
OSNI: Searching for Needles in a Haystack of Social
Network Data

Shiwen Cheng, James Fang, Vagelis Hristidis, Harsha V. Madhyastha†,
Niluthpol Chowdhury Mithun, Dorian Perkins, Amit K. Roy-Chowdhury,

Moloud Shahbazi, and Vassilis J. Tsotras
University of California, Riverside, Riverside, CA, USA

†University of Michigan, Ann Arbor, MI, USA
schen064@cs.ucr.edu, amitrc@ece.ucr.edu, jfang003@cs.ucr.edu, vagelis@cs.ucr.edu, harshavm@umich.edu,

nmithun@ece.ucr.edu, dperkins@cs.ucr.edu, mshah008@cs.ucr.edu, tsotras@cs.ucr.edu

ABSTRACT
This paper presents the Online Social Network Investigator
(OSNI), a scalable distributed system to search social net-
work data, based on a spatiotemporal window and a list of
keywords. Given that only 2% of tweets are geolocated, we
have implemented and compared various state-of-art loca-
tion estimation techniques. Further, to enrich the context of
posts, associations of images to terms are estimated through
various classification techniques. The accuracies of these es-
timations are evaluated on large real datasets. OSNI’s query
interface is available on the Web.

1. INTRODUCTION
The amount of user generated data increases every year,

as more social interaction tools like Twitter, Instagram and
Facebook are being created and more users use them to share
their everyday experiences. Most research on analyzing so-
cial data has focused on detecting trends and patterns such
as bursty topics [11] and popular spatiotemporal paths [10],
event extraction [7], studying how information is spread [12],
or analyzing properties of the social graph.

In contrast, in this paper, we study how to search so-
cial network data items, posts and images, based on spa-
tiotemporal keyword queries. That is, we created methods
to find the right needles (social data items) in the haystack
(social networks), which we refer to as investigative search,
to contrast it to the trending queries studied by previous
work. Investigative search can also be viewed as exploring
the currently untapped long tail of the distribution of top-
ics in social networks. We use law enforcement as our focus
application. The system capabilities and user interface were
created in consultation with the University of California Po-
lice Department.

Figure 1 shows the user interface of the developed OSNI,
available at http://dblab-rack30.cs.ucr.edu/IARPA/, where
a user may select a spatial area on the map, a time range,
and specify keywords. OSNI returns a list of posts (tweets)

c©2016, Copyright is with the authors. Published in Proc. 19th Inter-
national Conference on Extending Database Technology (EDBT), March
15-18, 2016 - Bordeaux, France: ISBN 978-3-89318-070-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

ranked by their relevance to the query. The relevance is
computed using a combination of the relevance of the text
(based on an Information Retrieval function) and of the im-
age (based on the confidence of the relevance of the query
to an image) to the query. Only posts that belong to the
specified spatiotemporal window are returned.

A key challenge is that only about 2% of the tweets are
geolocated (have GPS location). Another challenge is how
to associate images with terms. For example, if a tweet’s
image shows a “bike” we would like to return this tweet for
the query “bike” even if it does not contain this word in its
text. And a third key challenge is how to scale OSNI to a
throughput of millions of posts per day, and how to faciliate
interactive query response times.

This demo paper has the following contributions:

• We have adapted and implemented several social posts
location estimation methods, and we have evaluated
them on a dataset of millions of posts.

• We implemented a method to classify images based
on the terms they are relevant to. We evaluated this
classifier for various datasets.

• We built a scalable overall architecture, by combining
several leading big data technologies. We experimen-
tally evaluate the throughput and distributed perfor-
mance of the system. We make the system publicly
available on the Web.

2. ARCHITECTURE
The architecture of OSNI is shown in Figure 2. OSNI was

written in approximately 8K lines of Java code. The whole
OSNI, including all modules in the figure, in deployed on
a cluster of two machines, which host instances of several
systems (Cassandra, ElasticSearch, Spark). The Web server
runs on one of the two servers.

The OSNI uses the Twitter Steaming API to collect tweets
from Twitter. We specify a keyword-based filter on the
Streaming API to only retrieve tweets that contain at least
one of a collection of 64 keywords (provided by the law en-
forcement agency). This makes our data more focused to
our domain, given that a single machine can only receive
up to about 1% of Twitter’s traffic. Matching records are
stored in a Cassandra [5] database cluster of two nodes with
replication factor 2 (each tweet is copied in both machines).

The preprocessing module continuously queries Cassan-
dra for unprocessed records and runs a distributed job on a

Demonstration

Series ISSN: 2367-2005 616 10.5441/002/edbt.2016.62

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2016.62

Figure 1: User Interface

Figure 2: Architecture

Spark [1] cluster to process these records. For each record,
we perform location estimation to determine the approxi-
mate location of the user at the time the tweet was posted
(Location Estimation module in Figure 2, details in Sec-
tion 3). Further, if the tweet contains an image, we also ap-
ply an image classifier, which downloads the image(s) from
the Internet (only a URL is stored in the tweet record),
and then runs the classification algorithm (Image Classifiers
module in Figure 2, details in Section 4). If desired, images
can be stored locally in SeaweedFS [4], a distributed storage
system tuned towards storing images.

The enriched posts (enriched by location and image terms)
are inserted into Elasticsearch [3], a distributed document
search system. The Web-based query user interface, shown
in Figure 1, is built using Google’s Web Toolkit (GWT),
which is a Java-based Web toolkit. It is hosted on Apache
Tomcat.

3. LOCATION ESTIMATION
We found that only about 2% of tweets are geolocated

(e.g., using the GPS of a mobile phone). Hence, we need
effective ways to estimate the location of the majority of
tweets. We consider several methods to assign location:

User Location String. Here we use the user’s location as

an estimate of the tweet’s location. Twitter allows users to
enter a location on a text field. Many users specify their
city, e.g., “Riverside, CA”, but others specify imaginary ad-
dresses, e.g., “On the moon.” We use Google’s Map API to
map a location string to latitude and longitude.

Places. Users may check-in or otherwise specify a place
in the tweets (there is a place field in the JSON of a tweet),
which can be something like “UCR Campus, Riverside, CA.”
Again we use Google’s Map API to get coordinates.

User GPS. As in User Location String, we use the user’s
location as an estimate of the tweet’s location, but here we
compute the user’s location as the median of that user’s
GPS locations in the last 30 days. Only users with at least 3
geotagged tweets are assigned a location using this method.

Social Network Approach. This approach is based on Comp-
ton et al. [9], where the assumption is that users are often
located close to their friends. Users A and B are consid-
ered “friends” if User A has tweeted at least 3 times to User
B and User B has tweeted at least 3 times to User A. We
first calculate GPS medians for the users that have at least
three geotagged tweets in the past and store the information
in the user table. Afterwards, we build a social graph and
estimate the locations that are still unknown using an er-
ror minimization technique. Our approach differs from the
original approach [9] in a few ways. First, the number of
tweets needed to be a “friend’ is decreased from 3 to 2 to
increase the size of the graph because our graph was too
sparse. The graph size increased by 21% and the accuracy
went down only by 2%. Second, we are making use of the
places field used in the user’s tweets to assign more locations
in the graph.

Content-based. This method looks for “local” words –
e.g., “howdy” in Texas or “White House” around the White
House in Washington, DC – in the body of the tweets to as-
sign location to them. We build upon the method proposed
in Cheng et al. [8], where instead of using cities, we use
zipcodes (over 31,000 zipcodes in the US), that is, we assign
terms to zipcodes. Further, we use a much larger number
of tweets to increase the accuracy. Specifically, we use over

617

100 million geotagged tweets to calculate the focus and dis-
persion for each word to decide if it is a local word. Then,
we build an index that maps terms to zipcodes with a prob-
ability, and assign to a tweet the zipcode with the highest
probability among its words.

Implementation considerations. The social network
approach has two parts. The preprocessing and the graph
processing. The first step of the preprocessing is to cre-
ate a unidirectional graph based on who tweets to whom so
we can later build the friendship graph. The second is to
collect tweets that have GPS locations and places location.
In the graph processing, we first calculate the GPS medi-
ans for users with more than 3 geotagged tweets. Next, we
build the graph and estimate the locations of their friends.
The graph processing takes more than one day to run on a
single machine, and hence we execute it once a week. The
preprocessing is performed once per day. Similarly, for the
content-based approach the local words are calculated once
per day using gathered data from the last week.

Dataset and Evaluation. To measure the accuracy of
our approaches, we used as ground truth 100 million geo-
tagged tweets and compared the estimations of the vari-
ous methods to these GPS locations. The coverage is the
percentage of tweets that are assigned a location using a
method; note that a tweet may be assigned a location based
on multiple methods.

Type 10 miles 30 mile 50miles coverage
Tweet GPS 100% 100% 100% 1.97%
User String 71% 73% 74% 27.6%

Places 81% 82% 83% 2.3%
User GPS 92% 95% 96% 1%

Social 82% 83% 85% 3.31%*
Content-based 24.7% 25.9% 27.3% 76%

Table 1: Tweet Location Estimation Accuracy and Coverage
Evaluation. In Social Network approach, we only consider
posts that have not already been assigned a location through
Tweet GPS, User String, Places or User GPS.

4. IMAGE ANNOTATION
In this section we study how to extract keywords from the

images of tweets to enhance the accuracy and effectiveness
of our query interface. That is, a tweet that shows a picture
of a bike, should be returned for query ‘bike’ even if it does
not contain the word ‘bike’ in its body. We found that about
25% of Tweets have images.

Specifically, the image annotation module inputs an image
and outputs a set of (term, confidence) pairs, e.g., (bike,
0.72), where the confidence denotes how probable it is that
the image is related to the term. We use a vocabulary of
terms that we want to detect in images and for each term
we build a classifier.

After experimenting with various classifiers and image fea-
ture extraction methods, we chose Support Vector Machine
(SVM) as classifier and SURF Detector [6] based Bag-of
Words Model [13]. We found that single-class classifiers are
more accurate than multi-class ones.

The method for training the classifier works in two major
steps. At the first step, SURF features are extracted from
the training set (described below) that contains all images of
all classes. A visual vocabulary of features (Bag of Words)

is created by reducing the number of features through quan-
tization of feature space using K-means clustering. The re-
sulting space has 5000 features. Then, in second step, occur-
rences of all visual features in the vocabulary are calculated
from each of the images. A histogram of features is created
per image, which is a 5000-entries long feature vector, which
is a reduced representation of the image. Using these fea-
ture vectors and corresponding known labels for images in
the training set, the SVM classifier is trained (offline, once
per week). In the online system, when a new image comes,
SURF features for the image are calculated and the image is
represented as a feature vector. The label of the image and
the confidences are estimated by feeding the feature vector
into the SVM models created during the training phase.

Search
Engine

Sample Images for query ’bike’

Google

Twitter

Table 2: Examples of a few top ranked and relevant images
collected from Google and Twitter based on textual query
‘bike’.

Data Collection and Evaluation. We consider 12
terms, and we build a training set as follows. We query
Google Images and Twitter Images interfaces for each of the
terms. Then, the retrieved images are checked manually to
remove false matches. In total, we keep 200 images from
Google and 200 from Twitter per term, that is, we have
a total of 4800 images. The query words are: bike, gun,
robbery, crowd, car, concert, murder, drunk, fire, helmet,
family and friends. These words were chosen based on the
law enforcement focus of the project.

The reason behind collecting training images from Google
and Twitter is twofold. First, there is no existing image
dataset, that contains images corresponding to all possible
query words. Second, carefully chosen images from web
search and social media search will make the training set
both diverse and relevant. Table 2 shows examples of di-
verse images collected from Google and Twitter for ‘bike.’
We see that the Google images are generally more “clean”,
whereas the Twitter images offer more diversity. As we will
see later the combination of the two leads to better accuracy.

K-fold (k = 10) cross-validation is used to test the clas-
sification performance. Table 3 shows the performance of
the image classifier significantly varies, when trained with
different training sets. The results demonstrate that incor-
porating images from both Google and Twitter for training
improves classifier accuracy, as more diverse and informative
set of images are included.

Our classifier has high accuracy (more than 80%) on cate-
gories like bike, gun, crowd etc. On the other hand, the accu-
racy on complex categories like drunk and murder was lower
(around 50%). Some interesting examples of correctly iden-
tified and incorrectly identified images for category ‘bike’,

618

‘friends’ and ‘gun’ are shown in Table 4.

Training

Testing

Google Twitter Google &
Twitter

Google 63% 36% 49.5%
Twitter 43% 31% 37%

Google & Twitter 79% 55% 67%

Table 3: Accuracy of Image Classifier with different sets of
training and test images

JavaCV (Java interface to open computer vision library)
is used to extract the image features. When running as a
stand-alone application, the image classifier takes 5.98 mil-
lisecond on average to classify an image for a term on a
system of quad-core Intel Core i5-4200M 2.50GHz CPU, 8
GB DRAM, 500 GB 7.2K RPM HDD.

True
Positive Bike(0.652) Bike(0.879) Friends(0.437) Friends(0.673) Gun(0.828) Gun(0.99)

False
Positive

Bike (0.722) Bike (0.247)Friends (0.332)Friends (0.374)Gun(0.805) Gun (0.89)

Table 4: A few True-Positive and False-Positive examples
from Image Classifier. The detected class is given below the
images; confidence is in parenthesis.

5. SCALABILITY
Our OSNI is currently deployed on a cluster with two

servers, each with two 6-core Intel Xeon E5-2630 2.30GHz
CPUs, 96 GB DRAM, 4x 4 TB 7.2K RPM SATA HDDs,
and connected via gigabit Ethernet.

Total records 3.46M 100%
Records w/ image URL 863.62K 24.96%

Records w/ non-image URL 1.32M 38.15%
Records w/ no URL 1.59M 45.95%

Table 5: Tweet record statistics for July 2015.

Latency. Based on our current set of 65 keywords used
by the Twitter Streaming API to scrape Twitter’s data, we
store approximately 3.5 million tweet records per day. On
average, it takes 18 hours to process 1-day worth of tweet
records, or 18.5 ms per record. Table 5 shows the average
daily composition of these records over a one-month period
(July 1, 2015 to July 31, 2015). We see that about half of
the posts have no URL, which support our intuition that
there are many non-news related posts, which can be uses
for investigative exploration (viewing a user as a witness).

P Location Image Index Total

1 17.42 10.32 534.45 6.68
8 168.0 67.79 1622.67 38.44

Table 6: Throughput, in records per second, of the OSNI
indexer for different levels of parallelism (P).

Throughput. We evaluate the throughput of our OSNI
indexer on a sample set of 50K records to understand the

performance of the location and image classifiers, and insert-
ing into the Elastic Search index. We compare performance
using parallelism level 1 and 8. In Spark, parallelism de-
termines the number of shards the data is split into before
being distributed for processing. We show the throughput
of each component and the full indexer in Table 6. We show
clear speedup improvement when increasing the parallelism,
and expect further improvements on a larger-scale cluster.

6. CONCLUSIONS AND FUTURE WORK
We presented OSNI, an interdisciplinary system to facili-

tate searching in social networks. The key contributions are
the location estimation, the terms extraction from images,
and the scalable architecture. To scale to more terms in the
image annotation phase, we will study how multi-class clas-
sifiers can be effectively applied – single-class classifiers per-
formed better in our experiments. Further, we are working
on building a system that can collect informative training
example images without human effort in filtering out irrel-
evant images. Finally, instead of utilizing different modules
(eg. Cassandra, Spark), we are examining how to implement
OSNI over a unified framework like AsterixDB[2].

7. ACKNOWLEDGMENTS
This research was supported by the Intelligence Advanced

Research Projects Activity contract number 2014-14071000011.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of IARPA or the U.S. Government.

8. REFERENCES
[1] Apache Spark. http://spark.apache.org/.
[2] AsterixDB. https://asterixdb.incubator.apache.org/.

[3] Elasticsearch.
https://www.elastic.co/products/elasticsearch.

[4] SeaweedFS. https://github.com/chrislusf/seaweedfs.

[5] The Apache Cassandra Project.
http://cassandra.apache.org/.

[6] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up
robust features. In ECCV, pages 404–417. Springer Berlin
Heidelberg, 2006.

[7] H. Becker, D. Iter, M. Naaman, and L. Gravano.
Identifying content for planned events across social media
sites. In ACM WSDM, pages 533–542, 2012.

[8] Z. Cheng, J. Caverlee, and K. Lee. You are where you
tweet: a content-based approach to geo-locating twitter
users. In ACM CIKM, pages 759–768, 2010.

[9] R. Compton, D. Jurgens, and D. Allen. Geotagging one
hundred million twitter accounts with total variation
minimization. In Big Data, pages 393–401. IEEE, 2014.

[10] M. De Choudhury, M. Feldman, S. Amer-Yahia,
N. Golbandi, R. Lempel, and C. Yu. Automatic
construction of travel itineraries using social breadcrumbs.
In ACM Conference on Hypertext and hypermedia, pages
35–44, 2010.

[11] T. Lappas, M. R. Vieira, D. Gunopulos, and V. J. Tsotras.
On the spatiotemporal burstiness of terms. Proceedings of
the VLDB Endowment, 5(9):836–847, 2012.

[12] K. Lerman and R. Ghosh. Information contagion: An
empirical study of the spread of news on digg and twitter
social networks. ICWSM, 10:90–97, 2010.

[13] J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo.
Evaluating bag-of-visual-words representations in scene
classification. In Workshop on multimedia information
retrieval, pages 197–206. ACM, 2007.

619

	OSNI: Searching for Needles in a Haystack of Social Network DataShiwen Cheng, James Fang, Vagelis Hristidis, Harsha Madhyastha, Niluthpol Chowdhury Mithun, Dorian Perkins, Amit Roy-Chowdhury, Moloud Shahbazi, Vassilis Tsotras

