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ABSTRACT
Assume that a database stores a set of intervals associated
with types and weights. Typed intervals enrich the data
representation and support applications involving different
kinds of intervals. Given a query time and type, the system
reports k intervals that intersect the time, contain the type
and have the largest weight. We develop a new structure to
manage typed intervals based on the standard interval tree
and propose efficient query algorithms. Experiments with
synthetic datasets are conducted to verify the performance
advantage of our solution over alternative methods.

1. INTRODUCTION
In this paper, we study top-k queries on typed intervals. As-
sume that a database stores a set of tuples, each of which de-
fines three attributes: an interval with start and end points,
a type and a weight. Given a query time and type, the sys-
tem reports k tuples fulfilling the conditions: (i) intersect the
query time; (ii) contain the type; and (iii) have the maxi-
mum weight, i.e., return k intervals with maximum weights
among all fulfilling conditions (i) and (ii).

To help understand the problem, Figure 1 shows a running
example. In traffic monitoring systems, the database stores
the number of vehicles appearing in a district over time.
There are different kinds of vehicles: {Taxi, Bus, Truck,
Private Car}. Each tuple records a time interval, the vehicle
type and the count. A top-k query is“return the district with

the largest number of buses at the time 8.5”, and the system
returns o3. The following objects {o3, o5, o8, o10} intersect
the query time, but only o3 and o5 fulfill the type condition.

In the literature, queries on interval data have been studied
with operators such as intersecting [3], stabbing [1] and top-
k on keyword intervals [5]. However, they do not consider
intervals associated with types and therefore do not sup-
port applications involving different types of intervals, e.g.,
various genome intervals in genomic datasets and different
versions of data items.
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Id Time Type Count

o1 Taxi[0, 2] 40

o2 Car[2, 5] 15

o3 Bus[6, 12] 60

o4 Car[0, 4] 45

o5 Bus[4, 11] 20

o6 Truck[11, 12] 45

o7 Bus[0, 6] 30

o8 Taxi[6, 12] 23

o9 Truck[0, 9] 23

o10 Car[9, 12] 83
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Figure 1: Typed Intervals

Edelsbrunner’s interval tree [2] is a popular structure for re-
porting intervals intersecting a given query. In principle, an
interval tree is a binary tree that serves as the primary struc-
ture. Each node in the tree maintains two lists (secondary
structure) of sorted intervals. One can directly employ the
two-list structure to manage typed intervals, but the method
is not optimal. Since the standard interval tree does not sup-
port intervals with types, a linear scanning is performed in
each accessed node to find intervals that intersect the time
and contain the type, even some of them are not equal to
the query type. Another problem is, too many intervals are
visited. In fact, the query only needs k intervals.

We propose a new structure to replace the sorted lists in
each node to maintain typed intervals. Given a node stor-
ing a set of intervals, the new method is able to determine
part (even all) of the intervals intersecting the query time
without accessing the data. An index is built on managing
types, leading to quickly finding intervals with a particular
type. Employing the new structure, much less intervals are
accessed to report k results. We carry out the experimental
evaluation to demonstrate the performance of our method
by using synthetic datasets.

2. THE SOLUTION
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In each node, we replace two lists by a new structure for
interval management. The idea is, we partition the interval
space into a set of equal-length slots, each of which has a
unique id and defines a subspace. We use two tables in which
one maintains intervals containing the relevant slots and the
other maintains intervals intersecting the slots, named as
full and partial tables, respectively. Each row in the tables
corresponds to a slot and stores a list of interval ids.
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Figure 2: Slot representation based on interval tree

Figure 2 depicts the binary tree built on intervals and the
slot representation for the root node. The new secondary
structure includes the center point p and two child pointers
lp, rp. These items are the same as the traditional structure
[2]. Next, min and max are lower and upper endpoints of all
intervals at this node. To perform the partition, the number
of slots is defined, denoted by g. In the example, four slots
are created for the root node. Intervals located in each slot
are first sorted on type and then on weight. The type index
is a list of items and each item records the type and the start
position of intervals with that type. For example, the index
for the third slot in the full table will be {(Taxi, 0), (Bus,
1)} because o8 is the first interval in the slot and o3 is the
second interval.

To answer the query, we perform a binary search on the
tree. Given a node, we first determine the corresponding
slot and then access the full and/or partial tables. Intervals
in the full table do not have to be tested on the intersection
condition. We use the type index to find intervals having the
query type and return the first k intervals. For intervals in
the partial table, we find those fulfilling the type condition
and then iteratively test each on the intersection condition.
Intervals from the two tables are inserted into a min-heap
with the size k. We keep updating the min-heap until the
searching procedure is terminated. Apparently, the better
the performance is, the more intervals are in the full table.
This depends on the slot number defined to partition the
space.

3. EXPERIMENTAL EVALUATION
We use synthetic datasets in the preliminary evaluation:
{S1 (1M), S2 (5M), S3 (10M), S4 (20M), S5 (50M)}. The start
point of an interval is randomly chosen within the domain
[1, 100000], and the length is a random value between 1 and
1000. Let T be the number of types and we set T = 100
in the experiment. The weight is randomly selected as an
integer from [1, 500].

Three competitive algorithms are developed in the evalua-
tion. One extends the standard interval tree by integrating
a boolean bit string representing whether there are intervals

with certain types in the node. The secondary structure in
each node is defined to be 2·T ′ (T ′ ≤ T ) lists. Each list
stores intervals with the same type. The second algorithm
uses a relational interval tree [4] in which the bit string is
also integrated. The last method employs a 2D R-tree. The
three algorithms are named by Ext-I-tree, RI-tree, and R-

tree, respectively, and our method is named Slot.

 1

 10

 100

 1000

S1 S2 S3 S4 S5

C
P

U
 ti

m
e(

m
s)

R-tree
RI-tree

Slot
Ext-I-tree

(a) CPU time

 10

 100

 1000

 5000

S1 S2 S3 S4 S5

I/
O

 A
cc

es
se

s

R-tree
RI-tree

Slot
Ext-I-tree

(b) I/O accesses

Figure 3: scaling the data size
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Figure 4: synthetic dataset, S5

We perform the evaluation by scaling the number of data
intervals and the number of returned intervals k. The CPU
time and I/O accesses are reported in Figure 3 and Figure
4. The results demonstrate that our method significantly
outperforms other methods, e.g., 3-6 times faster than R-

tree, 2-10 times faster than Ext-I-tree. Since the CPU time
is only several milliseconds, a small deviation may lead to
a sharp slope of the curve, e.g., in Figure 3(a). The I/O
variation in Figure 4(b) is attributed to the randomness of
the generated queries.
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