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ABSTRACT
Subgraph/supergraph queries although central to graph an-
alytics, are costly as they entail the NP-Complete problem
of subgraph isomorphism. We present a fresh solution, the
novel principle of which is to acquire and utilize knowledge
from the results of previously executed queries. Our ap-
proach, iGQ, encompasses two component subindexes to
identify if a new query is a subgraph/supergraph of pre-
viously executed queries and stores related key informa-
tion. iGQ comes with novel query processing and index
space management algorithms, including graph replacement
policies. The end result is a system that leads to signifi-
cant reduction in the number of required subgraph isomor-
phism tests and speedups in query processing time. iGQ can
be incorporated into any sub/supergraph query processing
method and help improve performance. In fact, it is the only
contribution that can speedup significantly both subgraph
and supergraph query processing. We establish the princi-
ples of iGQ and formally prove its correctness. We have im-
plemented iGQ and have incorporated it within three popu-
lar recent state of the art index-based graph query process-
ing solutions. We evaluated its performance using real-world
and synthetic graph datasets with different characteristics,
and a number of query workloads, showcasing its benefits.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing

General Terms
Design, Performance
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Graph query processing, indexing, query result caching

1. INTRODUCTION
Graph structured data are prevalent in many modern big

data applications, ranging from chemical, bioinformatics,
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and other scientific datasets to social networking and social-
based applications (such as recommendation systems). In
biology, for example, there is a great need to model “struc-
tured interaction networks”. These abound when studying
species, proteins, drugs, genes, and molecular and chemical
compounds, etc. In these graphs, nodes can model species,
genes, etc. and edges reflect relationships between them.
Molecular compounds, consisting of atoms and their bonds,
are naturally modeled as graphs. Ditto for social networks,
where nodes refer to people and edges to their relationships.

Developing systems and algorithms that can store, man-
age, and provide analysis over large numbers of (potentially
large) graphs is a formidable challenge. Already, there exist
several very large graph datasets. For instance, the Pub-
Chem[34] chemical compound dataset contains more than
35 million graphs and ChEBI[11] (Chemical Entities of Bi-
ological Interest) dataset contains more than half a million
graphs. Further applications extend to software develop-
ment and debugging[27] and to similarity searching in med-
ical datasets[32]. As a result, a large number of graph
data management systems, optimised for handling graph
data, have emerged (e.g., Neo4J[4], InifiteGraph[20]). This
is in addition to graph management systems designed by
big data companies for their own purposes (e.g., Twitter’s
FlockDB[38], Google’s Pregel[28]) and the list is continu-
ously expanding. Hence, the demand for high performance
data analytics in graph data systems is steadily increasing.

Central to graph analytics, is the need to locate patterns
in dataset graphs. Informally, given a query graph, the sys-
tem is called to identify which of the stored graphs in its
dataset contain it (subgraph matching), or are contained in
it (supergraph matching). This is a very costly operation
as it entails the NP-Complete[14] problem of subgraph iso-
morphism and even its most popular solutions [9, 25, 39]
are computationally very expensive. This problem is exac-
erbated when dealing with datasets storing large numbers
of graphs, as the number of required subgraph isomorphism
tests grows. Furthermore, performance deteriorates signifi-
cantly with increasing graph sizes.

The key driver of our work is the realization that in many
applications, it is natural to expect that queries submit-
ted in the past share subgraph or supergraph relationships
with queries of the future. As one example, consider chem-
ical graph datasets, where queries use the graph represen-
tation of chemical entities. Such queries are naturally hi-
erarchical: At the base, we see chemical elements. Then,
there are graphs depicting chemical compounds (consisting
of chemical elements), while there are also techniques to
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create chemical compound clusters out of similar chemical
compounds[34]. Similarly, in protein datasets there is also
a hierarchy of queries for aminoacids, proteins, protein mix-
tures, proteins of uni-cell bacteria, all the way to those of
multi-cell organisms. Finally, typical tools for social net-
work analysis (SNA – e.g., Pajek[10]) provide the ability to
produce graphs by filtering nodes and/or edges from other
graphs. Using such graphs as queries in exploratory interac-
tive SNA induces again the previous characteristic. For in-
stance, consider the (query) graphs for analyzing friendship
networks: such networks within the USA are subgraphs of
friendship networks within North America, which in turn are
subgraphs of the complete friendship network graph. The
conclusion is that, in many applications, any query can itself
be a subgraph or supergraph of a previously issued query.
Up to now, this natural subgraph/supergraph relationship
among queries has not been exploited.

2. PERSPECTIVES AND RELATED WORK
The problem of subgraph/supergraph query processing

has been extensively studied. A prominent paradigm in the
literature is the filter then verify paradigm. Essentially, this
is an index-based class of methods. During indexing, the
dataset graphs are reduced to their features (a feature being
any substructure of a graph, be it path, tree, cycle, or arbi-
trary subgraph), which are inserted into an index structure
(e.g., tree, trie, hash table, etc.). Given a query graph g,
g is also decomposed into its features, following the same
process as for dataset graphs. Then the index is searched
for g’s features; for subgraph queries, the set of graphs that
contain all of said features are returned, whereas for super-
graph queries the returned set consists of graphs all of whose
features are contained in g’s features. This set is called the
candidate set and producing it constitutes the filtering stage
of query processing.

All known algorithms guarantee that there will be no false
negatives; that is, for subgraph (resp. supergraph) queries,
all graphs in the dataset that can possibly contain (resp.
are contained in) the query graph will be included in the
candidate set. However, false positives are possible – not
all graphs in the candidate set contain (resp. are contained
in) the query graph. And herein lies the primary source
of problems, since a subgraph subgraph isomorphism test
must be performed against each graph in the candidate set,
during the verification stage of query processing. The ma-
jor focus of related work then is how to reduce the number
of false positives, i.e., the number of unnecessary subgraph
isomorphism tests.

Approaches in the literature can be classified along two
dimensions: whether they employ (frequent) mining tech-
niques or an exhaustive enumeration for the production of
features, and based on the type of features of the dataset
graphs they index (e.g., paths, trees, subgraphs). Note that
exhaustive enumeration can yield huge indices and may take
a prohibitively long time to do so. For this reason, all ex-
haustive enumeration approaches limit the size of features
to a typically fairly small number of edges (i.e., 10 or less).

Mining-based approaches, both for supergraph queries ([5,
51, 46, 6, 52]) and subgraph queries (e.g., [41, 7, 52]) uti-
lize techniques to mine for frequent (or discriminating, in
[6]) (sub)graphs among the dataset graphs that are then
indexed. Other mining-based approaches, like Tree+∆[49]
and TreePi[45] mine for and index frequent trees. Last, Lin-

dex[43] and LWindex[44] utilize the frequent mining algo-
rithms of previous approaches, and are thus able to index
and query several feature types. Typically such approaches
tend to mine for more complex structures, which presents a
trade-off between the complexity and time required for the
indexing process vis-a-vis the potential for higher pruning
power during query processing. However, numerous related
performance studies [21, 12, 15, 17, 22] have shown that
feature-mining approaches tend to be comparatively worse
performers.

On the other hand, SING[12], GraphGrep[16] and Graph-
GrepSX[3] perform exhaustive enumeration, listing all paths
of dataset graphs up to a certain path length. Similarly,
CT-Index[22] indexes trees and cycles, whereas Grapes[15]
indexes paths along with location information.

A different approach, which does not index features as
above, is presented in gCode[53]. For each graph G in the
graph dataset, gCode computes a signature per vertex of G
(essentially reflecting the vertex’s neighbourhood) and then
computes a signature for G itself. The latter is a tree struc-
ture combining the signatures of all its vertices.

With respect to the verification stage, approaches also dif-
fer on how this is performed. In some works, verification is
performed by applying any (exact) subgraph isomorphism
algorithm of choice (see [25] for a detailed insightful com-
parative evaluation) after the filtering stage. Indeed, this
can be the default choice for all approaches and there is a
large variety of subgraph isomorphism algorithms available.
Most such algorithms are influenced by Ullman’s early work
[39]. Arguably, the algorithm that is now the most widely
used is the VF2[9] algorithm. Last, several approaches store
and utilize location information in their index to achieve
further filtering ([45, 12, 15]).

Recent performance studies [17, 21] have shown that CT-
Index[22] and Grapes[15] are high performing approaches.
CT-Index[22] is based on deriving canonical forms for the
(tree, cycle) features of a graph G, to the fact that for trees
and cycles finding string-based canonical forms can be done
in linear time (unlike general graphs). These string represen-
tations of a graph’s features are then hashed into a bitmap
structure per graph G. Checking whether a query graph g
can possibly be a subgraph of a graph G, can be done with
simple bitwise operators between the bitmap of g and that of
G (as supergraphs must contain all features of a subgraph).
Last, its verification stage is then based on VF2.

Grapes[15] is designed to exploit parallelism available in
multi-core machines. It exhaustively enumerates all paths
(up to a maximum length), which are then inserted into a
trie with their location information. This operation is per-
formed in parallel by several threads, each of which works
on a portion of the graph, producing its own trie, and subse-
quently all tries are merged together to form the path index
of a graph. Grapes then computes (typically) small con-
nected components of graphs in the candidate set, on which
the verification (subgraph isomorphism test) is performed.

An insightful discussion and comparative performance eval-
uation of several indexing techniques for subgraph query
processing (published prior to 2010) can be found in [17].
Furthermore, in [21] we presented a systematic performance
and scalability study of several older as well as current state-
of-the-art index-based approaches for subgraph query pro-
cessing. We are not aware of similar in-depth studies of
solutions to supergraph query processing; however, [44] pro-
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vides a concise overview of related approaches.
On a related note, recent work also deals with graph query-

ing against historical graphs, identifying subgraphs enduring
graph mutations over time [35], which can be viewed as a
variation whereby graph snapshots in time can be viewed as
different graphs. Also, the research community has recently
started looking into subgraph queries against a single, very
large graph consisting of possibly billions of nodes[36]. To
accelerate the query processing, SPath[48] proposes a path-
at-a-time fashion, which proves to be more efficient than tra-
ditional vertex-at-a-time methods, whereas [36] makes use of
a memory cloud and [33, 1, 24] exploit MapReduce. In this
subgraph querying problem for the single large graph set-
ting, the goal is to expedite the subgraph isomorphism itself,
whereas in the setting with many dataset graphs, the target
of subgraph querying problem is to minimize the number
of isomorphism tests that need to be performed. Our work
focuses on the latter setting and leaves for future work the
application of our ideas to the former setting.

There has also been considerable work on approximate
graph pattern matching. Relevant techniques (e.g., [22, 18,
37, 40, 42, 47, 50, 33, 13]) perform subgraph matching with
support for wildcards and/or approximate matches. These
solutions are not directly related to our work, as we expedite
exact index-based subgraph/supergraph query processing.

Caching of the results of path/tree queries has been ex-
plored in XML databases[26, 2, 29]. The problem we focus
on is considerably different, as the queries we deal with are
in the form of graphs (not just paths/trees), thus entailing
the NP-Complete problem of subgraph isomorphism. Fur-
thermore, in our setting queries retrieve stored graphs that
contain the query graph (subgraph queries) or are contained
in it (supergraph queries), and we exploit both supergraph
and subgraph relationships among queries themselves, as op-
posed to only subsumption (i.e., supergraph) relationships.
Moreover, our graph replacement policy also takes into ac-
count the subgraph isomorphism costs, as opposed to just
the size or popularity of cached queries.

Last, [23] presents a cache for targeted historical queries
against a large social graph. In this case, each query is
centered around a uniquely identified node in the social
graph, and the objective is to avoid maintaining and/or
reconstructing complete snapshots of the social graph, but
to instead use a set of static “views” – i.e., snapshots of
neighborhoods of nodes – to rewrite incoming queries. [23]
does not deal with subgraph/supergraph query processing;
rather, the nature of the queries means that containment can
be decided by simply measuring the distance of the central
query node to the center of each view, while also taking into
account the diameter of these two graphs. Furthermore, the
authors do not provide a cache replacement strategy, but
rather an algorithm to compute the optimal cache contents
given a set of queries. iGQ could well be used to both gen-
eralise and expedite query processing in [23].

2.1 The iGQ Perspective
In this work we offer a new perspective and a strategy

for improving subgraph/supergraph query processing per-
formance and scalability. Our approach rests on the follow-
ing three observations: First, in related works there exists
an implicit assumption that graph queries will be similarly
structured to the dataset graphs. In general this is not guar-
anteed to hold (e.g., in exploratory analytics), and when

query graphs have no match in the dataset graphs, query
processing cannot benefit at all from indexes that are solely
constructed on dataset graphs. Second, even when query
graphs have matches against dataset graphs, the system per-
forms expensive computations during query processing and
simply throws away all (painstakingly and laboriously) de-
rived knowledge (i.e.,previous querying result). Third, the
success of known approaches depends on and exploits the
fact that dataset graphs share features (e.g., when mining
for frequent features) and/or that dataset graph features
contain or are contained in other graph features (e.g., when
using tries to index dataset graph features). However, they
completely fail to investigate and exploit such similarities
between query graphs.

As mentioned, it is natural in many applications for new
queries to bear subgraph/supergraph relationships with pre-
viously issued queries. Our efforts in this work centre on
exploiting this characteristic to further improve the per-
formance of query processing. Therefore, instead of “min-
ing” only the stored graphs and creating relevant indexes
on them, we also “mine” query graphs and accumulate the
knowledge produced by the system when running queries,
creating a query index in addition to the dataset index. Our
insights identify which is the relevant accumulated knowl-
edge and how to exploit it during query processing in order
to further reduce the number of subgraph isomorphism tests.
iGQ can accommodate any proposed index for sub or super-
graph query processing and help expedite both query types.

2.2 Contributions
The contributions of this work are that we:
• Provide a new perspective to the problem of subgraph/

supergraph query processing, with insights as to how
the work performed by the system when executing
queries can be appropriately managed to improve the
performance of future queries.
• Detail the iGQ approach, based on a query index struc-

ture and associated query processing algorithms, which
can reduce the number of isomorphism tests performed
during query processing.
• Present the iGQ framework, showing how to incorpo-

rate iGQ within existing approaches, and the two iGQ
components: a subgraph query index and a supergraph
query index. The subgraph index of iGQ can be based
on any existing subgraph index (over query graphs, not
dataset graphs). The supergraph index on the other
hand is a new index to swiftly determine supergraph
status between new and previous queries.
• Address the issue of index space management, provid-

ing mechanisms for index updates and a graph replace-
ment policy, deciding contents of query index.
• Implement iGQ, incorporate it within three popular

approaches for graph query processing, and provide
experimental results using real-world datasets and a
number of query workloads, showcasing iGQ’s benefits
against competitive state of the art methods.

3. PROBLEM FORMULATION
We consider undirected labeled graphs. For simplicity, we

assume that only vertices have labels; all our results straight-
forwardly generalize to graphs with edge labels.

Definition 1. A labeled graph G = (V,E, l) consists of
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Figure 1: Dominance of the Verification Time on the Overall
Query Processing Time of Three Subgraph Querying Algo-
rithms on Two Different Real-world Graph Datasets

a set of vertices V (G) and edges E(G) = {(u, v), u ∈ V, v ∈
V }, and a function l : V → U , where U is the label set,
defining the domain of labels of vertices.

A sequence of vertices (v0, . . . , vn) s.t. ∃(vi, vi+1) ∈ E,
constitutes a path of length n. A simple path is a path where
no vertices are repeated. A cycle is a path of length n > 1,
where v0 = vn. A simple cycle is a cycle with no repeated
vertices (other than v0 and vn). A connected graph is one
where there exists a path between any pair of its vertices.

Definition 2. A graph Gi = (Vi, Ei, li) is subgraph-iso-
morphic to a graph Gj = (Vj , Ej , lj), (by abuse of notation)
denoted by Gi ⊆ Gj, when there exists an injection φ : Vi →
Vj, such that ∀(u, v) ∈ Ei, u, v ∈ Vi,⇒ (φ(u), φ(v)) ∈ Ej
and ∀u ∈ Vi, li(u) = lj(φ(u)).

Informally, there is a subgraph isomorphism Gi ⊆ Gj if Gj
contains a subgraph that is isomorphic to Gi. In this case,
we say that Gi is a subgraph of (or contained in) Gj , or
inversely that Gj is a supergraph of (contains) Gi (denoted
by Gj ⊇ Gi).

Definition 3. The subgraph querying problem entails a
set D = {G1, . . . , Gn} containing n graphs, and a query
graph g, and determines all graphs Gi ∈ D such that g ⊆ Gi.

Definition 4. The supergraph querying problem entails
a set D = {G1, . . . , Gn} containing n graphs, and a query
graph g, and determines all graphs Gi ∈ D such that g ⊇ Gi.

The iGQ index, I, will be called to index the features of
query graphs; then we shall say that query graph g is indexed
by iGQ and (by abuse of notation) denote it by g ∈ I. We
denote with Isub(g) all query graphs currently contained in I
that are supergraphs of g (answers to g, if g was a subgraph
query); i.e., Isub(g) = {G | G ∈ I ∧ g ⊆ G}. Similarly, we
denote with Isuper(g) all query graphs currently contained in
I that are subgraphs of g (answers to g, if g was a supergraph
query); i.e., Isuper(g) = {G | G ∈ I ∧ g ⊇ G}.

4. iGQ PRINCIPLES
We firstly discuss our findings from experiments we ran

regarding the major performance obstacles we need to over-
come if we are to bring about further query processing time
reductions. Subsequently, we present the iGQ framework,
followed by an explanation of how the components of iGQ
are utilized for further performance improvements, and re-
lated formal proofs of correctness. As mentioned, so far re-
lated work has not considered benefiting from the execution
of previous queries. Thus, despite devoting a lot of resources
to such queries, the results derived cannot be put to good
use to improve performance of future subgraph queries.

Figure 2: Average Number of Candidates, Answer Set Size,
and False Positives in the AIDS Dataset

4.1 Insights
We report on the fundamentals of the performance of

three state of the art approaches, GraphGrepSX[3] (GGSX),
Grapes[15], and CT-Index[22], over three real datasets and
one synthetic dataset with different characteristics. These
characteristics will be presented in detail in the experimen-
tal evaluation section. Briefly, AIDS represents a graph DB
consisting of 40,000 very small, sparse graphs, while PDBS
is a graph dataset containing 600 large graphs. Please note
that the way the queries were generated is standard among
related work [15, 22].

Subgraph Query Performance: Where Does Time Go?
There are two key components of the overall query process-
ing time: filtering time (to process the index and produce
the candidate set) and verification time (to perform the ver-
ification of all candidate graphs). Fig. 1 shows what per-
centage of the total query processing time is attributed to
each component.

The dominance of the verification step is clear. This holds
across the three different approaches that employ different
indexing methods and utilize different strategies for cutting
down the cost of subgraph isomorphism. Recall that sub-
graph isomorphism performance is highly sensitive to the
size of both the input graph and the stored graph. Hence,
we would expect that for smaller stored graphs (as in the
AIDS dataset) the verification step would be much faster.
Notably, however, even when graphs are very small, the
verification step is the biggest performance inhibitor and
as graphs become larger (e.g., PDBS) the verification step
becomes increasingly responsible for nearly the total query
processing time. Of course, given the NP-Completeness of
subgraph isomorphism, one would expect that verification
would dominate, especially for large graphs. But the fact
that even with very small graphs this holds is noteworthy.

Filtering Power: Is It Good Enough?
The second fundamental point pertains to how one can re-
duce the verification cost. Related works highlight that their
approaches prove to be very powerful in terms of filtering out
the vast majority of DB graphs. In Figures 2 and 3 we show
our results with respect to the average size of candidate sets
and of the answer set, as well as the average number of false
positives for the AIDS and PDBS datasets.

First, note that different algorithms behave differently
in different datasets (e.g., Grapes significantly outperforms
CT-Index in PDBS while the reverse holds for AIDS). Sec-
ond, note that despite the powerful filtering of an approach,
when the DB contains a large number of graphs (see Figure
2) in absolute numbers, there is a very large number of un-
necessary subgraph isomorphism tests (i.e., false positives)
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Figure 3: Average Number of Candidates, Answer Set Size,
and False Positives in the PDBS Dataset

that is required. The above two combined imply that even
the best algorithm will suffer from a large number of unnec-
essary subgraph isomorphism tests under some datasets.

Turning our attention to Figure 3 we see that for DBs with
medium to small number of graphs, the high filtering power
can indeed result in requiring only a relatively small number
of subgraph isomorphism tests. However, considerable per-
centages of false positives can appear in the candidate sets of
even top-performing algorithms; e.g., CT-Index, which ex-
hibited the best filtering in the AIDS dataset, has an almost
50% false positive ratio in the PDBS dataset. Furthermore,
not all subgraph isomorphism tests for the graphs in the
candidate set are equally costly. As the cost of subgraph
isomorphism testing depends on the size of the graph, the
larger graphs in the candidate set contribute a much greater
proportion of the total cost of the verification step. Note
that, naturally, false positive graphs tend to be the largest
graphs in the DB, since these have a higher probability to
contain all features of query graphs.

Note that we placed emphasis on the number of unneces-
sary subgraph isomorphism tests (i.e., the false positives),
as we can improve filtering further by reducing this number.
However, this is not the only source of possible improve-
ments. As we shall show later, iGQ can improve on the
number of subgraph isomorphism tests even beyond this, by
exploiting knowledge gathered during query execution.

The insights that can be drawn are as follows:
• Despite the fact that state of the art techniques (based

on indexing features of DB graphs) can enjoy high fil-
tering capacity, there is still large room for improve-
ment, as even the best approaches may perform large
numbers of unnecessary subgraph isomorphism tests.
• Improving further the filtering power of approaches

can significantly improve query processing time, as this
will reduce the number of subgraph isomorphism tests,
which dominates the overall querying time.
• Even approaches that are purported to enjoy great fil-

tering powers, can behave much more poorly under
different datasets.
• Unnecessary subgraph isomorphism tests are not solely

caused by false positives; even graphs in the candidate
set that are true positives can be unnecessarily tested
if the system fails to exploit this knowledge (accrued
by previous query executions).

4.2 The iGQ Framework
iGQ aims to augment the functionality and benefits of-

fered by any one of the subgraph and/or supergraph index-
ing methods in the literature. Let us call the chosen method
M. The iGQ framework consists of method M and the two
components of I, Isub and Isuper. For the sake of simplicity,
we shall first describe the operation of iGQ when M is a

method for subgraph query processing (denoted Msub). Ini-
tially, method Msub builds its graph dataset index as per
usual. The iGQ index, I, starts off empty; it is then popu-
lated as queries arrive and are executed by Msub.

Upon the arrival of a query g, the query processing process
is parallelized. One thread uses method Msub’s algorithms
and indexing structure to breakdown the query graph into
its features, and uses its index to produce a candidate set of
graphs, CS(g), as usual. Additionally, I will obtain as many
of the intermediate and final results from method M’s execu-
tion as possible; e.g., it will obtain the features of the query
graph, to be compared to those stored in I (from previously-
executed queries). At this point, two separate threads will
be created: one will check whether the query graph is a
subgraph of previous query graphs and the other will check
whether it is a supergraph of previous query graphs. These
cases yield different opportunities for optimization and are
discussed separately below.

In the following we proceed to describe the function of
each component of the iGQ framework and how it is all
brought together. For the formal proofs of correctness that
follow, for simplicity, we make the following assumptions.

Assumptions. The iGQ index components, Isub and Isuper
work correctly. That is:

G ∈ Isub(g)⇒ g ⊆ G (1)

and

G ∈ Isuper(g)⇒ g ⊇ G (2)

We will prove that these assumptions hold in sections 6.1
and 6.2.

4.2.1 The Subgraph Case: Isub

This case occurs when a new query g is a subgraph of a
previous query G. When G was executed by the system, the
Isub component of iGQ indexed G’s features. Additionally,
iGQ stored the results computed by Msub for G.

Fig. 4 depicts an example for the subgraph case of iGQ.
A new query g is “sent” to method Msub’s graph index, pro-
ducing a candidate set, CS(g), which in this case contains
the four graphs {g1, g2, g3, g4}. Similarly, g is “sent” to the
iGQ subgraph component, Isub, from where it is determined
that there exists a previous query G, such that g ⊆ G. iGQ
then retrieves the answer set, Answer(G) (previously pro-
duced by method Msub and indexed by Isub); in this case,
Answer(G) = {g1, g2}. The reasoning then proceeds as
follows. Consider graph g1 ∈ CS(g). Since from Isub it has
been concluded that g ⊆ G and from the answer set of G we
know that G ⊆ g1, it necessarily follows that g ⊆ g1. Simi-
larly, we conclude that g ⊆ g2. Hence, there is no point in
testing g for subgraph isomorphism against g1 or g2, as the
answer is already known. Therefore, one can safely subtract
graphs g1, g2 from Msub’s candidate set, and test only the
remaining graphs (reducing the number of subgraph isomor-
phism tests in this example by 50%). After the verification
stage, g1, g2 are added to the final answer set.

In the general case, g may be a subgraph of multiple previ-
ous query graphs Gi in Isub. Following the above reasoning,
we can safely remove from CS(g) all graphs appearing in
the answer sets of all query graphs Gi, as they are bound to
be supergraphs of g; that is, the set of graphs submitted by
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Figure 4: iGQ Processing of a Subgraph Query in the Sub-
graph Case

iGQ for subgraph isomorphism testing is given by:

CSsub(g) = CS(g) \
⋃

Gi∈Isub(g)

Answer(Gi) (3)

Finally, if Answersub(g) is the subset of graphs in CSsub(g)
verified to be containing g through subgraph isomorphism
testing, the final answer set for query g will be:

Answer(g) = Answersub(g) ∪
⋃

Gi∈Isub(g)

Answer(Gi) (4)

Lemma 1. The iGQ answer in the subgraph case does not
contain false positives.

Proof. Assume that a false positive was produced by
iGQ; particularly, consider the first ever false positive pro-
duced by Isub, i.e., for some query g, ∃GFP such that g *
GFP and GFP ∈ Answer(g). Note that GFP cannot be in
Answersub(g), as the latter contains only those graphs from
CSsub(g) that have been verified to be supergraphs of g af-
ter passing the subgraph subgraph isomorphism test, and
hence g * GFP ⇒ GFP 6∈ Answersub(g). Therefore, by
formula (4), GFP ∈ Answer(g)⇒ ∃G such that G ∈ Isub(g)
and GFP ∈ Answer(G). But (by formula (1)) G ∈ Isub(g)
⇒ g ⊆ G, and GFP ∈ Answer(G) ⇒ G ⊆ GFP . Thus
g ⊆ GFP (a contradiction).

Lemma 2. iGQ in the subgraph case does not introduce
false negatives.

Proof. Assume that a false negative was produced by
iGQ; particularly, consider the first ever false negative pro-
duced by Isub, i.e., for some query g, ∃GFN such that g ⊆
GFN and GFN /∈ Answer(g). As method Msub is assumed
to be correct, it cannot produce any false negatives when
processing query g, hence g ⊆ GFN ⇒ GFN ∈ CS(g).
Then, the only possibility for error is that GFN was removed
using formula (3); i.e., GFN /∈ CSsub(g). That implies that
∃G such that G ∈ Isub(g) and GFN ∈ Answer(G). But
then, by formula (4), GFN will be added to Answersub(g)
and thus GFN ∈ Answer(g) (a contradiction).

Theorem 1. The iGQ answer in the subgraph case of
query processing is correct.

Proof. There are only two possibilities for error; iGQ
can produce false negatives or false positives. The theorem
then follows straightforwardly from Lemmas 1 and 2.

4.2.2 The Supergraph Case: Isuper

This case occurs when a new query g is a supergraph of
a previous query G. Fig. 5 depicts an example for the su-
pergraph case of iGQ. Again, the subgraph query processing
method Msub produces a candidate set, CS(g) that, say, con-
tains four graphs {g1, g2, g3, g4}. Running g through Isuper,

DB Graph
Index

CS(g) = {g1, g2, g3, g4}

iGQ Query
index (SUPER) Answer(G) = {g1, g20}

CS(g) \ Answer(G) =

{g1}
Subgraph

Isomorphism 
Test

Answer(g)
Subgraph
Query g

G ✓ g

Figure 5: iGQ Processing of a Subgraph Query in the Su-
pergraph Case

it is determined that there exists a previous query graph G
such that G ⊆ g. Also Isuper supplies the stored answer set
for G, Answer(G) = {g1, g20}.

The reasoning then proceeds as follows. Consider graph
g2 ∈ CS(g). We know from Isuper that g2 /∈ Answer(G).
Now, if g ⊆ g2 were to indeed be true, since G ⊆ g, then it
must also hold that G ⊆ g2; that is, Answer(G) would have
to contain g2 as well, which is a contradiction. Therefore,
it is safe to conclude that g * g2 and thus g2 can be safely
removed from CS(g). Similarly, we can also safely remove
graphs g3, g4 from CS(g), reducing in this case the number
of required subgraph isomorphism tests by 75%. Thus, only
g1 needs to be isomorphism-tested in this example.

In the general case, g may be a supergraph of multiple
previous query graphs Gi in Isuper. By the above reasoning,
only those graphs appearing in the answer sets of all queries
Gi may actually be supergraphs of g; thus the set of graphs
submitted by iGQ for subgraph isomorphism testing is:

CSsuper(g) = CS(g) ∩
⋂

Gi∈Isuper(g)

Answer(Gi) (5)

The final answer produced for query g by iGQ, Answer(g),
will be the subset of graphs in CSsuper(g) that have been
verified by the subgraph isomorphism test.

Lemma 3. The iGQ answer in the supergraph case does
not contain false positives.

Proof. This trivially follows by construction as all graphs
in Answer(g) have passed through subgraph isomorphism
testing at the final stage of processing.

Lemma 4. The iGQ answer in the supergraph case does
not introduce false negatives.

Proof. Assume false negatives are possible and consider
the first ever false negative produced by Isuper; i.e., for some
query g, ∃GFN such that g ⊆ GFN and GFN /∈ Answer(g).
Method Msub does not produce in its candidate set any false
negatives (as will be formally proven shortly), hence GFN ∈
CS(g). Then, the only possibility for error is for iGQ to
have removed graph GFN from CSsuper(g) with formula (5).
This implies that ∃G such that G ∈ Isuper(g) and GFN /∈
Answer(G). But since G ∈ Isuper(g), by equation (2), G ⊆
g, and then g ⊆ GFN ⇒ G ⊆ GFN ⇒ GFN ∈ Answer(G)
(a contradiction).

Theorem 2. The iGQ answer in the supergraph case of
query processing is correct.

Proof. There are only two possibilities for error; iGQ
can produce false negatives or false positives. The theorem
then follows straightforwardly from Lemmas 3 and 4.
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4.3 iGQ and Optimal Performance
There are two special cases that warrant further emphasis,

since they introduce the greatest possible benefits.
First, note that iGQ can easily recognize the case where

a new query, g, is exactly the same as a previous query con-
tained in I. Specifically, this holds when ∃G ∈ I such that
g ⊆ G or g ⊇ G, and g and G have the same number of
nodes and edges. When this holds, since I stores the re-
sult for G, we can return directly and completely avoid the
subgraph isomorphism testing as the actual result for g is
known! As the subgraph isomorphism test dominates the
query execution time, this is expected to be a large perfor-
mance improvement.

Second, consider the supergraph part of iGQ. If ∃G ∈
Isuper(g) such that G ⊆ g and Answer(G) = ∅, then we can
completely omit the verification stage again: If there were a
dataset graph G′ such that g ⊆ G′, since G ⊆ g we would
conclude that G ⊆ G′, which necessarily implies that G′ ∈
Answer(G), which contradicts the fact that Answer(G) =
∅. Thus, no such graph G′ can exist and it is safe to stop
query processing at this stage.

4.4 iGQ and Supergraph Query Processing
As mentioned earlier, iGQ can expedite both subgraph

and supergraph query processing. In the latter case, the
components of iGQ (Isub, Isuper) remain unchanged, but
the handling of the return answer sets is the exact inverse
of what happens for subgraph queries. Briefly, given a su-
pergraph query processing method Msuper and a supergraph
query g, the union of the answer sets of graphs in Isuper(g)
are removed from CSsuper(g) and added to Answersuper(g)
to produce the final answer, and the graphs not appearing
in the intersection of the answer sets of graphs in Isub(g) are
completely subtracted from CSsub(g). Also, the first opti-
mal case mentioned above still holds, but the second opti-
mal case is inversed with the processing terminating when
∃G ∈ Isub(g) such that Answer(G) = ∅. The intuition be-
hind this design and the proof of correctness of iGQ for
supergraph query processing, follow the same reasoning as
above and are omitted for space reasons. The elegance af-
forded by the double use of iGQ is unique.

5. iGQ INDEX SPACE MANAGEMENT
As queries arrive continuously and the space to store I is

finite, iGQ requires methods for (i) efficiently handling this
space and (ii) ensuring that it is best utilized, keeping those
query graphs that increase its performance impact.

5.1 iGQ Graph Replacement Policy
Our replacement policy differs fundamentally from stan-

dard replacement policies: Unlike traditional cache replace-
ment, whereby replacing a page or a file block saves one
IO, different graphs in I bring about different benefits, as is
shown below. We identify three key principles.
Increase the use of iGQ index . I should contain popular
graphs; this is typical of all replacement algorithms. We

define the popularity of a graph g as P (g) = H(g)
M(g)

, where

H(g) is the number of times a graph g ∈ I has been found
to be a subgraph or supergraph of query graphs (hit), and
M(g) is the total number of all queries processed since g was
added to the iGQ index. In essence, this models the fraction
of queries affected over time by g being in I.

Reduce the number of subgraph isomorphism tests.
Ideal graphs for I are graphs that bring about the great-
est possible reductions in the number of executed subgraph
isomorphism tests. Let R(g) be the total number of graphs
removed from the candidate sets of incoming queries because

of g being in I. Then this component is computed as R(g)
H(g)

–

the per-hit average number of subgraph isomorphism tests
alleviated by g.
Reduce the cost of each subgraph isomorphism test.
A graph g ∈ I is more desirable if it helps avoid subgraph
isomorphism tests on the biggest graphs from M’s CS. This
is so since we also wish to remove from CS graphs with
expensive subgraph isomorphism tests. We denote by C(g)
the total cost of the subgraph subgraph isomorphism tests
alleviated as a result of g being in I. In order to estimate this
value, we extend the asymptotic complexity analysis of [8] to
the case of subgraph isomorphism. Specifically, given graphs
with L labels, graph g′ with n nodes, and graph Gi with
Ni ≥ n nodes, the cost c(g′, Gi) of subgraph isomorphism of
g′ against Gi is given by:

c(g′, Gi) = Ni×Ni!
Ln+1×(Ni−n)!

C(g) is then computed as the sum over all c(g′, Gi), for all
g′ whose CS(g′) was reduced by removing Gi as a result of

g being in I, and C(g)
R(g)

gives the average cost reduction per

alleviated test.
Ideal graphs for I are those that could help future queries

as much as possible. To quantify such a contribution, we
introduce the notion of graph utility, U(g), defined as:

U(g) = H(g)
M(g)

× R(g)
H(g)

× C(g)
R(g)

= C(g)
M(g)

That is, the utility of a graph g in iGQ is equal to the
probability of g being used for an incoming query (i.e., be-
ing hit), times the average savings in number of subgraph
isomorphism tests per such hit, times the average cost for a
single subgraph isomorphism test. The replacement policy
is then based on this, with the graph with the smallest U(g)
being evicted.

5.2 iGQ Index Maintenance Policy
For all graphs in I we maintain the metadata mentioned

above (i.e., C(g),M(g)). Additionally, we store the actual
query graphs that are indexed by I in a separate store coined
Igraphs. To facilitate index updates without interfering with
query processing performance, we employ the concepts of
query window size, W , and cache size, C, with W ≤ C.
As new graph queries arrive, they are processed as outlined
above, update the metadata for graphs in I, and are inserted
into a temporary storage Itemp. When W new queries have
been processed, we consult the metadata to locate the W
graphs in I with the lowest utility values. The graph data
for those graphs is removed from Igraphs and replaced by the
graphs in Itemp. The latter is then emptied, and a “shadow”
index, Ishadow, is built over graphs in Igraphs. Incoming
queries keep being served by I and updating its metadata.
When the shadow indexing is over, Ishadow replaces I (with
a pointer swap). Finally, metadata for graphs removed from
I is also removed from the metadata store (C(g),M(g)).

6. iGQ ALGORITHMS AND STRUCTURES
The proofs of correctness provided by the previous section,

assume that Isub and Isuper provide correct results (recall
formulas (1) and (2)). We shall now discuss the associated
mechanisms and prove that they hold.
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Algorithm 1 The Supergraph Index in iGQ

1: Input: Set Q of (previous) queries g1, g2, . . . , gn
2: Output: Supergraph index of previous queries Isuper
3:
4: Initialize Isuper to an empty trie
5: for all gi ∈ Q do
6: Extract all features of gi and insert them in set F (gi)
7: NF [gi] = |F (gi)|
8: for all features f ∈ F (gi) do
9: o = number of occurrences of f in gi

10: Isuper.insert(f, {gi, o})
11: end for
12: end for
13: return Isuper

6.1 Finding Supergraphs in Isub

This case represents a microcosm of our original problem,
where instead of indexing and querying dataset graphs, we
index and query previous query graphs. Hence, any ap-
proach from the related works can be adapted for this pur-
pose. Actually, as iGQ can complement any existing ap-
proach, Msub, we can utilize Msub’s method for subgraph
query processing for the subgraph case of iGQ, or any other
method appropriate for iGQ’s special characteristics (i.e.,
relatively small set of small graphs). Note that the assumed
correct method Msub precludes false negatives and subgraph
isomorphism testing of all candidates precludes false posi-
tives. Hence, formula (1)’s assumption is trivially satisfied.

6.2 Finding Subgraphs in Isuper

The problem of supergraph query processing has also re-
ceived some attention (e.g., in [5, 44, 46, 6, 51]). In principle,
any of these algorithms can be utilized for the task at hand
within iGQ. However, we choose to propose a new approach,
which is efficient yet simple and avoids the complexities and
overheads involved in the above general approaches. The
point is that we want a method for supergraph query pro-
cessing that can easily fit within the framework of iGQ and
perform both subgraph and supergraph query indexing and
processing. Algorithm 1 shows how Isuper is created. Briefly,
Isuper is a trie, storing features of queries. For each feature f
it stores a pair {gi, o} for each graph gi in which f appears,
where o is its number of occurrences in gi. For each gi it also
stores the number of distinct features (NF [gi]) it contains.

Algorithm 2 illustrates how Isuper identifies candidates CS
that are potential subgraphs of query g. The idea is to
find those graphs that contain only features included in the
query graph g (lines 19–22; the check for count(gi) on line
20, ensures that all individual features of gi are contained
in g), and where for each such graph gi a feature f occurs
at most as many times as f occurs in g (line 12). Last, the
graphs in CS are isomorphically tested to verify that gi ⊆ g.

It is straightforward to see that no false negatives can exist
in CS. Assume there is a false negative gi such that gi ⊆ g
and gi /∈ CS. Since gi ⊆ g, any feature f in gi appears no
more times than f appears in g, thus gi would be added to G
on every execution of line 12. As gi ⊆ g, all of gi’s features
must appear in g. Thus, gi would pass the if-clause at line
20 and be added to CS (contradiction). Moreover, subgraph
isomorphism testing of all members of CS precludes false
positives. Hence, formula (2)’s assumption holds.

Algorithm 2 Supergraph Query Processing in iGQ

1: Input: Query graph g and Isuper
2: Output: Candidate set CS of potential subgraphs of g
3:
4: Initialize multiset G = ∅
5: Extract all features of query graph g, F (g)
6: for all features f ∈ F (g) do
7: O[f, g] = number of occurrences of f in g
8: end for
9: for all features f ∈ F (g) do

10: if f ∈ Isuper then
11: for all {gi, o} ∈ Isuper.get(f) do
12: if o ≤ O[f, g] then
13: G.insert(gi)
14: end if
15: end for
16: end if
17: end for
18: for all graphs gi ∈ G do
19: count(gi) = number of occurrences of gi in G
20: if count(gi) == NF [gi] then
21: CS.add(gi)
22: end if
23: end for
24: return CS

6.3 iGQ System Operation
Fig. 6 depicts the complete iGQ system operation when

used to expedite a subgraph query processing method Msub.
Please keep in mind, though, that iGQ can be integrated
with any subgraph and/or supergraph querying method.
Given a new subgraph query g:

1. The query is sent to three separate processing threads
in parallel and also stored in the query window.

2. In the first thread, Msub uses its Dataset Graph Index
to filter the dataset graphs and produce the candidate
set CS(g), as usual.

3. The remaining two threads perform filtering along the
subgraph (section 4.2.1) and supergraph path (section
4.2.2). Their results are combined to prune CS(g),
based on formulae (3) and (5).

4. The resulting candidate set, CSigq(g), undergoes sub-
graph isomorphism testing to produce Ansigq(g).

5. Since this is for a subgraph query, the graphs pruned
during processing along the subgraph path in step 3
are added to Ansigq(g) to produce the final answer
set, Answer(g) (see formula (4)).

6. Metadata maintained throughout the processing of g,
including Answer(g) and its subgraphs/supergraphs
detected during step 3, are added to the metadata
store, Stat(iGQ Graph).

7. If the query window is full, the system uses the above
metadata to select appropriate cached graphs to evict.
Said graphs are replaced by the graphs in the window.

8. Finally, the iGQ index is updated to reflect the new
contents of the cache (section 5.2 details the mainte-
nance of the iGQ index).

7. PERFORMANCE EVALUATION
We have implemented the iGQ algorithms and report on

experiments evaluating its performance on the savings of
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Figure 6: Operation of iGQ on Top of a Subgraph Query Processing Method Msub

subgraph query processing time (supergraph query process-
ing time is omitted for space reason) and on the number of
subgraph isomorphism tests.

7.1 Experimental Setup
Experiments were run on a Dell R920 system (4 Intel

Xeon(R) CPUs (15 cores each), 512GB RAM, 1TB disk),
and on a cluster of four Dell R720’s (each with 2 Intel
Xeon(R) CPUs (8 cores each), 64GB RAM, 1TB disk).

Algorithms. In addition to our implementation of iGQ
query processing, we also secured access to implementations
of three recent high performing subgraph query processing
methods, GraphGrepSX[3] (GGSX), Grapes[15], and CT-
Index[22]. In addition to their competitive performance,
these three methods represent interesting design decisions.
GGSX indexes paths (up to a certain maximum length,
equal to 4 in these experiments) and uses the VF2 subgraph
isomorphism algorithm for its verification stage. Grapes,
like GGSX, also indexes paths (of up to length of 4), but
utilizes location information in the filtering stage to expe-
dite the verification stage, essentially focusing only on con-
nected components of the dataset graphs that may contain
the query graph. CT-Index indexes trees (of maximum size
6), and cycles (of maximum size 8) in hash-based bitmap
structures (4096-bit wide), and uses a modified VF2 for its
verification stage.

The implementations for Grapes and GGSX were obtained
from the corresponding project web sites[15, 3]. For Grapes,
we present two alternatives, Grapes and Grapes(6), which
use 1 and 6 threads respectively. For fairness, we altered
the code of Grapes so to stop query processing when the
first match was found, instead of looking for all matches of
a query within each stored graph. For CT-Index we ob-
tained the JAR file from one of the authors, which we then
reverse-engineered to derive its code in Java. Subsequently,
we integrated the iGQ algorithms of Section 4.2.1 within
Grapes, CT-Index, and GGSX, yielding three different ver-
sions of iGQ, denoted as iGQ Grapes, iGQ CT-Index, and
iGQ GGSX. In this way, (i) we validate our claim that iGQ
can be incorporated into existing approaches, and (ii) we
show that it can introduce significant performance gains dur-
ing subgraph query processing of any of these approaches.

Datasets. We have employed three real-world datasets
and one synthetic dataset with different characteristics, out-
lined in Table 1. AIDS is the Antiviral Screen Dataset of
the National Cancer Institute, containing topological struc-
tures of molecules [30]. PDBS[19] is a dataset of graphs
representing DNA, RNA and proteins. As AIDS and PDBS
contain typical but relatively sparse graphs, we have per-

dataset
unique graphs average num. nodes per graph num. edges per graph
vertex in node
labels dataset degree avg std.dev max avg std.dev max

AIDS 62 40,000 2.09 45 22 245 47 23 250
PDBS 10 600 2.13 2,939 3,217 16,431 3,064 3,264 16,781
PPI 46 20 9.23 4,943 2,717 10,186 26,667 26,361 89,674

Synthetic 20 1,000 19.52 892 417 7,135 7,991 5 8,007

Table 1: Characteristics of Datasets

formed further experiments on dense datasets, including the
PPI dataset and a synthetic dataset. PPI[15] models large
and dense protein interaction networks and consists of 20
graphs. We also used the generator provided by [7] to cre-
ate a much larger number (1,000) of much denser graphs.

Query Workloads. Unfortunately, despite the availabil-
ity of graph datasets, the community does not enjoy well es-
tablished benchmarks and/or real-world query logs for these
datasets. So all related works synthesize queries derived
from components of the dataset graphs. We follow this es-
tablished principle for generating our workloads, whereby
queries are generated from the original dataset graphs as
follows. There are 3 key probability distributions to con-
sider here. The first governs how a graph is selected from
the dataset graphs. The second governs how a node is se-
lected within this graph. Given these, we produce 4 query
workloads: uni−uni, uni−zipf , zipf−uni, and zipf−zipf ,
with, e.g., zipf − uni denoting that dataset graphs have a
popularity (probability of being selected) following a Zipf
distribution, while nodes within the selected graph have a
popularity drawn from a uniform distribution. The proba-
bility density function of the Zipf distribution is given by:

p(x) = x−α

ζ(α)
, where ζ is the Riemann Zeta function[31]. The

default value for α was 1.4 – we have also used α = 1.1 rep-
resenting a much smaller skew and α = 2.0 representing a
stronger skew (as a reference point, web page popularities
follow a Zipf with α = 2.4 [31]). The third governs the size
of each graph query: query sizes are uniformly at random
selected from 4, 8, 12, 16, 20 edges. Once a graph and a
node within this graph have been selected, we then perform
a BFS traversal of the latter’s neighborhood, with unvis-
ited edges of each traversed node included in the generated
graph, until the desired query size is reached.

For AIDS and PDBS, we ran 3,000 queries for each exper-
iment. The first W of these queries were used to warm-up
the index. We then used the remaining queries to measure
the times and candidate set sizes with and without iGQ for
each algorithm. By default we use a cache size C = 500 and a
batch window (and warm-up set) size W = 100 queries – we
have also used C = 1000,W = 200 and C = 1500,W = 300
with a 5,000-query workload to test cache size impact. We
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Figure 7: Speedup in Number of Subgraph Isomorphism
Tests for AIDS

Figure 8: Speedup in Number of Subgraph Isomorphism
Tests for PDBS

further tested iGQ against PPI and the synthetic dataset,
in order to examine its performance under larger and denser
graphs. In these cases, queries take 1-2 orders of magnitude
more time to execute, hence for practical reasons we reduced
the query workload to 500 queries. The batch window (and
warm-up set) size were set to W = 20 queries, with cache
sizes of C = 100, 200, 300 and Zipf skew α = 1.4, 2.0, 2.4.

We report the speedup (reduction) achieved by iGQ, de-
fined as the ratio of the average performance of the tradi-
tional method M over the average performance of iGQ M,
for the number of subgraph isomorphism tests and the query
processing time.

7.2 Filtering Power Speedup
We first examine the filtering power, reflecting the speedup

in the number of subgraph isomorphism tests performed.
This metric facilitates a qualitative analysis of performance,
independent of implementation and system details. Fig. 7
and 8 depict results for the AIDS and PDBS datasets respec-
tively, across all four query workloads. The reduction in the
number of subgraph isomorphism tests is evident (speedups
of 5× to 11×). Fig. 9 shows how Zipf skew α affects this met-
ric for the PDBS dataset, using one of the fastest methods
(Grapes(6)). Results for the AIDS dataset and the other
algorithms are similar and omitted for space reasons. As
expected, with more skewness come increased benefits by
iGQ.

Fig. 10 focuses on speedup across queries grouped by size
(e.g., Q4 groups queries with 4 edges). As iGQ does not
maintain separate caches per query size, the various query
groups compete for the same space. Thus, some of them may
seem to exhibit a lower speedup for larger cache sizes (e.g.,
the speedup of Q16 drops slightly when going from C =200 to
300); however, the speedup for the whole workload exhibited
a steady rise (2.18, 2.45 and 2.53 for C= 100, 200 and 300
respectively; figure omitted due to space reasons). Last, Fig.
11 depicts the results for the synthetic dataset.

7.3 Query Processing Speedup
Fig. 12 and 13 show the query processing time speedup for

the AIDS/PDBS datasets. Interestingly, juxtaposing Fig.
12 against Fig. 7 (and Fig. 13 against Fig. 8) we see that
reductions in the number of subgraph isomorphism tests do
not directly translate into equal gains in query processing

Figure 9: Speedup in Number of Subgraph Isomorphism
Tests for PDBS/Grapes(6) vs Zipf Skew α

Figure 10: Speedup in Number of Subgraph Isomorphism
Tests for PPI/Grapes(6)/zipf − zipf(α = 1.4)/Query
Groups

Figure 11: Speedup in Number of Subgraph Isomorphism
Tests for Synthetic/Grapes(6)/zipf − zipf(α = 2.4)/Query
Groups

Figure 12: Speedup in Query Processing Time for AIDS

Figure 13: Speedup in Query Processing Time for PDBS

times. This is due to some large graphs in the candidate sets
not being pruned away by the current index contents. We
would expect this to be ameliorated as cache sizes increase.
Indeed Fig. 14 shows this for Grapes(6) as cache size varies
from 500 to 1,000 and 1,500 queries. Results for other cases
are similar and omitted for space reasons.

Fig. 15 shows the impact of Zipf skew α on query pro-
cessing speedup for the Grapes(6) algorithms on the PDBS
dataset. Again, with more skewness come greater benefits,
up to impressive levels. Interestingly, juxtaposing Fig. 15
against Fig. 9 tells a different story. We see that reductions
in the number of subgraph isomorphism tests translate into
higher gains in query processing times. This is because of
the replacement algorithm that maintains in the index those
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Figure 14: Speedup in Query Processing Time for
PDBS/Grapes(6) vs Cache Size

Figure 15: Speedup in Query Processing Time for
PDBS/Grapes(6) vs Zipf Skew α

query graphs g with the higher utility; i.e., which help to
avoid expensive subgraph isomorphism tests against graphs
in the candidate sets. Fig. 16 and Fig. 17 show the speedup
for the query processing time, corresponding to Fig. 10 and
Fig. 11, respectively.

Last, Fig. 18 plots the index size for iGQ for C =500 graph
queries, versus that of the three algorithms we’ve considered
so far, for the AIDS dataset. In the default configurations,
iGQ adds a negligible space overhead on top of the base
indexes (less than 1%). In addition to the default config-
urations for said algorithms, Fig. 18 also plots the index
sizes for the immediately larger configurations (i.e., for max
path length of 5 for Grapes and GGSX, and for trees of
size 7, cycles of size 9, and 8192 bits per bitmap for CT-
Index). Note that this minimal increase in the feature size
results in almost double the space requirements for the base
indexes. On the other hand, these larger indexes bring a per-
formance improvement of less than 10% in all cases (figure
omitted due to space reasons), which is virtually negligible
when compared to the gains provided by iGQ.

Overall, iGQ is shown to introduce significant to impres-
sive performance gains, against the state of the art methods
in the literature. We have actually conducted a detailed per-
formance evaluation of most related algorithms[21] and se-
lected GGSX, Grapes(1), Grapes(6), and CT-Index as those
showing the best performance. Regardless of the method,
when incorporating iGQ with it, large performance gains
ensue. These gains are robust and are manifested in all four
different query workloads we have presented and, most im-
portantly, with a minimal space overhead.

8. CONCLUSIONS
We have presented a novel perspective and solution to

the graph querying problem, departing from related work
in three ways: First, it constructs query indexes, as op-
posed to simply relying on dataset graph indexes. Second,
it maintains the knowledge the system produced when exe-
cuting previous queries. Third, it can be used to expedite
both subgraph and supergraph queries. We showed how
these can help improve the performance of future queries
and provided formal proof of correctness. The proposed iGQ
framework consists of (i) a subgraph index, (ii) a supergraph
index, (iii) a method for efficiently maintaining the index,

Figure 16: Speedup in Query Processing Time for
PPI/Grapes(6)/zipf − zipf(α = 1.4)/Query Groups

Figure 17: Speedup in Query Processing Time for
Synthetic/Grapes(6)/zipf − zipf(α = 2.4)/Query Groups

Figure 18: Absolute Index Sizes (in MBytes) for AIDS

including a graph replacement policy, and (iv) any popular
method for indexing and processing subgraph or supergraph
queries. We incorporated iGQ within 3 popular methods
from related work, showcasing its wide applicability. Last,
our performance evaluation on both real-world and synthetic
datasets with various query workloads showed iGQ’s signif-
icant performance gains and negligible space overhead.
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