt lightweight data compression techniques. Further-
more, we want to introduce our model kit implementation
that is founded on that compression scheme.

2. MODULARIZATION CONCEPT
Our novel compression scheme consists of four main mod-

ules as shown in Figure 1; the arrows indicate the data flows.
The input is a sequence of uncompressed values, the output
is a sequence of compressed values. Our whole scheme is
a Recursion module. The first module in each Recursion
is a Tokenizer splitting the input sequence in finite sub-
sequences or single values. For that, a Tokenizer can be
parametrized with a calculation rule. Its output is a token,
a finite sequence of values that serves as input for our second
module, the Parameter Calculator. Parameters are often
required for the encoding and decoding. This module fol-
lows special rules (parameter definitions) for the calculation
of several parameters. We summarize different data struc-
tures like single values calculated from sequences, dictionar-
ies or vectors as parameters belonging to a token. Our third
module is the Encoder, which can be parametrized with a

Tokenzier
Parameter
Calculator

Encoder
/

Recursion

Combiner

Recursion

Figure 1: Modularized compression scheme

Poster Paper

 

 

Series ISSN: 2367-2005 692 10.5441/002/edbt.2016.90

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.90


Recursion
Recursion

Tokenizer

Parameter
Calculation

mref, bw Encoder
for:

m 7→ m − mref
bp:

032−bwwbw . . . w1 7→
wbw . . . w1

c = (bp ◦ for)(m)

Combiner
c128

Tokenzier

Combiner
(mref : bw :

c128)n

input
sequence

k = 128

tail of input
sequence

mref, bw

finite sequence

tail of input
sequence

encoded
sequence

Integer value m,

032−bwwbw . . . w1 binary representation

k = 1

Figure 2: Modularized scheme for the frame-of-reference technique with binary packing

calculation rule for the processing of an atomic input value,
whereas the output of the Parameter Calculator is an ad-
ditional set of parameters needed for the calculation inside
the Encoder. The fourth module is the Combiner. It de-
termines how to arrange the output of the Encoder. For
a more sophisticated hierarchical data partitioning and pa-
rameter calculation, we are able to replace the Encoder with
a Recursion module.

3. POSTER PRESENTATION DETAILS
Our EDBT poster presentation comprises an in-depth ex-

planation of the compression scheme. In particular, we want
to show the applicability by the transcription of a variety
of lightweight data compression algorithms. Due to space
constraints, we only present one example transcription in
this paper: semi-adaptive frame-of-reference algorithm with
binary packing for the compression of positive integer val-
ues. For each set of 128 values, the algorithm calculates the
minimum value as reference value. Then, each single inte-
ger value is mapped to the offset to the reference value at
the logical level. This technique leads to smaller numbers.
Then, all 12 offset values are encoded with the same bit
width on the physical level. That means, the algorithm has
to calculate it. For each compressed sequence of 128 values,
we have to store the reference value and the bit width as
meta data. Otherwise we are not able to decode the values.

Figure 2 shows the algorithm in our novel compression
scheme, which can be directly mapped to our model kit im-
plementation. The first Tokenizer is parametrized with a
calculation rule that determines that the Tokenizer has to
output the first 128 32-bit integer values of the input se-
quence. The tail of the sequence serves as further input for
the Tokenizer and is processed in the same way in a next
step. The Parameter Calculator determines the minimum
of the 128 values as reference value mref and the needed
bit width bw to encode all 128 offset values. Instead of an
Encoder we use a Recursion module. Inside that recur-
sion, we have a Tokenizer outputting single integer values.
Logically, we have a Parameter Calculator. But at that
level, we do not need to calculate any parameter here. The
Encoder manages the logical level of encoding as well as the

bit level. It uses the reference value mref and the calcu-
lated bit width bw as parameters. At the logical level it
calculates with the function for the offset to the common
reference value for each of the 128 values. At the bit level, it
determines the binary representation of the offset with the
help of the bit width. The inner Combiner concatenates all
physical representations of the 128 offset values to a com-
pressed sequence. Out of the inner Recursion the outer
Combiner concatenates the compressed sequence with the
physical representation of mref and bw as long as all input
has been processed.

4. MODEL KIT AND CONCLUSION
Based on our novel modularized scheme, we also devel-

oped an appropriate model kit on the implementation level
using C++. Our defined modules are available as building
blocks, which can be parameterized with certain calculation
rules. The building blocks can be orchestrated to data flows,
so that complete lightweight data compression algorithms
can be realized. Next, we want to optimize the building
blocks, so that the algorithms can be efficiently executed.
Furthermore, we want to use the model kit to integrate a
large number of algorithms in a database system.

To summarize, in our EDBT poster presentation, we intro-
duce our novel developed compression scheme for lightweight
data compression algorithms. In particular, we want to
show that our approach offers an efficient and an easy-to-
use way to describe, to compare, to adapt, and to implement
lightweight data compression techniques.

5. REFERENCES
[1] P. A. Boncz, S. Manegold, and M. L. Kersten,

“Database architecture optimized for the new
bottleneck: Memory access,” in VLDB, 1999, pp. 54–65.

[2] H. K. Reghbati, “An overview of data compression
techniques.” IEEE Computer, vol. 14, no. 4, pp. 71–75,
1981.

[3] D. J. Abadi, S. R. Madden, and M. C. Ferreira,
“Integrating compression and execution in
column-oriented database systems,” in In SIGMOD,
2006, pp. 671–682.

693


	Model Kit for Lightweight Data Compression AlgorithmsJuliana Hildebrandt, Dirk Habich, Patrick Damme, Wolfgang Lehner

