
Quantifying Likelihood of Change through Update
Propagation across Top-k Rankings∗

Evica Milchevski
TU Kaiserslautern

Kaiserslautern, Germany
milchevski@cs.uni-kl.de

Sebastian Michel
TU Kaiserslautern

Kaiserslautern, Germany
smichel@cs.uni-kl.de

ABSTRACT
Rankings are a widely used techniques to condense a po-
tentially large amount of information into a concise form.
However, rankings are dynamic and undergo changes, thus
need to be maintained, which can be a tedious and expen-
sive task. Given a ranking τ that got updated to τ ′, we aim
at identifying those rankings σ that are very likely to have
changed as well, as they are close in distance to the original
ranking τ . We do so by modeling the expected change in
form of a hypothetical ranking σ′ and mark σ to require a
refresh if the expected change is above a threshold. We do
this for the Footrule distance and demonstrate through a
preliminary evaluation the potential of our approach.

1. INTRODUCTION
We focus on the task of maintaining a set of crowdsourced

entity rankings. One important characteristic of crowdsourced
rankings is that although they share the same entities, they
conform to different constraints, thus, a change in one rank-
ing does not imply the same change in another ranking. We
propose a framework that uses the similarity between the
rankings, to reason about the degree of change in a set of
rankings due to an update in one ranking. Since the dis-
tance between two rankings resembles not only structural
but semantic similarity as well, it is reasonable to assume
that once a ranking changes, it is more likely that similar
rankings change, rather than dissimilar ones. Specifically for
top-k rankings that only report on a (usually short) sub-
set of items, if two rankings are similar, they need to share
also a fraction of items. If ranking τ changes, this means
that items that are present in τ changed, respectively their
features. Such changes might or might not propagate to a
ranking σ that is in distance λ to τ—the likelihood of such
a propagation is what we aim at quantifying in this work.

When considering rankings created over some objective
(measurable) scoring function, like wealth in USD, the up-
date of the rankings can be done by maintaining one global
ranking, and directly updating all rankings affected by an
update. However, keeping a global ranking in the case of

∗This work has been supported by the German Research
Foundation (DFG) under grant MI 1794/1-1.

c©2016, Copyright is with the authors. Published in Proc. 19th International Con-
ference on Extending Database Technology (EDBT), March 15-18, 2016 - Bordeaux,
France: ISBN 978-3-89318-070-7, on OpenProceedings.org. Distribution of this paper
is permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0

crowdsourced rankings, where there is no measurable scor-
ing function, but instead entities are ranked by some user
perceived quality, like popularity, is not only expensive, but
also unintuitive, as there is no ground truth.

1.1 Problem Statement
As input we are given a set T of top-k rankings τ . Each

ranking τ has a domain Dτ—the items it ranks. We further
know the Footrule distance between each pair of rankings
in T . We define an update uτ (i, j) to a ranking τ as a
swap of two items i, j ∈ Dτ . A size of an update uτ (i, j),
for brevity denoted simply as |uτ |, is the difference between
the positions of the swapped items, |τ(i)− τ(j)|. We denote
with τ ′ the ranking τ after applying an update uτ (i, j).

For a given update u over a ranking τ , the task is to
compute the likelihood that u affects other rankings σ ∈
T , σ 6= τ such that F (σ, σ′) is larger than some user defined
threshold θ. In that case, σ is marked to be refreshed (e.g.,
crowdsourced) to bring it up to date. If we believe a ranking
is not affected by a change but in fact it is, we suffer loss in
recall, the ranking is not refreshed and our database T is
getting stale. If we, however, believe it is affected and it is
not, we suffer loss in precision, which leads to wasting cost
to refresh a ranking when it is not required to do so. For an
overview to methods for comparing top-k rankings, see [1].

2. APPROACH
Algorithm 1 shows the procedure for determining (allegedly)

affected rankings. As input the algorithm takes a specific up-
date, a set of rankings, where the Footrule distance between
all pairs is known, and a threshold θ. First, we compute the
maximum distance, dmax that would likely result in the up-
dated items i, j being present in both rankings τ and σ, i.e.,
i, j ∈ Dτ ∩ Dσ ⇒ F (τ, σ) ≤ dmax with some probability
p. We explain how this bound can be computed below. The
next step is computing the expected change according to the
distance. For this purpose, in a pre-processing step for each
possible distance, for a given k, we compute an average dif-
ference between the positions of the items in two rankings
τ and σ, such that F (τ, σ) = λ. We call this average dis-
placement (see Section 2.1) and it does not depend on the
actual rankings in T . Using the average displacements, we
compute the expected change, according to the actual up-
date. If the change is larger than a user specified threshold
θ, we retrieve all distances and output all rankings within
the retrieved distance to the changed ranking.

When we have a sequence of updates, we can simply accu-
mulate the change. Note that an update over several items
can also be considered as a sequence of updates of two items.

2.1 Computing the Expected Change
Since we do not know the positions, if any, of the affected

items in the rankings, the first step toward quantifying the
expected change in a ranking is reasoning about the most

Poster Paper

Series ISSN: 2367-2005 660 10.5441/002/edbt.2016.74

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.74

input: uτ , T , θ
1 dmax = get distance limit()
2 for each E[µ] in get expectations(k) do
3 echange= get expected change(uτ , τ, E[µ])
4 if echange ≥ θ then
5 for each d ≤ dmax in get distances(echange) do
7 R← get all rankings(d)
8 return R

Algorithm 1: Algorithm for determining all the rankings
in T affected by a change uτ according to their distance.

likely position of the affected items, when the distance λ
between the rankings is known. To do this we first define a
displacement of an item i in two rankings τ and σ:

definition 1. Displacement of an item: For two rank-
ings τ and σ, τ 6= σ, we define a displacement of an item i,
denoted with µi, i ∈ Dτ ∩Dσ, as the difference of the posi-
tion of the item in the two rankings, i.e., µi = |σ(i)− τ(i)|.
In the case when i ∈ Dτ \Dσ, µi = k+1−τ(i) or vice versa.

The Footrule distance between two rankings τ and σ is
in fact the sum over the displacements of the items in Dτ ∪
Dσ. We can compute the most likely position of the affected
items, i, j in σ as E[σ(i)] = τ(i)+E[µ] and E[σ(j)] = τ(j)+
E[µ], where E[µ] is the average displacement between the
items in two rankings within distance λ of each other.

To compute the average displacement E[µ] for a given
Footrule distance λ we need to compute all the displace-
ments that contribute to that distance. The naive way to
do this is to generate all top-k rankings for a given k, com-
pute the distances between all combinations of rankings, and
compute the average item displacements for every distance.
However, this is computationally very expensive, as gener-
ating all the rankings of size k has a complexity in O(k!).

One key observation that allows us to more efficiently com-
pute the sample space is the fact that the Footrule distance
is a sum over non-negative integers, where each integer is
a displacement of an item. In number theory and combina-
torics, an unordered collection of positive integers whose sum
is n is called a partition of n. Several efficient algorithms for
generating all the partitions for a number, working in con-
stant amortized time, have been proposed. Thus, we could
use one of those algorithms to generate all the partitions for
the distance λ. The resulting set of partitions could be used
to compute the average displacement E[µ]. Note that not all
partitions of λ should be used in computing E[µ]. The details
of how exactly E[µ] can be computed we leave out of this
paper due to lack of space. Considering an update uτ (i, j)
of τ , one can compute the expected change E[F (σ, σ′)] as:

E[F (σ, σ′)] = (1− λ)× (2× |E[σ(i)]− E[σ(j)]|)
where λ is the distance between τ and σ. The reasoning
is that since these are the only two items that changed in
σ′ with respect to σ, the change can be computed as (2 ×
|E[σ(i)]−E[σ(j)]|). However, since σ is only similar to τ , we
do not want to fully propagate the change. Thus, we multiply
the change by 1− λ (we normalize λ, thus 0 ≤ λ ≤ 1).

The above formula only covers the case when we assume
that the affected items belong to the domains of both rank-
ings. However, since we are working with top-k rankings it
can happen that the updated items in τ cannot be found
in σ at all. To eliminate the rankings that are so dissim-
ilar to the updated ranking, and thus it is very unlikely
that they changed, we define a maximum distance bound
dmax. This bound is computed using the probability of not
finding both updated items i and j in σ, P (i, j /∈ Dτ ∩

Dσ) =
(2∗(k−w)

2)
(2∗k−w

2)
, where w is the overlap between the rank-

θ = 0.1 θ = 0.15
Precision Recall Precision Recall

Our approach 0.58 0.6 0.59 0.41
Baseline 0.12 1 0.08 1

Table 1: Experimental results: Precision and Recall

ings. Since we only know the distance between the rank-
ings, we can compute the maximum overlap that two rank-
ings can have within a distance λ as wmax = d 1

2
× (−1 +√

1− 4× λ+ 4× k + 4× k2)e + 1 and then plug this value
into the above probability estimation formula.

3. EXPERIMENTS
We have implemented the described algorithm in Java 8.

We created one synthetic dataset by first creating a small
set of base rankings, by randomly choosing at least ρ from k
items, where k is the size of the rankings, and then randomly
choosing the remaining k − ρ items. All the other rankings
are created by swapping a random number of items from
the base rankings. The dataset contains 500 rankings with
size k = 10. We compared our approach with the baseline
approach—retrieving all rankings that have at least one item
in common with the affected ranking. For the experiments,
we randomly selected one ranking from the dataset, ran-
domly selected a pair of items from this ranking, and then
swapped their places. We then used our method and the
baseline to find the affected rankings in the dataset.

Table 1 reports the average precision and recall for the
two approaches over 100 trials. We report on results for two
values of the threshold θ, 0.1 and 0.15. To compute dmax,
we set P (i, j /∈ Dτ ∩Dσ) to 0.9. Note that the recall of the
baseline is always 1 since the relevant rankings must have
at least one item in common with the changed ranking. We
can see that with our approach we can achieve high preci-
sions (much higher than the baseline) while still maintaining
relatively high recall.

4. RELATED WORK
Research around crowdsourcing information usually ad-

dresses the problem of reducing the cost, while still retain-
ing high quality results. Guo et al. [3] address the problem
of finding the highest ranked object using the least num-
ber of questions, from a set of objects, in a crowdsourcing
database system. Wang et al. [5] use transitive relations to
reduce the number of questions asked to the crowd for the
case of crowdsourced joins. Gruenheid and Kossmann [2]
investigate the cost and quality trade-offs of different algo-
rithms in a crowdsourcing environments. Polychronopoulos
et al. [4] propose an algorithm for creating top-k lists using
the crowd, The idea behind the algorithm is to create a high
agreement top-k list for a low latency and monetary cost, by
adaptively choosing the number of tasks posed to the crowd.
To the best of our knowledge, there has not been any work
that focuses on maintaining a set of crowdsourced rankings.

5. REFERENCES
[1] R. Fagin et al. Comparing Top k Lists. SIAM J.

Discrete Math., 2003
[2] A. Gruenheid and D. Kossmann. Cost and quality

trade-offs in crowdsourcing. DBCrowd, 2013.
[3] S. Guo et al. So who won?: dynamic max discovery

with the crowd. SIGMOD, 2012.
[4] V. Polychronopoulos et al. Human-powered top-k lists.

WebDB, 2013.
[5] J. Wang et al. Leveraging transitive relations for

crowdsourced joins. SIGMOD, 2013.

661

	Quantifying Likelihood of Change through Update Propagation across Top-k RankingsEvica Milchevski, Sebastian Michel

