
TINTIN: a Tool for INcremental INTegrity checking of
Assertions in SQL Server

Xavier Oriol
Universitat Politècnica de

Catalunya
xoriol@essi.upc.edu

Ernest Teniente
Universitat Politècnica de

Catalunya
teniente@essi.upc.edu

Guillem Rull
Universitat de Barcelona

Barcelona, Spain
grull@ceipac.ub.edu

ABSTRACT
We present TINTIN, a tool to perform efficient integrity
checking of SQL assertions in SQL Server. TINTIN rewrites
each assertion into a set of standard SQL queries that, given
a set of insertions and deletions of tuples, allow to incremen-
tally compute whether this update violates the assertion or
not. If one of such queries returns a non empty answer,
then the assertion is violated. Efficiency is achieved by eval-
uating only those data and those assertions that can actu-
ally be violated according to the update. TINTIN is aimed
at two different purposes. First, to show the feasibility of
our approach by implementing it on a commercial relational
DBMS. Second, to illustrate that the efficiency we achieve
is good enough for making assertions to be used in practice.

Keywords
Integrity checking, SQL, Assertions

1. INTRODUCTION
In standard SQL, users can specify general constraints us-

ing the CREATE ASSERTION statement. The basic technique
for writing assertions is to specify a query that selects those
tuples that violate the desired condition. By including this
query inside a NOT EXISTS clause, the assertion will specify
that the query result must be empty. Thus, the assertion is
violated if and only if the query result is not empty [2].

Assertions were initially defined in SQL-92 [1] and they
serve as a means for expressing global integrity constraints
not tied to a particular table, but ranging over several ones.
They are sufficient for expressing most constraints since al-
most the full expressiveness of SQL can be used to define the
query inside the NOT EXISTS clause. It is also well known
that many integrity constraints can only be expressed via
assertions since the other constructs provided by SQL are
not powerful enough. Thus, assertions provide an elegant
way to define general constraints in SQL.

However, assertions are still not supported by any of the
most well-used commercial RDBMS (Oracle, MySQL, SQL

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Server, PostgreSQL, DB2). It might be argued that asser-
tions can be emulated via manually writing a set of triggers,
which is a widely supported feature of RDBMS. However,
its manual definition is error prone and the whole set of nec-
essary triggers to write might not be evident when given a
complex constraint, thus, compromising the integrity of the
data if just one trigger is missing or ill-defined. Hence, it
is better to delegate this complex checking code to RDBMS
capabilities [8], as we do in TINTIN1.

TINTIN is a tool that provides incremental integrity check-
ing of assertions in SQL Server. Given an SQL Server DB,
and a set of SQL assertions written on its schema, TINTIN
automatically builds all the necessary procedures/queries to
efficiently check whether any update satisfies the assertions.

As an example, consider the schema of the well-known
TPC-H benchmark [7] shown in Figure 1, a benchmark for
illustrating decision support systems that examine large vol-
umes of data, execute complex queries, and give answers to
critical business questions.

Part

partKey : Integer
name : String

Supplier

suppKey : Integer
name : String Customer

custKey : Integer
name : String

Nation

nationKey : Integer
name : String

Region

regionKey : Integer
name : String

Order

orderKey : Integer

LineItem

lineNumber : Integer
quantity : Integer

0..*

0..*

PartSupp

availQty : Integer
supplyCost : Real

0..*1

0..* 1

0..*

1

0..*

1

1 0..*

1

0..*

totalPrice: Real

Figure 1: The TPC-H Schema.

Now, assume that we want to define a general constraint
over the previous schema stating that all orders have at least
one line item. This constraint could be specified by means
of the SQL assertion shown below:

CREATE ASSERTION atLeastOneLineItem CHECK(

NOT EXISTS(

SELECT * FROM ORDERS AS o

WHERE NOT EXISTS (

SELECT * FROM LINEITEM AS l

WHERE l.L_ORDERKEY = o.O_ORDERKEY)));

1http://www.essi.upc.edu/~xoriol/tintin/

Demonstration

 

 

Series ISSN: 2367-2005 632 10.5441/002/edbt.2016.66

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.66


TINTIN allows checking the assertion atLeastOneLine-
Item efficiently in data sets consisting of 1GB to 5GB of
data and with 1MB to 5MB of tuple insertions/deletions,
with times ranging from 0.01 to 0.04 seconds depending on
the scenario. These results are much better than the time re-
quired for directly executing the query inside the assertions
on the database, ranging from x89 to x2662 times faster.

The approach we follow in TINTIN is to automatically
generate, for each assertion, several standard SQL queries
which incrementally determine whether the update violates
the original assertion or not. If the queries return a non-
empty answer, then, the assertion is violated, otherwise, it
is satisfied. The queries are incremental in the sense that
they are stated in terms of the current database tables and
also some automatically generated auxiliary tables contain-
ing the insertions/deletions of tuples requested by the user.

This is the crucial point for achieving efficiency of in-
tegrity checking. When a user requests an update, the tu-
ples s/he wants to insert/delete are put in some auxiliary
tables. Then, the generated queries join these tuples be-
ing inserted/deleted with the current data, and return those
that violate the assertions. For each assertion, the gener-
ated queries only join those insertions/deletions of tuples
that might cause its violation. Therefore, an update not in-
cluding any of those insertions/deletions trivially makes the
query result to be empty. For this reason, no current data
of the database is accessed unless some update may cause
the violation of an assertion.

The join between the current data and the tuples being
inserted/deleted ensures also that only the tuples affected
by the update are checked. Thus, the rest of the data, po-
tentially the major part of the database, is skipped.

These incremental SQL queries are generated outside the
database and then stored in it as views. Since we use stan-
dard SQL to define them, they could be used for checking
assertions on any relational DBMS. However, and for the
purpose of checking the feasibility and the efficiency of our
approach, we have chosen SQL Server to implement TINTIN
because of our previous expertise on this system.

Once the incremental SQL queries are defined, TINTIN
builds a stored procedure called safeCommit to allow SQL
Server to check the assertions. This procedure must be in-
voked at the end of each transaction, so that the procedure
can check whether it violates any of the assertions. More
specifically, the procedure checks whether the incremental
SQL queries are empty or not. If they are, the update does
not violate any assertion, so, the procedure commits the
update stored in the auxiliary tables. Otherwise, the proce-
dure shows the tuples answering the queries, i.e., the tuples
violating the assertions.

2. PROBLEM AND SOLUTION
Integrity checking is the problem of efficiently determining

whether a given update satisfies a set of integrity constraints,
SQL assertions in our case. This is an important problem
in data management since any violation of an integrity con-
straint would indicate an invalid state of the database. One
possible way to achieve efficiency relies on, first, just check-
ing the assertions which may actually be violated by the
update and, second, considering only the relevant updated
data for computing whether the assertions are violated.

We assume in this work that the update consists of a (pos-
sibly large) set of insertions and/or deletions of database

tuples and that the queries defining the assertions are spec-
ified by means of the fragment of SQL that is equivalent to
relational algebra. In particular, TINTIN accepts assertions
to be defined through selection, projection, join, subselect
(exists, in), negation (not exists, not in) and union but
it does not allow functions (e.g. aggregates, arithmetic func-
tions) for the moment.

TINTIN is aimed at providing to an SQL Server database
with the capability of performing integrity checking of SQL
assertions efficiently. For this purpose, TINTIN allows a user
to specify assertions according to the fragment of SQL stated
above, and the tool automatically builds a stored procedure
in the database, called safeCommit, that the user will have
to call at the end of each transaction. Whenever called,
safeCommit checks whether the updates in the transaction
violate any of the assertions. If no violation is found, the
update is committed to the database. Otherwise, it provides
the answers to the queries that detected the violation of the
assertions.

The safeCommit procedure works by executing several
SQL queries, stored as views in the database, for each one
of the assertions that need to be checked. Each query cap-
tures a different situation in which some updates may lead
to the violation of the assertion. These updates are explic-
itly stated in the query definition itself and provide the key
for efficiency of integrity checking.

In the rest of this section we explain the approach we
follow to obtain the SQL queries that allow checking incre-
mentally an assertion; which is based on our previous work
for handling integrity checking of OCL constraints in con-
ceptual models [4, 5]. We only require the users to define
their desired assertions. From there, all the following steps
are automatically performed.

The first step consists in rewriting each SQL assertion
into a logic denial in the same way as we did in [6]. A denial
is a formula stating a condition that must not be true in
any state of the database. These denials are the basis for
obtaining the incremental SQL queries.

For instance, the assertion atLeastOneLineItem of our
running example would be rewritten as:

order(o) ∧ ¬lineIt(l, o)→ ⊥ (1)

Clearly, the previous denial states that if there is an or-
der o without any line item l, an inconsistent state will be
reached, which is exactly the condition to be avoided by
atLeastOneLineItem.

Then, for each denial, TINTIN obtains its correspond-
ing Event Dependency Constraints (EDCs, for short). Each
EDC is a logic rule identifying a particular situation where
some update applied to a certain state of the database D
causes the violation of the denial, i.e., of the corresponding
assertion. The main idea for obtaining EDCs is to replace
each literal in the logic rule obtained from the assertion by
the expression that evaluates this literal in the new state of
the database Dn, i.e., the state obtained after applying the
update. Positive and negative literals in the denial are han-
dled in a different way according to the following formulas:

∀x. pn(x)↔ (ιp(x)) ∨ (¬δp(x) ∧ p(x)) (2)

∀x. ¬pn(x)↔ (δp(x)) ∨ (¬ιp(x) ∧ ¬p(x)) (3)

Rule 2 states that a literal p(x) will be true in the new
state of the database Dn if it has been inserted or if it was
already true in the initial stateD and it has not been deleted.

633



In an analogous way, rule 3 states that p(x) will not hold in
Dn if it has been deleted or if it was already false and it has
not been inserted.

By applying the substitutions above to all logic denials, we
get a set of EDCs which states all possible ways to violate the
assertions by means of insertions and/or deletions of tuples.

In particular, we get the following EDCs for the denial 1
of our running example:

ιorder(o) ∧ ¬lineIt(l, o) ∧ ¬ιlineIt(l, o)→ ⊥ (4)

ιorder(o) ∧ δlineIt(l, o) ∧ ¬aux (o)→ ⊥ (5)

order(o) ∧ ¬δorder(o) ∧ δlineIt(l, o) ∧ ¬aux (o)→ ⊥ (6)

aux (o)← ιlineIt(l, o)

aux (o)← lineIt(l, o) ∧ ¬δlineIt(l, o)

Intuitively, EDC 4 states that atLeastOneLineItem will be
violated if a new order o is inserted and there was no line
item for o in the initial state of the database and no line item
for o has been inserted by the transaction. EDC 5 behaves
in a similar way, while EDC 6 determines that the assertion
will be violated if a line item for an existing order o has been
deleted and neither a new line item has been inserted for o
nor the database contains any other line item for o (given
by the rules defining aux(o)).

Note that, in this example, EDC 5 can be safely discarded
assuming that the foreign key constraint from lineitem to
order is satisfied in the current state of the data. TINTIN
incorporates some semantic optimizations like this one that
allow obtaining a reduced and simplified number of EDCs
which allow performing integrity checking more efficiently.

The idea of obtaining EDCs to identify the different sit-
uations that may lead to the violation of a constraint is
grounded on the concept of event rules [3], which were aimed
at performing integrity checking in deductive databases.

Finally, each EDC is translated into an SQL query as
proposed in [4]. Roughly, each positive literal in the EDC is
translated into a table reference placed in the FROM clause of
the query, possibly with a JOIN condition with some previ-
ously translated literal that shares a common variable with
it. Built-in literals and constant bindings are directly trans-
lated to the WHERE clause, and negated base and derived
literals are translated as correlated subqueries.

In our running example, we would translate EDC 4 as:

CREATE VIEW atLeastOneLineItem1 AS

SELECT *

FROM ins_orders AS T0

WHERE NOT EXISTS(SELECT *

FROM lineitem AS T1

WHERE T1.l_orderkey = T0.o_orderkey)

AND NOT EXISTS(SELECT *

FROM ins_lineitem AS T1

WHERE T1.l_orderkey = T0.o_orderkey)

We have defined the query as a view to store it into the
database. It is worth noting the usage of the auxiliary ta-
bles storing the insertions and the deletions of tuples for
each table of the database, as it happens with ins orders
and ins lineItem in the previous view. TINTIN automati-
cally builds them, together the necessary triggers to capture
the insertions/deletions of tuples to place them into such
auxiliary tables. Thus, the existence and maintenance of
these auxiliary tables is fully transparent to the database
users.

Note also that the key for incrementality is not based on
batching updates for delaying the assertions checking, but
on the join in the SQL queries between the update and the
current data. First of all, any SQL query joining an inser-
tion/deletion which is not being applied (i.e., whose corre-
sponding SQL table is empty) is immediately discarded since
it trivially returns the empty set. Therefore, we only check
those constraints that can be violated according to the on-
going update. Second, the data considered by an SQL query
during its execution is necessarily the data joining the up-
date applied, thus, avoiding to look through all the database.

3. DEMO DESCRIPTION
The demo that we will present is intended to show the

usage and efficiency of our prototype tool TINTIN by means
of applying it to the checking of some assertions in the TPC-
H benchmark SQL schema.

We will first request TINTIN to build the necessary aux-
iliary tables and triggers to capture any insertion and dele-
tion applied to the TPC database. As a result, we will see a
newly generated database event TPC with an ins/del table
for each TPC SQL table. At this point, whenever we ap-
ply an insertion/deletion of any tuple in TPC, the tuple will
be captured and inserted in the corresponding ins/del ta-
ble of event TPC. In this way, the contents of TPC remains
unchanged, and event TPC contains the requested update.

Next, we will introduce in TINTIN some SQL assertions
of different complexity. Consequently, TINTIN will create a
procedure called safeCommit in TPC. This procedure, when
called, will check whether applying the updates contained
in event TPC raises the violation of any assertion. If no
violation is found, the procedure will commit the events into
TPC; otherwise, it will report the violations. Lastly, the
procedure will truncate all the events stored in event TPC,
so that a new set of events can be proposed.

At this stage, TINTIN will have created all the neces-
sary elements to automatically check the satisfaction of the
assertions when updating TPC, and will have persistently
stored them in the database. Thus, TINTIN can be discon-
nected from SQL Server, and users might operate with the
database normally with the unique consideration of invoking
safeCommit at the end of each transaction.

To make the demonstration, we will apply some updates
mixing both: updates that violate some assertion and up-
dates that do not violate any of them. After each update, we
will call the safeCommit procedure to see its effects, that is,
we will see that it rejects the update if some violation occurs,
or that it commits them if they satisfy the assertions.

With this demonstration, we will show that TINTIN en-
joys the following features: 1. Portability : it can be easily
installed in any SQL Server database —no need for spe-
cial plugins nor additional technologies—. 2. Clean instal-
lation: all the necessary logics of the method is installed
in another database—without modifying the original one—,
except the safeCommit procedure and the triggers to cap-
ture the events, which are necessarily placed in the target
database. 3. Easy of use: users can update the database
without modifying their SQL statements/procedures. The
unique mandatory requirement is to call the automatically
generated safeCommit procedure at the end of each trans-
action. 4. Efficiency : the incremental nature of our method
provides better execution times than executing non-incre-
mental queries to perform the integrity checks.

634



SQL Server Database

SQL assertions

Graphical User Interface

Domain controller

SQL Server Controller

EDCs to 
SQL queries

Denials to
EDCs

Assertions to
denials

DB connection

Tintin

Figure 2: Tintin architecture

4. PROTOTYPE
The architecture of TINTIN is shown in Figure 2, while

its GUI is depicted in Figure 3. Basically, the GUI asks the
user for a database (DB) connection, and the assertions that
s/he wants to check in that database.

When the user introduces the DB connection, the SQL
Server Controller creates a new auxiliary database event DB
to store the different events applied to it; that is, for each
table T in DB, the SQL Server Controller builds two new
tables (ins T and del T ) to store the different tuples being
inserted and deleted in T . In order to capture these tuples,
the SQL Server Controller creates two different INSTEAD OF

triggers, which capture the tuple insertions/deletions and
place them in the corresponding ins T or del T table.

Afterwards, when the user introduces the SQL assertions,
they are firstly mapped into logic denials. Then, these de-
nials are translated into EDCs and, finally, EDCs are rewrit-
ten as SQL queries. Each of these steps is implemented in a
different module following the previously presented method.

The resulting SQL queries are stored as views in event DB.
Then, the SQL Server Controller builds the safeCommit pro-
cedure. This procedure, when called, performs the following:
1. queries the previous views. 2. if all queries are empty, it
disables the triggers, applies the update (insert in the DB
the tuples contained in the ins tables, and remove from the
DB the tuples contained in the del tables), and enables again
the triggers. 3. truncates the ins/del tables.

The prototype has been developed in Java, with the ex-
ception of the Assertions to denials translator component,
for which we have reused a previously existing C# software.

We made some experiments to evaluate the efficiency of
our tool. We have checked some assertions of different com-
plexity with TINTIN (like the one of our running example),
in data sets consisting of 1GB to 5GB of data and with 1MB
to 5MB of updates, and compared its efficiency with that of
a non incremental method consisting of directly querying
the assertions to the database. The time TINTIN required
for checking the assertions ranges from 0.01 to 1.29 seconds
and it is always better than in the non incremental approach,
with a benefit of orders of magnitude when considering 5MB
of updates (up to x2662 times faster).

5. CONCLUSIONS
TINTIN is a tool for checking assertions in SQL Server

databases. The tool takes as input a set of assertions and it
automatically builds a procedure called safeCommit which
efficiently checks whether an update violates any of the as-
sertions and, afterwards, commits the update if no violation
is found or shows the tuples causing the violation otherwise.

Figure 3: Graphical User Interface Design

TINTIN works almost transparently for the database users
since it only requires the users to invoke safeCommit at the
end of each transaction. Internally, the tool builds several
triggers to capture the update requested by the user and to
place it in some SQL auxiliary tables. These auxiliary ta-
bles are queried with the current database tables to check
whether applying the update in the current data may cause
any assertion violation. This join between the update and
current data is the key for efficiency.

The fundamentals of TINTIN are the Event Dependency
Constraints (EDCs), which we previously used to handle
integrity checking of OCL constraints in conceptual models.
More details about these rules, and also on their translation
to SQL queries, can be found in [4, 5].

As further work, we plan to extend TINTIN to handle
aggregate functions in assertions. We also expect to make
it available for other DBMSs apart from SQL Server and to
exploit other DBMS capabilities such as temporary tables.

Acknowledgements This work has been partially sup-
ported by the Ministerio de Economı́a y Competitividad,
under project TIN2014-52938-C2-2-R and by the Secrete-
ria d’Universitats i Recerca de la Generalitat de Catalunya
under 2014 SGR 1534 and a FI grant.

6. REFERENCES
[1] ANSI Standard. The SQL 92 Standard, 1992.

[2] R. Elmasri and S. B. Navathe. Fundamentals of
database systems. Pearson, 2014.

[3] A. Olivé. Integrity constraints checking in deductive
databases. In Proceedings of the 17th Int. Conference on
Very Large Data Bases (VLDB), pages 513–523, 1991.

[4] X. Oriol and E. Teniente. Incremental checking of OCL
constraints through SQL queries. In Proc. of the 14th
Int. Workshop on OCL and Textual Modelling, pages
23–32, 2014.

[5] X. Oriol and E. Teniente. Incremental checking of OCL
constraints with aggregates through SQL. In
Conceptual Modeling, volume 9381 of LNCS, pages
199–213. Springer, 2015.

[6] E. Teniente, C. Farré, T. Urṕı, C. Beltrán, and
D. Gañán. SVT: schema validation tool for microsoft
sql-server. In Proc. of the 30th International Conference
on Very Large Data Bases, pages 1349–1352, 2004.

[7] Transaction Processing Performance Council. TPC-H
benchmark specification 2.17.1, 2014.
http://www.tpc.org.

[8] V. Tropashko and D. Burleson. SQL Design Patterns:
Expert Guide to SQL Programming. Rampant
Techpress, 2007.

635


	TINTIN: a Tool for INcremental INTegrity checking of Assertions in SQL ServerXavier Oriol, Ernest Teniente, Guillem Rull

