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ABSTRACT
The fast growth in number, size and availability of rdf
knowledge bases (kb) is creating a pressing need for research
advances that will let people consult them without having to
learn structured query languages, such as sparql, and the
internal organization of the kbs. In this demo, we present
our Question Answering (QA) system that accepts questions
posed in a Controlled Natural Language. The questions en-
tered by the users are annotated on the fly, and an ontology
driven autocompletion system displays suggested patterns
computed in real time from the partially completed sentence
the person is typing. By following these patterns, users can
enter only semantically correct questions which are unam-
biguously interpreted by the system. This approach assures
high levels of usability and generality, which will be demon-
strated by (i) the superior performance of our system on
well-known QA benchmarks, (ii) letting attendees suggest
their own test questions, and (iii) accessing an assortment
of rdf kbs that, besides the encyclopedic DBpedia from
Wikipedia, will include others on specialized domains, such
as music and biology.

1. INTRODUCTION
The last few years have seen major efforts toward or-

ganizing as rdf knowledge bases (kbs) both general and
specialized knowledge. In the first group, we find DBpe-
dia [1] that encodes the encyclopedic knowledge extracted
from Wikipedia, and in the second group we have the thou-
sands of projects that cover more specialized domains [2].
While these kbs can be effectively queried through their
sparql [3] endpoints, the great majority of web users are
neither familiar with sparql nor with the internals of the
kbs. Thus, the design of user-friendly interfaces that will
grant access to the riches of rdfkbs to a broad spectrum of
web users has emerged as a challenging research objective of
great social interest

The importance of this topic has inspired a significant
body of previous work, which includes the approaches de-
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scribed in [6, 9, 10] and several others that rely on user-
friendly graphical interfaces.

While some of these approaches [6] allow users to enter
complex queries through a web browser, Natural Language
(NL) interfaces remain the solution of choice when the used
devices do not support well a full browser, or when voice
recognition is used instead of typing. Translating NL ques-
tions into formal language queries represents an old, chal-
lenging, and widely studied problem [7, 8, 11], for which a
general solution has not been found yet. This is, in fact,
a very complex problem, combining several non-trivial sub-
problems, such as parsing the syntactic structure of the ques-
tion, mapping the phrases of the question to resources of the
kb, and resolving ambiguities. The last problem is quite se-
rious, because syntax often leaves much room for ambiguity,
which cannot be resolved without much knowledge about
the underlying application domain and understanding the
context in which the question is asked.

In order to reduce the complexity of the problem, tech-
niques replacing the ‘full’ natural language with a controlled
natural language (CNL) have been proposed. A CNL sys-
tem restricts the grammar that can be used to input ques-
tions, with the objective of making the language (i) ‘formal’
enough to be accurately interpreted by machines, but still
(ii) ‘natural’ enough to be readily acquired by people as an
idiomatic version of their NL. These systems are based on
the idea that it is worth giving up the great flexibility and
eloquence of the natural language in order to make the ques-
tions unambiguous to the machine that can thus produce
answers of better accuracy and completeness.

In this demonstration session we will present our system
for querying rdf data, called CANaLI (acronym for Context-
Aware controlled Natural Language Interface). CANaLI has
been applied to various QA testbeds [4], producing results
of superior precision and recall. We will let CANaLI answer
these testbed questions along with new questions suggested
by the conference attendees, as needed to prove the usabil-
ity and generality of the system. The attendees will thus
be able to observe how CANaLI guides the users in typing
questions, by allowing users to type only questions that are
semantically correct w.r.t. the underlying kb, and syntacti-
cally correct w.r.t. the grammar of its CNL. Moreover, as
soon as the user hesitates with typing, the system suggests
correct completions she can select from. This allows people
to self-learn CANaLI easily and quickly.

This short paper is organized as follows. Section 2 pro-
vides an overview of CANaLI, describing its basic operation,
by means of some examples (Sec. 2.1 and 2.2), the index
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Figure 1: The main states and transitions of the
automaton used by CANaLI

used to suggest valid tokens (Sec. 2.3), and the system ar-
chitecture (Sec. 2.4). Experimental results are presented in
Section 3. Finally, we describe the demonstration scenario
in Section 4.

2. OVERVIEW OF CANALI
CANaLI is a system that enables users to enter questions

in a controlled and guided way, as a sequence of tokens, that
define:

• kb resources: entities, properties, and classes,

• operators (e.g., equal to, greater than, etc.),

• literals: numbers, strings, and dates,

• NL phrases, such as “having”, that play a syntactic
sugaring role.

Each token is represented by an NL phrase, consisting of one
or more words from the application domain, since operators,
variables or URLs used in sparql are not allowed. CANaLI

operates on tokens in the style of finite state machines, with
(currently) 12 states, including the initial and final state.
Despite its simplicity, CANaLI is very general, since it can
be used with arbitrary rdf kbs, and supports most of the
common questions asked by users, including those contained
in previous papers and various testbeds (see Section 3).

2.1 Answering Simple Questions
The operation of CANaLI can be explained with the help of

the transition diagram in Figure 1, and a simple example1.
For examples, say that the user wants to enter the question:
“What is the capital of United States?”. When the user
starts typing a new question, CANaLI’s automaton is in the
initial state (S0), ready to accept tokens representing the
question start. In this case, CANaLI sees “What is the” and it
moves to the state S1. At S1, the system can accept a token
representing an entity, a property, or a class. In our example,
the user enters “capital”, that is a property recognized by
CANaLI. Thus, the system loops back to S1, ready to accept
as next input token another property, entity, or class. In our
simple example the user enters “United States”, that is an
entity, and the system moves to S2, after recognizing“United
States” as an entity with “capital” as valid property. Thus,
in order to be consistent with the semantics of the kb, our
user must enter entities that have the property“capital”, and
the system will stop her from progressing any further if that
is not the case. Of course, to reach this ‘no progress’ point

1Here, the system response is based on the context provided
by the question typed so far and the underlying kb, rather
than just the current state and last token as a finite state
automaton would.

the user must have ignored the suggestions that the system
had previously generated as valid completions of the typed
input. CANaLI shows completions under the input area: if
the user selects any such completion its text is added to the
input area. In S2 the question mark can be accepted, which
marks the end of the question, whereby CANaLI moves to
the final state SF and launches the actual query execution.
Alternatively, the user can enter conditions, using tokens
such as “having”, which will be discussed later.

Let us now consider an example involving a chain of prop-
erties: “What is the population of the capital of United
States?”. In this case, at S1, user inputs the property “pop-
ulation”, whereby the system loops back to S1. CANaLI now
accepts “of capital” because the capitals have a population,
and loops back to S1, where “of United States” takes us to
state S2 where the question mark completes the processing
of the input and launches the query.

Thus, the four basic states S0, S1, S2, and SF , support a
large set of very simple questions asked by everyday users2.
More complicated but nevertheless common questions are
those adding constraints, i.e., query conditions. For in-
stance, assume that the user wants to ask3: “What is the
capital of countries having population greater than 100 mil-
lions?” After the input “What is the capital”, has moved us
to S1, CANaLI accepts “countries”, as a class that has “cap-
ital” as a valid property, and moves to S2. In S2, CANaLI

accepts “having”, and other uninterpreted connectives used
as syntactic sugar, to move to S3, where it will accept only
a valid property. In this case, “population” can be accepted
since countries have this property. However, this example il-
lustrates the ambiguity that beset all NL interfaces, no mat-
ter how sophisticated their parser is. Indeed, this constraint
is also applicable to “capital”, since capitals have popula-
tion too. Clearly every NL system would suffer from the
same problem, and only a person who knows that currently
no city has more than 100 millions people, might be able
to suggest that the question is probably about countries
rather than capitals. However, CANaLI finesses this inher-
ently ambiguous situation by displaying all alternative in-
terpretations whereby the user has to make a choice. Once
the property “population” is accepted, and its context clari-
fied, the automaton moves to the state S4, that accepts an
operator. Thus, the user can input “greater than”. The au-
tomaton thus moves to state S5, that accepts the right-hand
side of the constraint. In general, the right hand side of a
constraint can be an element of the kb or a literal. In our
example, only a number can be accepted, since the right-
hand side must be of the same type as the left-hand side,
“population,” which is numerical. Thus, the user enters 100
millions and the automaton moves back to S2. From this
state, the user can specify more constraints, or input the
question mark, ending the question.

Examples of constraints using resources of the kb as right-
hand side are the following: “Give me the country having
capital equal to Washington.”4, “Give me the movies having

2Indeed, the most frequent web questions are definition
questions (e.g., What is Ebola?), that are even simpler.
3This provides a good example of the broken but effective
English now supported by CANaLI.
4Indeed, the complete automaton of CANaLI has also a tran-
sition from S4 to S2 that allows to implicitly assume the
equality operator. This allows to accept questions such as
“Give me the country having capital Washington.”
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director equal to a politician.”, “Give me the cities having
population greater than the population of Los Angeles.”. In
all the cases, the token accepted in S5 is a token whose type
is semantically coherent with the property previously ac-
cepted in S3. However, while accepting an entity or a class
moves the automaton to S2, accepting a property (e.g., pop-
ulation) moves the automaton to S1, where the element pos-
sessing the property must be specified (e.g., Los Angeles).

2.2 More Complex Questions
For the sake of presentation we have shown in Fig. 1 only

the states that are most commonly used in queries. In reality
CANaLI has five more states which support the additional
patterns which are discussed next via illustrative examples:

• “Give me the cities having population greater than that
of Los Angeles.” The use of the pronoun that in place
of the already used attribute population, makes the
question more natural than the question where “pop-
ulation” is repeated. However, a special state for han-
dling pronouns had to be added to CANaLI.

• “Give me the actors having birth place equal to their
death place.” The use of the possessive determiner
implies that the properties birth place and death place
are related to the same variable. A new state is needed
here too, since there is no simple way to the rephrase
the question using the grammar accepted by the basic
automaton in Fig. 1.

• “Give me the actors having birth date greater than
that of their spouse.” This question combines the two
situations described above.

• “Give me the country having the 2nd largest popula-
tion”. Questions like this require to sort the results by
the value of the attribute accepted in a specific state
and to set the offset and number of returned results
according to the token accepted in another state, i.e.,
a token such as the nth greatest or one of the nth great-
est.

• “Give me the drugs without specified side effects”. This
question requires negation. We remark that a token
such as without specified can not be handled as the
tokens like having, which defines a comparison between
two operands.

2.3 How CANaLI suggests valid tokens
To achieve real-time response, CANaLI uses an index sup-

ported by Apache Lucene, which handles our tokens as if
they were Lucene documents. Every acceptable token is as-
sociated with one or more phrases of the natural language.
When the user types a string S, a query is performed on the
Lucene index, to ensure that the returned tokens (i) have a
phrase that matches S, (ii) have a type that is among the
acceptable ones, according to the current automaton state
and the previous token, and (iii) are semantically correct,
according to the kb, as explained below.

To achieve (iii) above, besides indexing the elements of the
kb by their label and type (i.e., entity, property, or class),
we use two additional fields: domain of, and range of. The
first is needed in cases such as “What is the population of”:
a token can follow if it is domain of “population” (e.g., “cap-
ital”, “countries”, “United States”, etc.). The second is used
in cases such as “...having capital equal to”: a token can
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Figure 2: CANaLI’s architecture & work-flow guiding
users in (a) typing questions, (b) retrieving answers.

follow if it is range of “capital” (e.g., “birth place”, “city”,
“Washington”, etc.). In the case of properties, we also rely
on the field domain, as needed for cases such as “What is
the capital of countries having”, that can be followed by a
property having as domain the property “capital”5 or the
class “country” (e.g., “population”, “language”, etc.).

We created the Lucene index using the elements of the
2014 DBpedia release, using all the entities, and all the
properties and classes of the DBpedia kb (those in name
space http://dbpedia.org/ontology/). Also some classes
of the Yago kb and the 20k most frequent raw properties
(those in name space http://dbpedia.org/property/) were
indexed. Furthermore, for all the indexed properties having
non-literal range, we created an inverted property, and in-
dexed it. The time needed to create such index, by process-
ing the ∼100 millions triples of the English DBpedia, is ∼25
minutes using a single machine with 32GB of RAM, start-
ing from the raw files downloaded from the DBpedia website.
The obtained Lucene index is ∼1.1 GB large and can be eas-
ily stored in the main memory of a server, thus assuring a
nearly instantaneous response to our search queries.

2.4 The Architecture of CANaLI
Figure 2 shows the architecture of CANaLI and its work-

flow in suggesting and accepting tokens (a), and computing
the answers to the submitted question (b). CANaLI provides
a web client, that uses an autocompleter implemented in
JavaScript, using jQuery libraries. The client keeps track
of the input tokens and the current state of the automaton,
and when the user types a string S in the auto-completer, an
Ajax request is sent to a web server, implemented in Java.
The server uses the string S and the status of the automaton
to query a Lucene index, that enables to quickly extract the
results matching the string S and coherent with the current
status of the automaton. Specifically, the suggested tokens
must be syntactically coherent, according to the grammar of
the language, and semantically consistent, according to the
semantics defined by the kb. Completions are returned to
the user, and refined as she types more input. Alternatively
the user can select one of the suggested completions, and
this selection is used to update the question text entered so
far and to select the next state of the automaton. When
the final state is reached, a request is submitted from the
client to server, that uses the sequence of accepted tokens to
create a sparql query, that is submitted to DBpedia, or the
corresponding endpoints for the other kbs, and the results
are shown to the user in a user-friendly sniplet format.

5Specifically, the range of the property “capital” must be
domain for the property “population”
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Proc. Right Part. F proc. F glob.
CANaLI 46 44 1 0.98 0.92
Xser 42 26 7 0.73 0.63
QAnswer 37 9 4 0.40 0.30
APEQ 26 8 5 0.44 0.23
SemGraphQA 31 7 3 0.31 0.20
YodaQA 33 8 2 0.26 0.18

Figure 3: Results on QALD-5 benchmark - Total
number of questions: 49.

3. EXPERIMENTAL EVALUATION
A popular set of benchmarks was used to measure the

performance of QA systems, i.e., the QALD (Question An-
swering over Linked Data) benchmarks [4]. The benchmarks
consist of sets of NL questions, each associated with a gold
standard query in sparql, representing the translation of
the question. The accuracy of the systems is measured by
comparing their results with those obtained by the gold stan-
dard queries. We assessed the performances of CANaLI on
these benchmarks and the result obtained on each query are
presented in [5].

Figure 3 summarizes the results obtained on QALD-5,
that consists of 49 questions (the results obtained on the
previous benchmarks are equivalent), reporting the results
obtained by CANaLI, together with the official results of the
participating systems. The columns in the table represent
the number of processed questions (“Proc.”), the number
of questions answered with F-measure equal to 1 (“Right“),
the number of questions answered with F-measure strictly
between 0 and 1 (“Part.”), the average F-measure achieved
over the processed questions (“F proc.”), and the F-measure
over the whole set of questions (“F glob.”), assuming 0 as F
measure for the non-processed questions.
CANaLI allows to process 46 questions. The 3 questions

that could not be processed require two currently unsup-
ported features: (i) sorting by an aggregate function (e.g.,
“Which musician wrote the most books?”), and (ii) using
arithmetic (“What is the height difference between Mount
Everest and K2?”). CANaLI provided a completely wrong
answer to one question, namely, “Who is the heaviest player
of the Chicago Bulls?”. The question was input in CANaLI

by using the property team, while the gold standard query
used the UNION of both team and draftTeam, and the cor-
rect result was a player associated to Chicago Bulls through
the latter property. Therefore, CANaLI missed the correct an-
swer. CANaLI provided a partially wrong answer to another
question, “Which programming languages were influenced
by Perl?”, whose gold standard query used the union of two
properties in its constraints ( influence and influenced by).
Since CANaLI does not support the UNION operator, only
one property was used (influenced by), thus missing some
of the correct results. Finally, with 44 right answers and a
higher F-measure on both the processed and the whole ques-
tions, CANaLI proved to be superior to the other systems.
Clearly, restrictions imposed by a CNL make an interface
like CANaLI a bit less user friendly than full NL interfaces.
However, considering that, besides Xser [12], the accuracy
of the other full NL systems is far from being acceptable, we
believe that an accurate answer is worth a bit extra effort
spent in rephrasing the question.

4. DEMONSTRATING CANALI
In this demonstration session, we will exhibit the power,

usability and flexibility of CANaLI, by starting from simple
questions and moving to more complex ones. The attendees
will see how CANaLI guides users in typing questions by al-
lowing to type questions that are only semantically correct
w.r.t. the underlying kb: as soon as the typist hesitates or
halts even momentarily, the system comes to the rescue by
suggesting a list of correct completions the user can select
from. This enables people to self-learn CANaLI easily and
quickly. In fact, in our demo, after asking the attendee for
new questions, we will invite them to enter their questions
directly into CANaLI. We will then demonstrate the QA effec-
tiveness of the system by testing its superior precision and
recall on complex questions taken from published testbeds
that have thwarted the efforts of other QA systems. Finally,
we will explain briefly the working of the system, and how
the sparql queries are generated. This will also allow us
to clarify the reasons for the flexibility and generality of the
approach, whereby we will show CANaLI in action on several
kb, including MusicBrainz and biomedical kbs, and discuss
our current work-in-progress to extend it to support tempo-
ral questions on the archived history of Wikipedia/DBpedia.
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