
The Best Bang for Your Buckg

When SQL Debugging and Data Provenance Go Hand in Hand

Benjamin Dietrich Tobias Müller Torsten Grust
Universität Tübingen
Tübingen, Germany

[b.dietrich, to.mueller, torsten.grust]@uni-tuebingen.de

ABSTRACT
We report on our ongoing effort to develop observational
debuggers for SQL. This debugging paradigm—in which the
evaluation of selected subexpressions may be “spied on”—
fits the nature of query languages, but may lead to observa-
tions whose size can overwhelm users. Here, we tackle this
challenge with the help of data provenance analysis. The
analysis identifies exactly those input rows that are material
in producing suspect query outputs. Running the debugger
on such a minimized input will exclusively yield observations
that are indeed relevant in understanding the bug.

1. SPYING ON SQL EVALUATION
SQL queries are prone to bugs much like code written in

conventional programming languages. The present work in-
vestigates debugging paradigms that fit the declarative na-
ture of SQL and, in particular, shield users from low-level
internals (like execution plans, for example). We argue that
observational debugging [5], an idea rooted in the logic and
functional programming communities, is one such paradigm:
users mark the “suspect” subexpressions—ranging from sim-
ple arithmetics to entire subquery blocks—of a buggy SQL
query to observe their value at runtime. Seeing the difference
between the expected and observed evaluation of a subex-
pression has turned out to be an effective tool in uncovering
subtle SQL bugs [3].

A sample debugging scenario is depicted in Figure 1. Ta-
bles cities and roads jointly model a road network in which
only selected cities host fueling stations (label in Fig-
ure 1(a), 0/1 in column fuel of table cities). Which cities
can we reach from Alton if our car has a maximum range
of 100 km before it needs to be refueled? An attempt to
answer this question is the recursive SQL query of Figure 3.
The query emits table hops(city, range) in which a row 〈c, r〉
indicates that we can reach city c with a residual range of r
(see Figure 2). The result looks suspicious, though: we are

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Alton

Brigg

road
network

Lewes

Neath

Magor

Olney

40 80

80

70

110

(a) Simple road network with travel distances and fueling
stations (). Which cities can we reach from Alton?

cities
city fuel

AltonAlton 11
BriggBrigg 00
CorbyCorby 00

HedonHedon 00
LewesLewes 11
Magor 00
NeathNeath 00
Olney 0

(b) Table cities.

roads
here dist there

AltonAlton 4040 BriggBrigg
BriggBrigg 3030 CorbyCorby

HedonHedon 4040 LewesLewes
LewesLewes 8080 NeathNeath
Lewes 7070 Magor
Magor 110110 Olney
NeathNeath 8080 OlneyOlney

(c) Table roads.

Figure 1: A debugging scenario: a relational model of cities
and their connecting roads, parts of the instance hidden be-
hind . (Disregard the provenance labels and
until you reach Section 2.)

able to reach Olney although the city is farther from the
last fueling station (in Lewes) than our maximum reach.

city range
Alton 0
Brigg 60

· · · · · ·
Magor 90
Neath 80
Magor 50
OlneyOlney 0
Neath 40

Figure 2: Final (but incorrect)
hops table. The identifies
one questionable output: we
did not expect to reach Olney.

Pursuing the observational
debugging paradigm, users mark
parts of the buggy query (
in Figure 3) to learn about the
evaluation of selected subex-
pressions. Markings typically
start out large and then grad-
ually zoom in on query details
until the source of the bug can
be observed directly. In keeping
with the relational data model,
the debugger presents obser-
vations in tabular form (Fig-
ure 4). Given the particular markings 1 to 4 of Figure 3,
one row in the observation table shows our current location
(column 2) and the range available (possibly after refueling,
column 4) before we travel r.dist kilometers (column 3)

Poster Paper

Series ISSN: 2367-2005 674 10.5441/002/edbt.2016.81

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.81

1

2

34

1 WITH RECURSIVE hops(city, range) AS (
2 VALUES (’Alton’, 0)
3 UNION ALL
4 SELECT r.there AS city,
5 h.range + c.fuel * 100 - r.dist AS range
6 FROM cities AS c, roads AS r, hops AS h
7 WHERE h.city = c.city
8 AND h.city = r.here
9 AND h.range + c.fuel * 100 >= r.dist

10)
11 SELECT *
12 FROM hops;

Figure 3: Users place markings () to observe the evalu-
ation of suspect SQL subexpressions.

to reach the next city (column 1). At recursion depths 9
and 10 we observe suspicious ranges which exceed the max-
imum of 100 (see the 160 km range marked by , for exam-
ple). This suggests that the query’s range computation is
to blame (see [2] for the complete story behind the hunt for
the bug of Figure 3).

2. MAKE EVERY OBSERVATION COUNT
Observations may be sizeable, however, and it can be a

true challenge to spot enlightening details like in Figure 4.
The sheer size of the input tables as well as the marking of
subexpressions that are evaluated before aggregates or filters
reduce data volume may lead to huge observations that do
not reveal much. Indeed, in Figure 4 the lion’s share of our
observations hides behind the ellipses (...), the majority of
which contribute nothing to the understanding of the bug.
It is here where we propose to join two strands of work

that have evolved independently until now. We build on a
variant of data provenance analysis [1, 4] as follows:
(1) In the query output, users identify one or more suspect

cells or rows (see Figure 2 where we use the mouse to
identify the questionable city Olney).

(2) Provenance analysis infers those input table cells that
are material in computing the value Olney (where prove-
nance, cells labeled in Figure 1(a)) as well as all
rows that were inspected to decide that Olney is part of
the query’s result (why provenance, label).

2 1 3 4
recursion hops AS h SELECT · · · r.dist h.range · · ·

depth city range city range
0 Alton 0

9

Iford 30
Lewes 60
Lewes 60
Magor 40
Magor 50
Neath 30
Neath 40

Lewes 20
Magor 90
Neath 80

110
70
80

130
160

 160

10

Lewes 20
Lewes 20
Magor 90
Neath 80

Magor 50
Neath 40

Olney 0

70
80

80

120
120

80

11
Magor 50
Olney 0
Neath 40

...
... ...

...

Figure 4: Excerpt of observations made by markings 1 to 4 .

(3) Remove unlabeled input rows and run the observational
debugger on the minimized database instance.

This input minimization will, in general, lead to significantly
smaller observations: in the road network scenario, any city
or road that does not lie on the path from Alton to Olney
will be removed (see Figure 5 which features a mere 12 rows
and hides nothing). Most importantly, the reduced input
will still trigger the bug and any observation made will be
relevant in identifying the bug’s cause—in a sense, after min-
imization the query will focus on producing the buggy out-
put. We claim that this focus is just what is needed to
effectively debug data-intensive computations.

Hand in Hand: Debugging and Provenance Analysis. The
practical relevance of this research hinges on the ability to
embrace expressive SQL dialects—featuring language con-
structs like correlation, grouping, window functions, recur-
sion, as well as built-in and user-defined SQL functions. It is
these rich queries that are potential sources of obscure bugs.
Our recent work on the efficient value-less interpretation

of programs [4] provides a means to derive where- and why-
provenance for such real-world SQL dialects. We are under-
way to connect this analysis with the Habitat observational
debugger for SQL [2] and are positive to be able to make a
significant step towards truly declarative and scalable query
debugging.

3. REFERENCES
[1] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in

Databases: Why, How, and Where. Foundations and
Trends in Databases, 1(4), 2007.

[2] B. Dietrich and T. Grust. A SQL Debugger Built from
Spare Parts—Turning a SQL:1999 Database System
into its Own Debugger. In Proc. ACM SIGMOD,
Melbourne, Australia, 2015.

[3] T. Grust and J. Rittinger. Observing SQL Queries in
their Natural Habitat. ACM TODS, 38(1), 2013.

[4] T. Müller and T. Grust. Provenance for SQL Based on
Abstract Interpretation: Value-less, but Worthwhile. In
Proc. VLDB, Hawaii, USA, 2015.

[5] E. Shapiro. Algorithmic Program Debugging. MIT
Press, Cambridge, MA, USA, 1983.

2 1 3 4
recursion hops AS h SELECT · · · r.dist h.range · · ·

depth city range city range
0 Alton 0

1 Alton 0 Brigg 60 40 100

2 Brigg 60 Corby 30 30 60

3 Corby 30 Derby 10 20 30

4 Derby 10 Egton 80 30 110

5 Egton 80 Filey 10 70 80

6 Filey 10 Goole 50 60 110

7 Goole 50 Hedon 100 50 150

8 Hedon 100 Lewes 60 40 100

9 Lewes 60 Neath 80 80 160

10 Neath 80 Olney 0 80 80

11 Olney 0

Figure 5: After input minimization: a full observation display
reveals the buggy refueling logic of the query in Figure 3.

675

	The Best Bang for Your Bu(ck)gBenjamin Dietrich, Tobias Müller, Torsten Grust

