
PAW: A Platform for Analytics Workflows

Maxim Filatov
University of Geneva

maxim.filatov@unige.ch

Verena Kantere
University of Geneva

verena.kantere@unige.ch

ABSTRACT
Big Data analytics in science and industry are performed
on a range of heterogeneous data stores, both traditional
and modern, and on a diversity of query engines. Workflows
are difficult to design and implement since they span a vari-
ety of systems. To reduce development time and processing
costs, automation is needed. We present PAW, a platform
to manage analytics workflows. PAW enables workflow de-
sign, execution, analysis and optimization with respect to
time efficiency, over multiple execution engines, namely a
DBMS, a MapReduce engine, and an orchestration engine.
This configuration is emerging as a common paradigm used
to combine analysis of unstructured data with analysis of
structured data (e.g., NoSQL plus SQL). The demonstra-
tion of PAW focuses on the usability of the platform by users
with various expertise, the automation of the analysis and
optimization of execution, as well as the effect of optimiza-
tion on workflow execution. The demonstration scenarios
are based on synthetic and real workflows on real data.

1. INTRODUCTION
Enterprises today employ a variety of data repositories

and processing engines to meet their needs for analytics.
Analytics workflows are becoming longer and more com-
plex. Currently, analytics workflows are designed and im-
plemented manually. This is time-consuming and labor-
intensive. To address this, we demonstrate a platform to
automate part of this process.

Workflow management is not a new topic [17]. However
workflow optimisation is a relatively new field of research,
but there are already some promising results.

Commercial Extract-Transform-Load (ETL) tools (e.g. [5],
[10]) provide little support for automatic optimization. They
provide hooks for the ETL designer to specify for example
which flows may run in parallel or where to partition flows
for pipeline parallelism. Some ETL engines such as Pow-
erCenter [5] support PushDown optimization, which pushes
operators that can be expressed in SQL from the ETL flow

©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

salestweets
reviews

resultproducts

campaign

calc
sent&tag

calc
totalSales

filter5by
prod&reg

convert
time&coord

calc
avgSent

select
product

join15by
prod&reg

join25by
prod&reg

Figure 1: Workflow for a product marketing campaign

down to the source or target database engine. The rest of the
transformations are executed in the data integration server.
The challenge of optimizing the entire workflow remains.

Towards this direction, HFMS [13] performs optimiza-
tion and execution across multiple engines. Work related to
HFMS [14] focuses on optimizing flows for several objectives:
performance, fault-tolerance and freshness over multiple ex-
ecution engines. HFMS uses many optimization strategies,
such as parallelization, recovery points, function shipping,
data shipping, decomposition, etc. Complementary to the
above, our work focuses on the automation of the total pro-
cess of workflow manipulation, from the creation till the ex-
ecution of a workflow. Furthermore, our work focuses on
the challenge of enabling users with various levels of data
management expertise to create a workflow for the same ap-
plication logic.

In this paper, we demonstrate our work through PAW,
a platform for the design, analysis and execution of ana-
lytics workflows. PAW implements a novel workflow lan-
guage [7, 8] that allows the design of a workflow that spans
multiple engines and data stores by either giving specific de-
tails on execution semantics of tasks and data stores or leav-
ing the platform to determine the execution semantics and
data stores, through an automated workflow analysis phase.
Then, the workflow goes through an automated optimiza-
tion phase, before being sent for execution. PAW is part of
the ASAP project [1], which develops scalable solutions for
complex analytical tasks over multi-engine environments.

In the following, Sections 2 and 3 give an overview of the
workflow model and the platform architecture, respectively.
Section 4 summarizes the functionalities of the platform and
Section 5 describes the proposed demonstration.

2. WORKFLOW MODEL
PAW implements a novel workflow model [7, 8]. The

workflows are directed, acyclic graphs (DAGs). The ver-
tices represent data processing and the edges represent the
flow of data. Data processing is computation or modification

Demonstration

 

 

Series ISSN: 2367-2005 624 10.5441/002/edbt.2016.64

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.64


Figure 2: The generic metadata tree for operator

Ex
ec
ut
or

Operator,library

O
pt
im
ize

r

Interface

parse

match validate

refine

Analyzer

PAW

M
on
ito

rin
g

Processing,
engines

Data,stores

ASAP

Figure 3: The architecture of PAW

of data. Each vertex in a workflow represents one or more
tasks of data processing. Each task is a set of inputs, outputs
and an operator. Tasks may share or not inputs, but they
do not share operators and outputs. The inputs and out-
puts of the tasks of a vertex can be related to incoming and
outgoing edges of this vertex, but they do not identify with
edges: inputs and outputs represent consumption and pro-
duction of data, respectively, and edges represent the flow of
data. Figure 1 displays a workflow about a product market-
ing campaign. It combines sales data with sentiments about
the product, gleaned from tweets crawled from the Web.

Data and operators can be either abstract or materialized.
Abstract are the operators and datasets that are described
partially or at a high level by the user, when composing the
workflow, whereas materialized are the actual operator im-
plementations and existing datasets, either provided by the
user or residing in a repository. Both data and operators
need to be accompanied by a set of metadata, i.e., proper-
ties that describe them. Such properties include input data
types and parameters of operators, location of data objects
or operator invocation scripts, data schemas, implementa-
tion details, engines etc. These metadata are used to:

• Match abstract operators to materialized ones.
• Check the usage of a dataset as input for an operator.

If the dataset does not match the operator’s input, its
metadata can be also used to check for appropriate trans-
form/move operators that can be applied.

• Provide optimization parameters, e.g. profiling of in-
put/output.

• Provide execution parameters like a file path or arguments
for the execution of the operator script.

The internal representation of a workflow is in the Tree-

metadata language, which captures structural information,
operator properties (e.g., type, data schemas, statistics, en-
gine and implementation details, physical characteristics like
memory budget), and so on. The metadata tree is user ex-
tensible. Figure 2 shows the generic metadata tree for an
operator. To allow for extensibility, the first levels of the
metadata tree are predefined. Users can add their ad-hoc
subtrees to define their custom data or operators. More-
over, some fields (like the ones related operators and data)
are compulsory, while the rest are optional and user-defined.
Materialized data and operators need to have all their com-
pulsory fields filled in with information. Abstract data and
operators do not adhere to this rule.

3. ARCHITECTURE & IMPLEMENTATION
PAW is part of a larger system, called Adaptable Scalable

Analytics Platform (ASAP) [1], but it can also stand as an
independent tool for workflow management and optimiza-
tion. Other ASAP components include execution, monitor-
ing, visualization of results, online adaptation, etc. PAW
presents a unified interface for users to create, modify, ana-
lyze, optimize and execute analytics workflows over a diverse
collection of data stores and processing engines. Figure 3 de-
picts the architecture of PAW, as well as its interaction with
the rest of ASAP. The components of PAW communicate
using the internal workflow representation and are:

• Operator library. This library shows operator imple-
mentations imported from the ASAP library. The oper-
ators are classified as, either analytics operators, which
perform the core analytics jobs over the data, or the asso-
ciative operators, which serve as ‘glue’ between different
engines and perform move and transformation operations.

• Interface. The interface enables users to interactively
create and/or modify a workflow.

• Analyzer. The analyzer parses the workflow, identifies
operators and data stores and maps them to the library of
operators, generates metadata of edges, finds edges where
the data conversion should be applied and adds the ap-
propriate conversions.

• Optimizer. The optimizer generates a functionally equiv-
alent workflow, optimized for performance objective.

• Executor. The executor receives workflows from the op-
timizer and schedules them for execution. When a work-
flow is ready for execution, it dispatches the workflow to
the engines and monitors its execution.

Code generation and the executor is implemented in Java.
The interface is a web application in Jade [6] and Coffee-
Script [2], and Grunt [3] compiles it in HTML and JavaScript,
respectively. The interface communicates with other mod-
ules using Nginx web server [9] and PHP-FPM [11]. The
analysis and optimisation modules are implemented in Python.

4. FUNCTIONALITY OF PAW
This section describes the PAW functionalities and dis-

cusses relevant aspects of the components.

4.1 Management of operators
Each operator can have an abstract definition and several

implementations, i.e. one or more implementations per en-
gine. For example, a ‘join’ of two inputs, has an abstract
definition, and can be implemented for a relational DBMS

625



Operator Blocking Non-blocking Restrictive
Filter x x
Calc x

Filter Join x
groupBy Sort x
PeakDetection x

Tf-idf x
k-Means x

Table 1: Categorization of operators

Figure 4: Interface of PAW

and a NoSQL database. An operator that performs a sim-
ple operation or a complex algorithm computation needs to
have a tailored implementation for every engine on which
it is going to be executed. An operator definition includes
restrictions on the type and number of inputs and specifies
the number and type of outputs.

Operators are categorized as:

• Blocking operators require knowledge of the whole data,
e.g., a grouping operator or an operator join or sort.

• Non-blocking operators process each tuple separately,
e.g., operators filter or calc1.

• Restrictive operators output a smaller data volume
than the incoming data volume, e.g. filter.

Defined and implemented operators form a library from
which a user can select operators to describe tasks. Table 1
shows operators from the library and their categorization.

Users can register their own operators, provide respective
implementations and define optional attributes of a new op-
erator. These attributes include functions to compute car-
dinality and processing cost, and characteristics of the op-
erator. In most cases, the operator developer or provider
does not disclose a cost formula for the operator. Then,
PAW can use the ASAP profiling process for operators us-
ing micro-benchmarks. As an optional step, PAW allows
users to run their workflows with a data sample and uses
the obtained statistics to fine-tune our cost models before
workflow optimization.

4.2 Design of a workflow
A workflow is created in the PAW interface, which consists

of several areas (Figure 4) that perform the following:

• Display the workflow (Area 1).
• Design a new workflow adding vertices and edges, save

and load it (Area 2).
• Perform workflow analysis or optimization (Area 2).
• Add tasks from a library or create new ones (Area 3). A

task from the library is accompanied by a set of metadata.

1calc is a generic operator that can be customized for a
specific numeric calculation

algorithm*I1*

join*

I2*
O2*

O1*

algorithm*
I1*

join*
O2*O1*

algorithm*
I1*

join*
O2*O1*

move*

Figure 5: Analysed workflows for a multi-task vertex

A task created from scratch has a metadata tree with
predefined first levels; users can add their ad-hoc subtrees
to define their custom data or operators.

• Display metadata of the selected task (Area 4).

4.3 Analysis of a workflow
The workflow model alleviates from the user the burden

of determining any or some execution semantics of the ap-
plication logic. The execution semantics of the workflow
includes the execution of tasks in vertices and the execution
of input-output dependencies of edges. The determination
of the execution semantics of vertices and edges leads to an
execution plan of the workflow. We refer to this plan as the
analysed workflow. The latter is actually an enhancement
of the initial workflow with more vertices and substitution
of vertices and/or edges in the initial workflow with others.

PAW analyses a workflow in several steps:

1. Parses the workflow.
2. Categorizes operators (see Section 4.1).
3. Validates consistency. A workflow is checked for cycles

and correspondence of metadata of adjacent vertices. Cy-
cles cannot be resolved, the analysis stops and returns a
list of errors. If possible, metadata mismatches are solved
by adding associative tasks in Step 6.

4. Generates metadata of edges, as a join of input and output
metadata of source and target vertices, respectively.

5. Splits multi-task vertices to several single-task vertices: A
vertex that corresponds to multiple tasks is replaced with
an associative subgraph that contains a set of new vertices
that correspond to these tasks. New vertices may corre-
spond 1-1 to tasks, but it can be the case that two or more
vertices correspond to the same task (task replication).

6. Augments the workflow with associative tasks that are
converting data flow: buffers and format conversions.

Users may describe the same application logic by creating
workflows with different levels of detail concerning the exe-
cution planning of this logic.The analysis phase determines
missing execution semantics. Figure 5 shows an example: A
user defines a vertex with two tasks, algorithmic processing
on some data, and a join of these with some other data. The
user is not interested or does not know the execution details
of this complex task. This representation depicts that the
two tasks should be executed together, after the tasks of the
vertices on which this vertex depends, and before the tasks
of vertices that depend on this vertex. Another user, repre-
sents the same tasks with two connected vertices, dictating
that the join should be executed on the data processed first
by the algorithm. A third user dictates even more detail in
the execution plan, by adding one more vertex that includes
a task that moves the data, e.g. from one disk to another.

626



4.4 Optimization of a workflow
After the analysis phase, a workflow is optimized for per-

formance. The optimization uses the following operations:

• Swap. The swap operation applies to a pair of vertices,
v1 and v2, which occur in adjacent positions in an work-
flow graph G, and produces a new graph G′ in which the
positions of v1 and v2 have been interchanged. The goal
of swap is to change the execution order of tasks.

• Merge. The merge operation takes as input two vertices
and produces one new vertex that includes the tasks of
both initial vertices. The latter may either be connected
with an edge, i.e. there is some task dependency(ies), or
not. The goal of merge is to allow for a united optimisa-
tion of the tasks included in the two vertices, e.g. joint
micro-optimization on an execution engine.

• Split. The split operation takes as input one vertex and
produces two new vertices that, together, include all the
tasks included in the initial vertex. The new vertices may
or may not be connected. The goal of split is to lead to
separate optimisation of subgroups of the tasks.

The Optimizer applies to the analysed workflow a series of
the above operations, each producing a functionally equiva-
lent workflow with possibly different cost. The goal is to find
an optimal workflow in the state space of equivalent work-
flows (for the optimization algorithm see [16]). To improve
search, the space is pruned employing heuristics:

• H1: Move restrictive operators to the root of the work-
flow to reduce the data volume, e.g., rather than extract
→function →filter do extract →filter →function.

• H2: Place non-blocking operators together and separately
from blocking operators, require knowledge of the whole
dataset, e.g., rather than filter →sort →function →group
do filter →function →sort →group.

• H3: Parallelize adjacent non-blocking operators so that
they can be executed concurrently on separate processors,
e.g., split filter1 →filter2 to two new parallel paths. Par-
allelized workflow parts should be chosen such that their
latency is approximately equal.

5. DEMONSTRATION
In the following, we describe the demonstration of PAW.
System setup. PAW is demonstrated on a cluster,

with the following configuration: The cluster consists of 4
server-grade physical nodes. Each one of those is equipped
with a 3rd generation i5 CPU (@ 2.90 GHz) and 16GB of
physical memory and an array of two HDDs on RAID-0.
The operating system is Debian 6 (squeeze) Linux. For the
time being, three software platforms are running: Hadoop
[4], Spark [15] and Weka [18]. The distribution of Hadoop
is CDH 4.6.0 and the version of Spark is 1.4.1.

Workloads. The demonstration uses synthetic and real
workflows on real data. The synthetic workflows are con-
structed based on ETL benchmarking [12]. Real workflows
and data come from the two use cases of ASAP [1] and
belong to the domains of telecommunications and web ana-
lytics. The telecommunication use case involves processing
anonymised Call Detail Records (CDR) data for Rome, from
01/06/2015 until 30/06/2015 and stored in CSV format. For
the computation on graph-structured data workflows are im-
plemented in Apache Spark.

The web analytics use case involves anonymization of web

content (WARC files) stored in ElasticSearch. The work-
flows are implemented in Spark and run over varying data set
sizes ranging from 1 million to 1 billion rows. There are two
types of workflows: one models entity recognition/disambiguation
and k-means, and another models continuous processing of
incoming data, e.g., subscription/notification at scale.

Demonstration scenarios. The demonstration aims
to exhibit the functionalities of PAW, focusing on the follow-
ing aspects: (a) the usability of the platform for workflow
creation by users that have different expertise, (b) the effec-
tiveness of the automated analysis of the execution of the
workflow, and (c) the effectiveness of the automated opti-
mization in workflow execution. The demonstration includes
interesting scenarios for all (a,b,c) to be shown to the au-
dience, but also interactive scenarios, especially for (a) and
(b), which allow the audience to experience the functionali-
ties of PAW. The interactive scenarios enable the participant
to create workflows from scratch or change existing ones,
watch the automated management of the workflow as well
as review the internals of the platform, e.g. internal work-
flow representation. Concerning (a) and (b), the scenarios
exhibit how the same application logic can be expressed via
workflow versions that have different level of detail of exe-
cution semantics, and how the analysis phase specifies miss-
ing execution semantics through already executed workflows
and/or by giving alternative choices to the user. Concern-
ing (c), the scenarios show how new operators are added,
including cost functions, and how the latter may be tuned
by running a workflow with sampling for statistics collection;
finally, the scenarios show actual workflow execution and the
optimization benefit and tradeoffs on different engines.

Acknowledgments
This work has received funding from the European Union’s
7th Framework Programme under grant agreement no 619706.

6. REFERENCES
[1] Asap. http://www.asap-fp7.eu/.

[2] Coffeescript. http://coffeescript.org/.

[3] Grunt - the javascript task runner. http://gruntjs.com/.
[4] Apache hadoop. http://hadoop.apache.org/.

[5] Informatica ‘powercenter’.
http://www.informatica.com/products/powercenter/.

[6] Jade - template engine. http://jade-lang.com/.
[7] V. Kantere and M. Filatov. A framework for big data

analytics. In C3S2E, 2015.

[8] V. Kantere and F. Maxim. Modelling processes of big data
analytics. In WISE (To Appear), 2015.

[9] Nginx. http://nginx.org/.
[10] Oracle warehouse builder 10g. http:

//www.oracle.com/technology/products/warehouse/.
[11] Php-fpm (fastcgi process manager). http://php-fpm.org/.

[12] A. Simitsis, P. Vassiliadis, U. Dayal, A. Karagiannis, and
V. Tziovara. Benchmarking ETL workflows. TPCTC, 2009.

[13] A. Simitsis, K. Wilkinson, M. Castellanos, and U. Dayal.
Optimizing analytic data flows for multiple execution
engines. In ACM SIGMOD, 2012.

[14] A. Simitsis, K. Wilkinson, U. Dayal, and M. Hsu. Hfms:
Managing the lifecycle and complexity of hybrid analytic
data flows. In ICDE, 2013.

[15] Apache spark. https://spark.apache.org/.
[16] Technical report. https://github.com/project-asap/

workflow/blob/master/tech_report/report.pdf.
[17] W. M. P. Van Der Aalst and A. H. M. T. Hofstede. Yawl:

Yet another workflow language. Inf. Syst., 30(4), June 2005.
[18] Weka. http://weka.pentaho.com/.

627


	PAW: A Platform for Analytics WorkflowsMaxim Filatov, Verena Kantere

