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ABSTRACT
Web 2.0 users conveniently consume content through subscribing
to content generators such as Twitter users or news agencies. How-
ever, given the number of subscriptions and the rate of the sub-
scription streams, users suffer from the information overload prob-
lem. To address this issue, we propose a novel and flexible di-
versification paradigm to prune redundant posts from a collection
of streams. A key novelty of our diversification model is that it
holistically incorporates three important dimensions of social posts,
namely content, time and author. We show how different applica-
tions, such as microblogging, news or bibliographic services, re-
quire different settings for these three dimensions. Further, each
dimension poses unique performance challenges towards scaling
the diversification model for many users and many high-throughput
streams. We show that hash-based content distance measures and
graph-based author distance measures are both effective and effi-
cient for social posts. We propose scalable real-time stream pro-
cessing algorithms leveraging efficient indexes that input a social
post stream and output a diversified version of the stream, diversi-
fied across all three dimensions. Next, we show how these tech-
niques can be extended to serve multiple users by appropriately
reusing indexing and computation where possible. Through exten-
sive experiments on real Twitter data, we show that our diversifica-
tion model is effective and our solutions are scalable. We show that
different algorithms perform best for different application settings.

1. INTRODUCTION
Tremendous amounts of online social data are generated every

day. For instance, Twitter has reported over 280 million monthly
active users in its microblogging service and 500 million Tweets
posted per day1. One common way to consume social data is through
implicit or explicit subscription. For example, almost all news
agencies offer RSS feeds for people to subscribe. Google Scholar
continuously recommends new publications to its users based on a
user’s profile and publication history. In a microblogging system
like Twitter, one can subscribe to other users’ posts by following
them.
1https://about.twitter.com/company
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All posts matching a user’s subscriptions are typically displayed
in a convenient central place, such as the user’s timeline in Twit-
ter or Facebook. These timelines are updated in real time. A key
challenge is that a user could be easily overwhelmed by the num-
ber of posts in the timeline, especially if the user is subscribed to
many post producers. Further, a user’s timeline often contains lots
of posts that carry no new information with respect to other similar
posts. This data overload issue also happens in other applications
with smaller data throughput such as news and research papers. For
instance, it has been shown that a primary care physician should
read hundreds of medical publications per day to keep up with the
medical literature [2].

To alleviate the data overload problem, in this paper we pro-
pose a novel way to efficiently and effectively diversify social post
streams by pruning redundant posts. By social post streams we
mean a broad class of content generated by services where each
post, in addition to its textual content, has a unique author and a
unique timestamp, and where authors are associated through vari-
ous social relationships. For instance, in Google Scholar authors
are connected by relations such as co-authorship or overlapping
research interests. In microblogging sites users are connected by
follower/followee relations.

Given a stream consisting of all the posts from a user’s subscrip-
tions, our goal is to output in real-time a subset of the stream in
which (i) all posts are dissimilar to each other and (ii) any post in
the whole stream will be either included or covered by a post in the
sub-stream. A post covers another post if the two posts are simi-
lar in all three similarity dimensions: (a) content, (b) time and (c)
author.

Two posts have similar content if their text components are sim-
ilar. Intuitively, all other dimensions being equal, users want to
avoid seeing two posts with very similar content. Similarly, the
timestamp distance of two posts is important in social post diver-
sification. Two posts that have similar content but are far away in
terms of post time, may both be of interest to the user. Note that
time is widely used for diversifying search results in microblogging
systems [10, 14, 4].

The author similarity is a more subtle dimension that to the best
of our knowledge has not been used before for computing diver-
sity in social media. For example, CNN and Fox News, which
both have official Twitter accounts, are dissimilar to each other be-
cause they generally have different political views. We compute the
distance between two authors through their social connections. In
particular, we compare the sets of friends (or followers in the case
of Twitter) of the two authors, which has been shown to be a good
author similarity measure in social networks [21, 9].

Challenges: To summarize, in our model two posts are redun-
dant with respect to each other if they are similar in all of the three
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dimensions. It is challenging to apply the proposed diversification
model in a large scale social service with high posts throughput.
First, we must efficiently compare the content of a new post to
the content of all previous posts (within a time window). For this,
we apply Hash-based techniques to measure the content similar-
ity between social posts. Hash-based techniques have been applied
before to Web documents [11], but not to social posts, which are
generally shorter and may heavily rely on abbreviations or URLs.

Second, handling the author dimension is challenging. A naive
approach is to check if the author of each new post is similar to
the author of each existing post (within a time window). However,
we show that depending on the setting (similarity thresholds across
the three dimensions), a different indexing data structure is more
efficient to achieve real-time posts processing.

Third, the three diversity dimensions offer an opportunity to use
the results of the one dimension to prune the work needed for the
other dimension. For instance, if a reader knows that posts P1 and
P2 have high content similarity, then she doesn’t need to check if
their authors or time are similar.

Fourth, if we move from one user to many users, where each user
has a collection of subscriptions, the challenge is how to reuse the
computation performed for diversifying one user’s stream to diver-
sify streams of other users. We show that we can reuse computation
across users only if their shared subscriptions meet a strict condi-
tion.

Previous work on diversity: There has been much work on di-
versifying results for documents [15, 1, 3], social posts [10, 14, 4]
and database records [5, 6]. However, none of these works can be
applied to our setting where: (i) data is streaming and an instant
decision must be made on whether a post should be pushed to the
user, and (ii) a multi-dimensional diversity model is adopted. In
contrast, most previous works focus on the search setting, where a
user submits a query and the set of results must be diversified based
on content, including work on social posts [10, 14].

The problem studied in this paper is also fundamentally different
from previous work on stream summarization [20, 18, 16, 23], be-
cause: (i) we do not aim to generate an aggregation of documents,
but instead select a subset of posts, and (ii) we define strict cover-
age constraints to guarantee that not even one uncovered posts is
missed.

Contributions: In this paper, we make following contributions:

• We propose a new paradigm to define diversity on social
posts, by incorporating three important dimensions – con-
tent, time and author – and we define corresponding opti-
mization problems (Section 2).

• We study how content similarity can be efficiently applied to
social posts, which are generally short and contain abbrevia-
tions (Section 3).

• We propose efficient data structures and algorithms to solve
the social posts stream diversification problem (Section 4).

• We show how the single-user algorithm can be extended to
handle many users, by reusing computation across users (Sec-
tion 5).

• We perform a comprehensive experimental evaluation, where
we focus on microblogging data, which poses the most se-
rious scalability challenges. We show how different algo-
rithms perform better for different diversity needs (Section 6).

Section 7 reviews related work. We conclude in Section 8.

2. FRAMEWORK AND PROBLEM DEFINI-
TION

Let P represent a stream (ordered set) of social posts. Each post
Pi in P has an author author(Pi), textual content text(Pi) and a
timestamp time(Pi) (also referred as ti). We define the distance
measures across the three diversity dimensions as follows.

• Content Distance. We represent the content distance be-
tween two posts Pi and Pj as distc(Pi, Pj). Cosine similar-
ity is a possible way to define the distance, but for efficiency
purposes we employ the hash-based simhash measure as ex-
plained in Section 3, where we show that simhash is effective
for social posts.

• Time Distance. The time distance between two posts Pi and
Pj is denoted as distt(Pi, Pj) = |ti − tj |.

• Author Distance. We denote the author distance between Pi

and Pj as dista(Pi, Pj). For social data, we define the sim-
ilarity between two authors as the cosine similarity between
their friends’ vectors, which has been successfully used in
previous work to measure the user similarity in Twitter [21,
9]. The author distance is (1 − similarity). For other do-
mains other distance measures may be more appropriate.

Next, we define the coverage semantics between posts.

Definition 1. (Post Coverage) Given a content diversity threshold
λc, a time diversity threshold λt and an author diversity threshold
λa, two social posts Pi and Pj cover each other if:

• distc(Pi, Pj) ≤ λc and

• distt(Pi, Pj) ≤ λt and

• dista(Pi, Pj) ≤ λa.

Note that the coverage semantics between two posts is symmet-
ric. The three thresholds may vary according to the characteristics
of a social system as we discuss below. The primary focus of this
paper is to study the efficient processing of a posts stream and not
to set these threshold values.

We next define the Social Post Stream Diversification (SPSD)
problem.
Problem 1 [Social Post Stream Diversification (SPSD)] Given
a social post stream P, and diversity thresholds λc, λt and λa, com-
pute a sub-stream of posts Z ⊆ P that covers P, that is, ∀Pi ∈ P
∃Pj ∈ Z, such that Pj covers Pi.

Note we have to computeZ in real-time, i.e., immediately decide
whether a post Pi should be included in Z at its arrival. That is, we
cannot first view the whole stream and then decide which posts
should be included in the substream.

In SPSD, there is a single user who consumes the stream and
many authors who generate the posts of the stream (a user may also
be an author and vice versa). That is, a solution to SPSD should be
deployed for each user, for example, as part of the Twitter app of a
user. On the other hand, a social network service would rather have
a central diversification engine that diversifies the posts for each
of its users, so that no client side post processing is required. We
refer to this version of SPSD as Multiple-Users SPSD (M-SPSD).
Another difference between SPSD and M-SPSD is that in SPSD we
can easily support user customized diversity thresholds. Figure 1
shows how SPSD and M-SPSD differ in terms of the setting and
deployment.
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(a) SPSD (b) M-SPSD

Figure 1: Settings of SPDP and M-SPDP.

Problem 2 [Multiple-Users Social Post Stream Diversification
(M-SPSD)] Given a social post stream P, diversity thresholds λc,
λt and λa, and a set of users where each user is subscribed to a
subset of the authors, compute a diversified sub-stream for each
user.

3. CONTENT DISTANCE ESTIMATION FOR
MICROBLOGGING POSTS

Among the three diversity dimensions, the content distance is
the most expensive to compute, because it must be computed for
each new post. This is especially true given our real-time decision
semantics described above. In contrast, the author similarity be-
tween each pair of authors may be precomputed (e.g., once every
week), as it changes slowly over time. For that reason, we cannot
afford to use traditional content similarity measures such as cosine
similarity. Instead, we turn to hash-based distance measures. In
this section we present the details of the employed content distance
technique along with an analysis of its effectiveness for microblog-
ging data.

We define the content distance between two posts Pi and Pj as
the Hamming distance of their SimHash [17] fingerprints. Previous
work has applied SimHash on web documents [11] and showed that
it is efficient and effective. We represent the SimHash of text(Pi)
as Si, which is a 64-bit fingerprint. The Hamming distance of two
SimHash fingerprints is the number of different bits between them.
According to the experimental analysis in [19], the cosine distance
between two texts positively correlates to the Hamming distance of
their corresponding SimHash fingerprints.
Distribution of SimHash distances in Twitter

First, we study the distribution of SimHash distances on Twitter
data. We collected a dataset of 200 thousand tweets from the Twit-
ter Streaming API, which returns a stream of randomly selected
substream of Twitter ([12] showed that the stream is not exactly
random but this is not too important for our problem). The distri-
bution of the Hamming distances for these tweets is depicted in Fig-
ure 2, which shows a perfect normal distribution with mean value
32, as expected, and with most of the distances between 24 to 40.
User Study

To further evaluate the effectiveness of SimHash for social posts,
we conducted a user study to learn the relationship between the
SimHash distance between two posts and the perceived dissimilar-
ity between the posts. A second goal of the study is to learn what is
a good SimHash distance threshold (e.g., a threshold of 3 bits was

Figure 2: Hamming distance distribution

chosen to define redundant Web pages [11]) and if any preprocess-
ing of the tweet text (e.g., expand shortened URLs) may improve
the effectiveness of SimHash.

Setup and Methods: In particular, we collected a dataset of 2000
pairs of tweets randomly selected from the 200,000 tweets returned
by the Twitter Streaming API, with SimHash distances between 3
and 22 – 100 tweets from each distance value. We chose 3 to 22
because this is the range where we expect to find posts that are very
similar (redundant with respect to each other). This range choice is
supported by our results below. We recruited 12 undergraduate and
graduate students.

We evenly divided these 2000 pairs into 4 groups and distributed
them to the 12 students for labeling. The author and timestamp of
the posts are hidden. Some examples of these pairs are shown in
Table 1. Each group of tweets is labeled by 3 students. The students
were asked to mark whether the two tweets in a pair are redundant
with respect to each other.

To help the users more accurately label the similarity between
two posts, we showed the expanded URL (instead of the shortened
one shown in Table 1). We used a majority vote, that is, if at least
2 out of the 3 students labelled a pair as redundant, we labelled the
pair as near-duplicates.

Results: Out of the 2000 pairs, the users marked 949 pairs as
redundant. Figure 3 shows the precision and recall achieved by
various SimHash distance values. For each Hamming distance h,
the precision is defined as the fraction of pairs with Hamming dis-
tance no more than h that are true near-duplicates. Recall is the
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Table 1: Example tweet pairs and their Hamming distances

Tweet pair Hamming distance
Over 300 people missing after South Korean ferry sinks. (Reuters) Story: http://t.co/9w2JrurhKm

Over 300 people missing after South Korean ferry sinks. (Reuters) Story: http://t.co/E1vKp9JJfe
3

“In order to succeed, your desire for success should be greater than your fear of failure” Bill Cosby

In order to succeed, your desire for success should be greater than your fear of failure. #quote #success -
Bill Cosby

8

Alibaba’s growth accelerates, U.S. IPO filing expected next week http://t.co/mUcmLJ4cpc #Technology #Reuters

Alibaba’s growth accelerates, U.S. IPO filing expected next week: SAN FRANCISCO (Reuters) - Alibaba
Group Hold... http://t.co/aLAV8w4gWF

13

fraction of the total number of near-duplicate pairs that are detected
with Hamming distance at most h. This graph shows that SimHash
distance is an effective measure to identify similar posts.

Figure 3: Precision and Recall for Hamming distance. SimHash
fingerprints are generated from raw texts of tweets

Next, we study if various text preprocessing methods may im-
prove the precision or recall of SimHash distance measure for mi-
croblogs. We first normalize the text by (a) changing all text to
lowercase, (b) removing extra white spaces between words, and (c)
removing non-alphanumeric characters (such as ∗,,−,+, /, etc.).
Figure 4 plots the precision and recall after we apply the normal-
ization. We see that this graph achieves higher precision and recall
values than the original analysis in Figure 3. We also see that the
the two lines cross for distance = 18, which achieves precision
= 0.96 and recall = 0.95.Hence, we use λc = 18 as the default
content distance threshold in the experiments in Section 6.

We also tried other methods of text preprocessing such as ex-
panding shortened URLs (URLs in tweets are shortened by Twit-
ter), varying the weights of user mentions and hashtags (by creat-
ing artificial copies), and expanding abbreviations. However, these
methods had no significant impact to the precision and recall.

For completeness, we compared the effectiveness of SimHash to
that of cosine similarity (which is much slower as discussed above)
in terms of detecting posts with near-duplicate content (redundant).
We tried different cosine threshold values and found that the preci-
sion and recall lines across at cosine similarity 0.7, where all posts
with cosine similarity above 0.7 are marked as redundant. This
achieves precision and recall of 0.96 and 0.95 respectively, which
is the same as what we achieved using SimHash above. This means
that, for detecting near-duplicate in our dataset, SimHash achieves
effectiveness similar to cosine similarity. Hence, given the time
performance advantage of SimHash, it is the best choice for our
problem.

The high threshold value of λc = 18 for SimHash precludes the

Figure 4: Precision and Recall for Hamming distance. SimHash
fingerprints are generated from normalized texts of tweets

use of the efficient SimHash index proposed in [11] which relies
on building several copies of the SimHash values table for several
permutations of the bits, since the number of these copies is expo-
nential in λc (which was only 3 in [11]). Hence, as we discuss in
Section 4, other indexing and searching techniques are required.

4. ALGORITHMS FOR SPSD
In this section, we describe our algorithmic solutions for the

SPSD problem. As explained earlier in Section 3, due to the high
Hamming distance threshold we are unable to use existing SimHash
indexing techniques, and we must rely on comparing the SimHash
value of each new post with those of all the previous ones, leading
inevitably to linear time complexity per post in the worst case. We
reduce the number of these comparisons by leveraging the other
two dimensions, time and author. We first discuss how we han-
dle time diversity, which is simpler, and then we present various
approaches for handling author diversity.
Handling Time Diversity. According to the diversity model, at
the arrival of a post Pi it can only be covered by the previous posts
within a λt time distance. Thus, it is sufficient to store only the
posts from previous λt time in memory for checking the coverage
of a new post. One possible implementation is that we could store
the posts in a circular array. We track two post indices for the oldest
post within a λt distance to current time (a) and the most recent
post (b). At the arrival of each post Pi, we compare it to the posts
from most recent post to the oldest (i.e., from index b to a). If we
encouter a post Pj with ti − tj > λt, we update a to be index of
the post right after Pj . And we insert a non-redundant post to the
array with index (b+ 1) and update b = b+ 1.

Now that we have discussed how to handle time diversity, we
focus on the author diversity among the posts in the last λt time
units. The author similarity relations between all authors form an
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author similarity graph G, which as we discussed above may be
periodically precomputed. There is an edge between two authors
in G if their distance is below the threshold λa. For each user ui

who subscribes to a set A of authors, we define Gi as the subgraph
of G that contains all the A authors and the edges among them. In
this section, we assume there is only one user (hence, one Gi) and
in Section 5 we assume multiple users (and Gi’s).

4.1 UniBin
Our first method to solve SPSD, which we refer as UniBin, works

as follows: At the arrival of each post Pi in P, we sequentially
(from the most recent post to the older ones) compare Pi to each
post in the past λt time range in the diversified sub-stream Z. For
each post Pj , we check whether Pj meets both: (1) Hamming
distance between Si and Sj (SimHash fingerprints of Pi and Pj ,
respectively) ≤ λc, and (2) dista(Pi, Pj) ≤ λa, which can be
achieved by checking whether author(Pi) and author(Pj) are
the same or neighbors in G. If no post from the past λt time range
meets the above two conditions (i.e., Pi is not covered by Z), then
we add Pi to Z. Otherwise we do not include Pi in Z.

We denote this method as UniBin indicating that the posts from
all authors are stored in a single post bin (e.g., a circular array as
described earlier). We illustrate UniBin with an example. In Fig-
ure 5a, each node represents an author. Two authors are connected
by an edge if they are similar to each other (i.e., the author distance
≤ λa). Figure 5b shows the posts from these authors with post
distance information in terms of all three diversity dimensions.

We show the update of a post bin for UniBin in Figure 6a. When
P1 arrives, there is no posts in the bin yet. Thus P1 is not covered
hence is added to the bin. P2 is also added as it is not covered by P1

(the Hamming distance between S1 and S2, distc(P1, P2), is larger
than the threshold λc). For P3, the algorithm first compares it to P2

which does not cover P3 (because distc(P2, P3) > λc). However,
it is covered by P1 because in all three diversity dimensions they
are within the distance thresholds (or above similarity threshold).
Thus, P3 is not added. So forth, P4 is not covered by either P1 and
P2 and is included in the bin. However, we note that P4 and P3

cover each other. Finally, P5 is covered by P4.

4.2 NeighborBin
UniBin has to compare a new post (both its author and content

SimHash) to all posts in the last λt time units. This aggregated
time may be considerable given the high frequency of posts, even
if the author similarity graph Gi and the post bin are maintained in
memory.

To improve this, we partition the posts by their authors such that
for a new post Pi we only check its coverage by comparing with
the posts from author(Pi) or from author(Pi)’s similar authors.
Specifically, we create a post bin for each author.and when a new
post Pi comes, the algorithm sequentially checks posts in the bin
identified by author(Pi) but not other posts. However, we must
note that posts from the authors that are neighbors of author(Pi)
in Gi can potentially cover Pi. Hence, the post bin of an author
also includes the posts of similar authors (neighbors in Gi). Thus,
we add Pi to all bins of author(Pi)’s neighbors in addition to the
bin of author(Pi), if Pi is detected as a non-redundant post. We
denote this method as NeighborBin.

Figure 6b depicts the execution of NeighborBin for the data shown
in Figure 5. P1 is added not only to the bin of its author a1, but also
to the bins of a2 and a3, because they are neighbors of a1, as shown
in Figure 5a. To check the coverage of P2, only the post bin of
a2 is accessed where P1 does not cover P2. After that, P2 is also
added to the post bins of a1, a2 and a3. NeighborBin checks the

coverage of P3 by iterating posts in the bin of a3 where P1 covers
P3. When P4 comes, a4’s post bin is blank and thus P4 is added
to the post bins of a3 and a4 without incurring any post compar-
isons. Finally, P5 is detected as redundant by checking the bin of
a3 (author(P5) = a3) where P4 covers P5.

4.3 CliqueBin
In NeighborBin, we index the posts by author aiming to reduce

the pairwise post comparisons. But the tradeoff is memory con-
sumption: we have multiple copies of a post in different authors’
post bins.

To reduce the overhead on memory consumption incurred by
NeighborBin, we identify groups (cliques) of authors that are sim-
ilar to each other and assign a single bin to them, such that a post
generated by any of these authors is only stored in that bin. Specif-
ically we find a clique edge cover of Gi, that is a collection of
cliques whose union contains all edges of Gi. We maintain a post
bin per clique (e.g., a map from clique ID to a list of posts). Only
the posts from authors in a same clique as author(Pi) can possi-
bly cover post Pi. Thus, at the arrival of post Pi, we check whether
it is covered by sequentially comparing it to the posts from only
the cliques that contain author(Pi). Thus a post Pi in Z is stored
once for every clique that contains author(Pi) – instead of once
for each neighbor of author(Pi) in NeighborBin. Note that this
approach guarantees that the coverage requirement for posts is sat-
isfied: when a new post Pi authored by aj appears, and Pi is not
similar to earlier posts of aj or its neighbors then Pi will be added
to the cliques involving aj , because aj’s edges are covered by the
cliques.

Considering the space consumption, our objective should be to
minimize the sum of the sizes of cliques, i.e., the average number
of cliques per author is minimized and thus number of copies per
post is reduced. This is an NP-hard problem, and hence we have
decided to use a simple greedy heuristic. It starts by picking an
edge in Gi to form an initial clique. Then it extends the clique by
adding nodes that are neighbors to all the nodes in the clique. When
there is no such node, the clique is saved and the algorithm picks
another edge not yet included in any found cliques and repeats the
above process. We stop when all edges are covered.

Upon a new post Pi, we use a hashmap (Author2Cliques) to
get all the cliques that contains author(Pi), and then we check
the posts in the corresponding bins. Recall that NeighborBin and
UniBin load the author similarity graph Gi in memory. We can
make the same assumption that Author2Cliques is loaded in mem-
ory for applying CliqueBin. Similar to the computation of author
similarity graph, we assume the clique partition of Gi and the Au-
thor2Cliques mapping are computed offline. We denote this algo-
rithm as CliqueBin.

The update of a post bin by CliqueBin is depicted in Figure 6c.
Cliques C0 and C1 together cover all the edges in the graph. We
can see that P1 is only stored once in C0’s bin (because a1 is in C0)
instead of saving 3 copies in NeighborBin as Figure 6b. The same
applies to P2. Since a3 is in both C0 and C1, during the processing
of P3 CliqueBin may check both bins of C0 and C1. P4 will only
be compared with the bin of C1 because a4 belongs to only C1.
Again, CliqueBin checks the coverage of P5 by iterating both bins
of C0 and C1. This example illustrates how CliqueBin can reduce
space requirements compared to NeighborBin.

We note that in some cases CliqueBin may have to do a larger
number of pairwise post comparisons than NeighborBin. Suppose
that after P5 in the above example author a3 posts P6 and then au-
thor a4 posts P7. If P6 and P7 are not redundant to any other posts,
then P6 should be added to all four post bins in NeighborBin, and
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(a) Author similarity graph Gi (b) Social Posts

Figure 5: Example of author similarity graph and posts

(a) UniBin (b) NeighborBin (c) CliqueBin

Figure 6: Running example for the three algorithms for SPSD.

to both post bins in CliqueBin. For P7, NeighborBin only accesses
the bin of a4 and thus only needs to do two comparisons (with P4

and P6). In contrast, CliqueBin has to do 5 comparisons: with
P1, P2, P4 and twice with P6 (once in post bin of each clique). We
study this experimentally in Section 6.

4.4 Performance Analysis
In this section we show an estimate of the time and space com-

plexity of our algorithms, attempting to capture their performance
on realistic data, rather than the worst-case performance. Rigorous
derivation of such estimates is challenging, because the behavior
of these algorithms heavily depends on the specifics of the data
sets, including the topology of the social network. Instead, we pro-
vide informal derivations based on several reasonable assumptions
about the data set and the graph’s topology.

Suppose there are m subscribed authors, and the total number of
posts from these m authors in a λt time range is n. We assume a
ratio of r (≤ 1) posts left after diversification, that is, r · n non-
redundant posts per λt time. We also assume that the each author
generates the same number of n

m
posts with r·n

m
left after diver-

sification. Further we assume in the author similarity graph, each
author has d neighbors and is in c (≤ d) cliques. We denote s as
the average number of authors in a clique.

Note that cliques may have overlaps. If we define q as the num-

ber of edges in G over the total number of edges in c cliques from
G, we have m·c

s
= m·d

s·(s−1)·q , where both sides compute the num-
ber of distinct cliques. Thus we can expect c · (s− 1) · q = d with
0 ≤ q ≤ 1.

Recall that UniBin puts posts from all authors in Z into a single
post bin. Thus, the total bin size is r ·n in UniBin. Each new post is
sequentially compared to each post in the bin and thus the number
of post comparisons per new post is r ·n. Each non-redundant post
incurs one insertion into the bin.

NeighborBin maintains a set of per-author bins with each bin
storing posts from an author and her similar authors. Roughly, each
per-author bin stores d+1

m
·r ·n posts. Thus the total number of post

copies stored in memory is (d + 1) · r · n. At the arrival of a new
post Pi, the number of post comparisons made by NeighborBin is
d+1
m
·r ·n (compare Pi to all posts in author(Pi)’s post bin). Each

non-redundant post incurs a total of (d+1) insertions into the bins.
In CliqueBin, for each non-redundant postPi we store its c copies:

one copy in the bin of each clique containing author(Pi). Thus,
the total size of the clique bins is c · r · n. CliqueBin compares
each new post Pi to posts in the bins of c cliques that contain
author(Pi), which leads to a total of s·c

m
· r ·n comparisons. Each

non-redundant post incurs a total of c insertions into the bins.
Table 2 summarizes the performance analysis. We can see that

all these results contain the same component r · n. Obviously, all
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Table 2: Performance estimation of the algorithms for SPSD

UniBin NeighborBin CliqueBin
RAM r · n (d+ 1) · r · n c · r · n

Comparisons in λt r · n2 d+1
m
· r · n2 s·c

m
· r · n2

Insertions in λt r · n (d+ 1) · r · n c · r · n

three diversity thresholds effects the ratio of non-redundant post r.
The value of n is affected by several factors, such as the frequency
of the post stream P and the setting of time diversity threshold λt.

An important factor that affects the performance of the algo-
rithms, especially NeighborBin and CliqueBin, is the topology of
the author similarity graph G. In the above estimates, we use pa-
rameters d, c, s and m to capture the topology properties. We note
that the values of the ratios of d, c, s to m are functions of the au-
thor diversity threshold λa. Given a set of subscribed authors (i.e.,
withm fixed), the larger λa the denserG is (in terms of the number
of edges). Thus, the number of neighbors per author (d) increases
with λa, which means the performance of NeighborBin will drop if
all other settings remain unchanged. We also argue that c and c · s
increase with the graph’s density, and hence we expect CliqueBin
to perform better for smaller λas. In Section 6, we confirm this
through experiments on real data set.

In Section 6 we will summarize the use cases for each algorithm
based on this theoretical analysis combined with our experimental
results.

4.5 Summary
We summarize the characteristics of the three algorithms in Ta-

ble 3. In terms of data structure, UniBin and NeighborBin need
the author similarity graph, while CliqueBin needs the mapping of
each author to the set of cliques containing the author. As we men-
tioned, we assume that all these data structures are maintained in
memory.

We can see that UniBin requires the least RAM. NeighborBin
reduces the post comparisons compared to UniBin, but has high
RAM consumption because it maintains multiple copies of a post.
CliqueBin outperforms NieghborBin in terms of RAM consump-
tion, by reducing the number of copies per post (and thus insertions
per post), but it incurs more post comparisons. Since CliqueBin
still maintains multiple copies of a post, it requires more insertions
and higher RAM consumption than UniBin. Also, since CliqueBin
does not compare posts from non-similar authors, we expect the
number of comparisons in CliqueBin to be lower than in UniBin.

5. ALGORITHMS FOR MULTIPLE-USERS
SPSD (M-SPSD)

In this section, we extend our ideas to solving M-SPSD. When
we move from applying the diversity model for one user to multiple
users, the crucial question is whether it is possible to reuse the com-
putation performed for diversifying one user’s stream to diversify
the other users’ streams.

A simple way to solve M-SPSD is to process the post stream
for each user individually. That is, we can apply the algorithm for
SPSD on each user’s post stream separately. We denote the corre-
sponding algorithms for M-SPSD as M_UniBin, M_NeighborBin
and M_CliqueBin respectively, to distinguish them from the al-
gorithms for SPSD. In this section, we present variations of these
algorithms to optimize the diversification process by reusing com-
putations for multiple users who share subscriptions.

If two users do not share any common subscriptions, then their

post streams are disjoint and thus the computation of diversifying
one’s stream cannot be reused for diversifying the other users’ post
streams. Hence we only consider the cases for optimization when
users share the same subset of subscriptions.

(a) G1 (b) G2

Figure 7: Author similarity graphs of two users u1 and u2.

However, we notice several limitations to reusing the diversifi-
cation computation across multiple users, even if they share some
subscriptions. We use examples to illustrate this. Figure 7 shows
two users, u1 and u2, sharing a set of subscriptions {a1, a2, a4,
a6}.

We notice that after diversification u1 may see a different subset
of the posts from a4 as u2. u2 subscribes to a5 which is a similar
author to a4. Thus, it is possible that some posts from a4 are shown
to u1 but not to u2 if they are covered by a5’s posts.

However, the same diversified set of posts from {a1, a2, a6} will
be shown to u1 and u2. The three authors form a connected compo-
nent (denoted as g1 in Figure 7) in bothG1 andG2. That is, in both
G1 and G2 there are no other authors similar to any author in {a1,
a2, a6}. Hence, posts from other subscribed authors can not cover
the posts from {a1, a2, a6}. Thus, the diversification processes on
the posts from {a1, a2, a6} are exactly the same for u1 and u2. This
means that we can reuse the data structures and computation across
u1 and u2 for diversifying the post stream from {a1, a2, a6}.

Based on these observations, we can optimize the diversifica-
tion process for multiple users if they subscribe to a same set of
authors that form a connected component. We can then consider
a post stream (a subset of P) of each connected component sepa-
rately, apply the diversification algorithm on it, and then merge the
diversified post streams together.

For this, we first process the author similarity graph Gi of each
user ui to compute all connected components of all Gis. (Since
differentGis may overlap, some nodes may appear in several com-
ponents.) For each distinct connected component gi, we run one of
the proposed algorithms for SPSD on the post stream by the authors
in gi. User ui’s post stream consists of the union of the diversified
post streams from all connected components in Gi.

For example, as shown in Figure 8b, we can apply the UniBin
algorithm for three distinct connected components (g1, g2 and g3),
that is, we maintain a single post bin for each of the three compo-
nents. Then the posts shown to u1 is the union of the two diversified
post streams from g1 and g2. We refer this algorithm as S_UniBin.
For comparison, we show the example for M_UniBin in Figure 8a.
M_UniBin maintains a post bin for each user seperately. To extend
NeighborBin, we maintain a per-author post bin for each author in
a distinct connected component gi. To extend CliqueBin, we do the
clique partition for each gi, then maintain a per-clique post bin as
described earlier.

We denote the three algorithms with the above optimization as
S_UniBin, S_NeighborBin and S_CliqueBin respectively.
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Table 3: Differences between the three algorithms for SPSD

UniBin NeighborBin CliqueBin

Data Structures

(1) Author similarity graph
(2) A single post bin storing
posts from all authors.

(1) Author similarity graph
(2) A post bin per author stor-
ing posts from the author and
her neighbors.

(1) Author clique mapping
(2) A post bin per clique storing
posts from all the authors in the
clique.

Properties
RAM Low High Moderate

Comparisons High Low Moderate
Insertions Low High Moderate

(a) M_UniBin (b) S_UniBin

Figure 8: Example of M_UniBin and S_UniBin.

6. EXPERIMENTAL EVALUATION

6.1 Data Set and Experimental Settings
We conducted our experiments on Twitter data. The authors

in [22] published a Twitter social graph dataset consisting of more
than 660,000 Twitter authors (accounts). Computing the author
similarity graph for the whole data set would be prohibitive, as it re-
quires comparing all pairs of authors. Instead, we used a subgraph
of 20,150 authors obtained by randomly picking an initial author,
and adding authors that are reachable through Breadth First Search
on the follower-followee graph.

We computed all pairwise author similarity for these 20,150 Twit-
ter authors. The author similarity distribution is depicted in Fig-
ure 9, where the x-axis shows the author similarity value and y-axis
shows the fraction of author pairs with similarity values larger than
the value indicated by x-axis. It shows that 2.3% author pairs are
with similarity ≥ 0.2 and 0.6% pairs are with similarity ≥ 0.3.

Further, we crawled the tweets of these twitter authors using
Twitter REST API2 for one day. The tweets data set contains 233,311
tweets, which means these Twitter authors post slightly over 10
tweets per author per day. After we removed some short tweets
that have less than two words or only contain meaningless tokens,
there are 213,175 tweets left.

We implemented all algorithms in Java. We ran our experi-
ments on machines with Quad Core Intel(R) Xeon(R) E3-1230
v2@3.30GHz CPU and 16GB RAM.

6.2 Performance of the algorithms for SPSD
In this section, we evaluate the performance of the three algo-

rithms for SPSD. We assume that a user follows all the Twitter
authors in our dataset, and we run the algorithms on the user’s post
stream which consists of 213,175 posts in one day.

First, we study the effect of the three diversity dimensions: time,
content and author. Figure 10 shows the number of tweets left af-
ter diversification under different settings by removing diversity di-
mensions and varying diversity thresholds. Incorporating all three
diversity dimensions with reasonable diversity thresholds, the di-
2https://dev.twitter.com/overview/documentation

Figure 9: Author similarity distribution in our data set

versification model prunes about 10% redundant posts. We no-
tice that incorporating only some of these dimensions will largely
change the size of diversified stream. It means that all three dimen-
sions play an important role in diversifying tweet data.

6.2.1 Performance of the algorithms under different
diversity settings

The analysis in Section 4.4 indicates that the performance of the
three algorithms for SPSD is effected by several factors such as
the diversity thresholds and the post stream throughput. These di-
versity settings could change the relative performance between the
three algorithms. In this section, we study the performance of each
algorithm under different settings and we experimentally show that
each algorithm outperforms the other two in certain settings. Sup-
ported by former analysis and experimental results, we will sum-
marize use cases for each algorithm.
Varying time diversity threshold λt. In Figure 11, we present
the performance of UniBin, NeighborBin and CliqueBin under dif-
ferent time diversity thresholds (λt). In this experiment, we set
λc = 18 (according to the results in Figure 4) and λa = 0.7 (i.e.,
we consider two authors are similar if the cosine similarity between
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Figure 10: Number of tweets left after applying diversification in
our data set

their followee vector is≥ 0.3 and thus distance is≤ 0.7). The run-
ning time shows the execution time for an algorithm to ingest the
213,175 posts.

In Figure 11a we can see that the running time of all three al-
gorithms decreases with smaller λts. The reason is that with a
smaller λt, the algorithms perform fewer pairwise post compar-
isons (depicted in Figure 11c). NeighborBin and CliqueBin outper-
form UniBin in terms of running time. We also notice that Clique-
Bin is more efficient than NeighborBin when λt is small (e.g., ≤
10 minutes). This gives us evidence for the summarization of use
cases in Table 4 for NeighborBin and CliqueBin.

Smaller λt also reduces the RAM consumption because the algo-
rithms store shorter history of Z in post bins. As expected, Neigh-
borBin requires more memory than UniBin and CliqueBin.

(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 11: Performance of the three algorithms under different time
diversity thresholds λt.

Varying content diversity threshold λc. We also study the per-
formance of the three algorithms by varying λc. For this, we set
λt = 30 mins and λa = 0.7 and we vary the λc from 9 to 18.
Figure 12 depicts the results. It shows that, for all the three algo-
rithms, the change of content diversity threshold only slightly af-
fects the performance. The reason is that SimHash can effectively
detect tweets with near-duplicate content for λc ≥ 9 as we can see
in Figure 4. With λc changing from 9 to 18, the precision is already
stable. The recall is lower with smaller λc, which means more posts
will be detected as non-redundant. But this increase in number of

non-redundant posts is slight, and thus the increase in the number
of comparisons and insertions does not affect the overall efficiency
significantly.

(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 12: Performance of the three algorithms under different con-
tent diversity thresholds λc.

(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 13: Performance of the three algorithms under different au-
thor diversity thresholds λa.

Varying author diversity threshold λa. Further, we study the
performance by varying λa. The results are presented in Figure 13
where we set λt = 30mins and λc = 18.

We observe that the author diversity threshold λa significantly
affects the overall performance of NeighborBin and CliqueBin but
not UniBin. When λa increases, the author similarity graph gets
denser and thus the number of neighbors per author and the number
of cliques per author both increase. For instance, when λa = 0.7
the number of neighbors per author (d) is 113.7, the number of
cliques per author (c) is 29 and the average size of a clique (s) is
20 in our data set. They change to 437.3, 106 and 38 correspond-
ingly with λa = 0.8. Hence, the number of copies per post in
NeighborBin and CliqueBin increases. This explains that in Fig-
ure 13 the memory consumption by NeighborBin and CliqueBin

25



(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 14: Performance of the three algorithms under different post
rates.

increases sharply with larger λas. However, the number of non-
duplicate posts does not vary much with different λas in our data
set; thus the performance of UniBin is stable.

We note that when λa is large the performance of NeighborBin
and CliqueBin (in terms of both memory consumption and running
time) is significantly worse than UniBin. Hence, we expect UniBin
is the best choice among these three algorithms in use cases where
λa is large, as we summarize in Table 4.
Varying post stream throughputs. We also study the performance
of the algorithms under different post stream throughputs. We test
this in two ways: (i) varying subscriptions’ post rate, and (ii) vary-
ing the number of subscriptions. For both, we keep λt = 30mins,
λa = 0.7 and λc = 18.

Varying post generation rate. For this, we randomly sample the
posts from the 21,050 authors and solve SPSD on the sampled post
stream. We conduct experiments for the sample ratio 25%, 5% and
1% and present the results in Figure 14. The results show that when
the throughput is low (the same ratio is low) UniBin outperforms
the other two algorithms. We can also see that CliqueBin performs
better than NeighborBin with a moderate or small post generation
rate.

Varying the number of subscribed authors. The results shown
above are for the case of one user subscribing (following) all Twit-
ter authors in our dataset. In this experiment, we randomly sample
Twitter authors in our dataset with different sample sizes. We as-
sume that a user subscribes to all authors in one sample and we
run the algorithms on the user’s post stream. The results in Fig-
ure 15 show that UniBin slightly outperforms the other two when
the number of subscriptions is small.

To summarize, UniBin delivers better performance than Neigh-
borBin and CliqueBin when the stream throughput is low. This is
consistent with our analysis in Section 4.4 – see also Table 4.

6.2.2 Discussion
Through extensive experiments, we observe that each algorithm

outperforms the other two in certain cases. In Table 4 we summa-
rize the best choice of algorithm in different use cases based on our
analysis and experimental study.

UniBin is the most memory efficient among the three algorithms.
Thus in applications with limited RAM UniBin should be consid-

(a) Running time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 15: Performance of the three algorithms varying the number
of subscribed authors.

ered. Further, when the stream throughput is low (we tested it
with small number of subscriptions and low post generation rate),
UniBin performs better than the other two. According to the analy-
sis in Table 2, we expect that the number of comparisons increases
super-linearly with n (the number of posts in a λt time range), how-
ever the number of insertions increases sub-linearly with n. With
a lower stream throughput (smaller n) the overhead of insertions
in NeighborBin and CliqueBin is a large contribution to the total
running time. When n is small enough, the overhead on insertions
becomes larger than the saving on comparisons for NeighborBin
and CliqueBin compared with UniBin. The similar reasoning can
be applied to explain why UniBin is the best choice when λt is very
small. To clarify, in Figure 11 we did not include the results by set-
ting λt = 1 min where UniBin performs best among the three
algorithms. We argued that with a larger λa both d (number of
neighbors per author) and c (number of cliques per author) increase
and thus NeighborBin and CliqueBin both have higher number of
comparisons and insertions. Thus we can see UniBin is preferable
when λa is set large. One example use case for UniBin is News
RSS Feed reader, where the author similarity graph is dense. Gen-
erally, news agents form clusters (e.g., by their political views) such
that in each cluster the news agents are similar to each other from
a user’s perspective. Another use case could be Google Scholar
where the post (scientific publication) throughput is low.

In other cases, CliqueBin or NeighborBin will be the better choice.
They both perform well in cases with a high or moderate stream
throughput, which is very common for online social networks. The
tie breaker between them is the time diversity threshold λt, as we
analyzed λt determines the tradeoffs between costs of comparisons
and insertions. CliqueBin is a better choice if λt is set moderately.
For example, in Twitter information is time sensitive and thus peo-
ple may be interested in reading posts with related content but with
time distance larger than, say, minutes. For applications where the
value of λt could be in hours or even days, NeighborBin can be
applied. For example, Twitch3 is a platform on which people can
watch and share video game shows. Users may not be interested
in watching the video record of the same match that posted at dif-
ferent time. Even in Twitter some users may prefer to customize
the λt to a larger value, in order to reduce the post volume if they

3http://www.twitch.tv/
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Table 4: Use cases of the three algorithms for SPSD

Conditions Algorithm choice Example use case
Very small λt

OR low stream throughput
OR large λa (dense G)
OR RAM is a critical limitation

UniBin News RSS Feed, Google Scholar

Large λt

AND small λa (sparse G)
AND high stream throughput

NeighborBin Twitch

Moderate λt

AND small λa (sparse G)
AND high stream throughput

CliqueBin Twitter

(a) Running Time (b) RAM

(c) Post comparisons (d) Post insertions

Figure 16: Performance of the algorithms for M-SPSD.

follow a large number of authors.

6.3 Performance of the algorithms for M-SPSD
We consider now the scenario where each Twitter author is also

a user. Each user subscribes to (follows) a set of authors which we
can get from the original follower-followee social graph. Then we
run the algorithms solving M-SPSD for these 21,050 users in our
data set. For the experiments in this section, we set λt = 30mins,
λa = 0.7 and λc = 18.

The average number of subscriptions in our sampled user data
set is 443.6 and the median is 187. Since we only crawled the
posts and computed the author similarity graph for the set of 21,050
authors, we ignored the subscriptions that are not in this set. Then
the average number of subscriptions per user drops to 130 and the
median is 20. We should note that this reduces the probability of
different users sharing common subscriptions.

Figure 16 presents the performance of the algorithms. It shows
that the proposed optimization (reusing computation and data struc-
ture across multiple users described in Section 5) improves time ef-
ficiency as well as memory consumption. Specifically, S_UniBin
uses 43% less running time and 27% less memory than M_UniBin.
In the S_UniBin method, posts are stored separately by connected
components. This reduces the number of comparisons significantly
over M_UniBin. We also observe tthat S_NeighborBin reduces the
running time of M_NeighborBin by 8% while S_CliqueBin im-
proves M_NeighborBin by 4% in running time.

S_UniBin achieves superior performance. We also notice that

S_NeighborBin requires fewer post comparisons than S_UniBin
but many more insertions. We think that S_UniBin outperforms
S_NeighborBin and S_CliqueBin also because its post access pat-
tern is sequential while in the other two are not (each post bin is a
map).

7. RELATED WORK
Time Aware Diversity. The authors of [7] solve the problem of

maintaining the k most diverse results in a sliding window over a
stream. MaxMin semantics is used. They maintain a data structure
called the cover tree and show how to incrementally add new and
remove expired results from this tree. The cover tree cannot be used
for our diversity semantics because it cannot handle simultaneous
similarity in three dimensions: time, content and author.

Diversification on Microblogging Posts. The work of [4] stud-
ies the problem of diversifying posts in microblogging systems.
In their problem setting, users subscribe several queries (topics).
However, in practice users are more often subscribing to authors,
which is the setting of the problem we studied in this paper. In [4]
they apply strict coverage semantics similar to ours, but limited
only to time and content diversity. Unlike in our model, in [4] the
content diversity is guided by the inputted queries where no inter-
post content similarity is considered. They also studied the stream
variation of their problem in which they allow a lag upon a new
post to decide whether it should be outputted. In our problem, the
diversity model is required to make the decision immediately at the
arrival of a post.

Document Stream Summarization. The authors of [20] work
on the problem of summarizing a Twitter stream. They model the
summarization problem as a facility location problem. Give a bud-
get of k, they aim to select k tweets that maximize the similarity to
the whole tweets set. They incorporate the time factor to measure
the document similarity of two posts. But unlike in our problem,
instead of using a hard (boolean) threshold, they consider an ex-
ponential decay to the content similarity based on their timestamp
difference. In the work of [13], the authors apply clustering tech-
niques for Twitter stream summarization. Tweets are clustered ac-
cording to content similarity. For each cluster, they build a word
graph or phrase graph and pick frequent sentences (“paths” in the
graph) to construct a summary. The sentences in the summary may
not be in any original tweet. The authors of [18] propose a one-pass
online clustering algorithm to cluster tweets, and then they gener-
ate online summaries by selecting k tweets (one from each cluster)
that have high LexRank [8] score. In [16], the authors apply topic
modeling for personalized time-aware tweet summarization. How-
ever, all these work do not consider author similarity to measure
the similarity between tweets.

Detecting Duplicate Tweets. In [21], the authors propose to use
machine learning methods to detect near-duplicates in tweets. For

27



this, they construct a rich set of syntactic, semantic and contextual
features. They aim to distinguish different levels of near-duplicates,
e.g. exact copy, strong near-duplicate, or weak near-duplicate.

8. CONCLUSION
In this paper, we studied the novel problem of diversifying so-

cial post streams by incorporating diversity in three dimensions:
content, time and author. We illustrated the challenges of solving
the problem and proposed various algorithms to efficiently handle
these challenges. We showed the tradeoffs between our proposed
algorithms and argued the use cases for them. We also studied the
problem of applying the proposed diversification model for mul-
tiple users in a social system. Extensive experiments proved the
effectiveness of our model and efficiency of proposed algorithms.
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