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ABSTRACT
There is considerable interest in the design and development
of distributed systems that can execute algorithms to pro-
cess large graphs. Serializability guarantees that parallel
executions of a graph algorithm produce the same results as
some serial execution of that algorithm. Serializability is re-
quired by many graph algorithms for accuracy, correctness,
or termination but existing graph processing systems either
do not provide serializability or cannot provide it efficiently.
To address this deficiency, we provide a complete solution
that can be implemented on top of existing graph processing
systems. Our solution formalizes the notion of serializabil-
ity and the conditions under which it can be provided for
graph processing systems. We propose a novel partition-
based synchronization approach that enforces these condi-
tions to efficiently provide serializability. We implement our
partition-based technique into the open source graph pro-
cessing system Giraph and demonstrate that our technique is
configurable, transparent to algorithm developers, and pro-
vides large across-the-board performance gains of up to 26×
over existing techniques.

1. INTRODUCTION
Graph data processing has become ubiquitous due to the

large quantities of data collected and processed to solve real-
world problems. For example, Facebook processes massive
social graphs to compute popularity and personalized rank-
ings, find communities, and propagate advertisements for
over 1 billion monthly active users [16]. Google processes
web graphs containing over 60 trillion indexed webpages to
determine influential vertices [19].

Graph processing solves real-world problems through al-
gorithms that are implemented and executed on graph pro-
cessing systems. These systems provide programming and
computation models for graph algorithms as well as correct-
ness guarantees that algorithms require.

One key correctness guarantee is serializability. Infor-
mally, a graph processing system provides serializability if it
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can guarantee that parallel executions of an algorithm, im-
plemented with its programming and computation models,
produce the same results as some serial execution of that
algorithm [18].

Serializability is required by many algorithms, for exam-
ple in machine learning, to provide both theoretical and em-
pirical guarantees for convergence or termination. Parallel
algorithms for combinatorial optimization problems experi-
ence a drop in performance and accuracy when parallelism
is increased without consideration for serializability. For ex-
ample, the Shotgun algorithm for L1-regularized loss mini-
mization parallelizes sequential coordinate descent to handle
problems with high dimensionality or large sample sizes [11].
As the number of parallel updates is increased, convergence
is achieved in fewer iterations. However, after a sufficient
degree of parallelism, divergence occurs and more iterations
are required to reach convergence [11]. Similarly, for energy
minimization on NK energy functions (which model a sys-
tem of discrete spins), local search techniques experience an
abrupt degradation in the solution quality as the number of
parallel updates is increased [32]. Some algorithms also re-
quire serializability to prevent unstable accuracy [27] while
others require it for statistical correctness [17]. Graph col-
oring requires serializability to terminate on dense graphs
[18] and, even for sparse graphs, will use significantly fewer
colors and complete in only a single iteration (rather than
many iterations) when executed serializably.

Providing serializability in a graph processing system is
fundamentally a system-level problem that informally re-
quires: (1) vertices see up-to-date data from their neighbors
and (2) no two neighboring vertices execute concurrently.
The general approach is to pair an existing system or compu-
tation model with a synchronization technique that enforces
conditions (1) and (2). Despite this, of the graph process-
ing systems that have appeared over the past few years, few
provide serializability as a configurable option. For exam-
ple, popular systems like Pregel [28], Giraph [1], and GPS
[31] pair a vertex-centric programming model with the bulk
synchronous parallel (BSP) computation model [34] but do
not provide serializability.

Giraphx [33] provides serializability by pairing the asyn-
chronous parallel (AP) model, which is an asynchronous
extension of the BSP model, with the single-layer token
passing and vertex-based distributed locking synchroniza-
tion techniques. However, it implements these synchroniza-
tion techniques as part of specific user algorithms rather
than within the system, meaning algorithm developers must
re-implement the techniques into every algorithm that they
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Figure 1: Spectrum of synchronization techniques.

write. Consequently, Giraphx unnecessarily couples and ex-
poses internal system details to user algorithms, meaning
serializability is neither a configurable option nor transpar-
ent to the algorithm developer. Furthermore, its implemen-
tation of vertex-based distributed locking unnecessarily di-
vides each superstep, an iteration of computation, into mul-
tiple sub-supersteps in which only a subset of vertices can
execute. This exacerbates the already expensive commu-
nication and synchronization overheads associated with the
global synchronization barriers that occur at the end of each
superstep [20], resulting in poor performance.

GraphLab [27], which now subsumes PowerGraph [18],
takes a different approach by starting with an asynchronous
implementation of the Gather, Apply, Scatter (GAS) com-
putation model. This asynchronous mode (GraphLab async)
avoids global barriers by using distributed locking. GraphLab
async provides the option to execute with or without seri-
alizability and uses vertex-based distributed locking as its
synchronization technique. However, GraphLab async suf-
fers from high communication overheads [22, 20] and scales
poorly with this technique. Moreover, neither GraphLab
nor Giraphx provide a theoretical framework for proving the
correctness of their synchronization techniques.

Irrespective of the specific system, synchronization tech-
niques used to enforce conditions (1) and (2) fall on a spec-
trum that trades off parallelism with communication over-
heads (Figure 1). In particular, single-layer token passing
and vertex-based distributed locking fall on the extremes
of this spectrum: token passing uses minimal communica-
tion but unnecessarily restricts parallelism, forcing only one
machine to execute at a time, while vertex-based distributed
locking uses a dining philosopher algorithm to maximize par-
allelism but incurs substantial communication overheads due
to every vertex needing to synchronize with their neighbors.

To overcome these issues, we first formalize the notion of
serializability in graph processing systems and establish the
conditions under which it can be provided. To the best of our
knowledge, no existing work has presented such a formaliza-
tion. To address the shortcomings of the existing techniques,
we introduce a fundamental design shift towards partition
aware synchronization techniques, which exploit graph par-
titions to improve performance. In particular, we propose
a novel partition-based distributed locking solution that al-
lows control over the coarseness of locking and the resulting
trade-off between parallelism and communication overheads
(Figure 1). We implement all techniques at the system level
in the open source graph processing system Giraph so that
they are performant, configurable, and transparent to al-
gorithm developers. We demonstrate through experimen-
tal evaluation that our partition-based solution substantially
outperforms existing techniques.

Our contributions are hence threefold: (i) we formal-
ize the notion of serializability in graph processing systems
and establish the conditions that guarantee it; (ii) we intro-

duce the notion of partition aware techniques and our novel
partition-based distributed locking technique that enables
control over the trade-off between parallelism and commu-
nication overheads; and (iii) we implement and experimen-
tally compare the techniques with Giraph and GraphLab to
show that our partition-based technique provides substan-
tial across-the-board performance gains of up to 26× over
existing synchronization techniques.

This paper is organized as follows. In Section 2, we pro-
vide background on the BSP, AP, and GAS models. In Sec-
tion 3, we formalize serializability and, in Sections 4 and
5, describe both existing techniques and our partition-based
approach. In Section 6, we detail their implementations in
Giraph. We present an extensive experimental evaluation of
these techniques in Section 7 and describe related work in
Section 8 before concluding in Section 9.

2. BACKGROUND AND MOTIVATION
In this section, we introduce the computation models and

give a concrete motivation for serializability.

2.1 BSP Model
Bulk synchronous parallel (BSP) [34] is a computation

model in which computations are divided into a series of
(BSP) supersteps separated by global barriers. Pregel (and
Giraph) pairs BSP with a vertex-centric programming model,
where vertices are the units of computation and edges act
as communication channels.

Graph computations are specified by a user-defined com-
pute function that executes, in parallel, on all vertices in
each superstep. The function specifies how each vertex pro-
cesses its received messages, updates its vertex value, and
who to send messages to. Importantly, messages sent in
one superstep can be consumed/processed by their recipi-
ents only in the next superstep. Vertices can vote to halt to
become inactive but are reactivated by incoming messages.
The computation terminates when all vertices are inactive
and no more messages are in transit.

Pregel and Giraph use a master/workers configuration.
The master machine partitions the input graph across worker
machines, coordinates all global barriers, and performs ter-
mination checks based on the two aforementioned condi-
tions. The graph is partitioned by edge-cuts: each vertex
belongs to a single worker while an edge can span two work-
ers. Finally, BSP is push-based : messages are pushed by the
sender and buffered at the receiver.

As a running example, consider the greedy graph color-
ing algorithm. Each vertex starts with the same color (de-
noted by its vertex value) and, in each superstep, selects
the smallest non-conflicting color based on its received mes-
sages, broadcasts this change to its neighbors, and votes to
halt. The algorithm terminates when there are no more
color conflicts. Consider an undirected graph of four ver-
tices partitioned across two worker machines (Figure 2). All
vertices broadcast the initial color 0 in superstep 1 but the
messages are not visible until superstep 2. Consequently, in
superstep 2, all vertices update their colors to 1 based on
stale data. Similarly for superstep 3. Hence, vertices col-
lectively oscillate between 0 and 1 and the algorithm never
terminates. However, if we could ensure that only v0 and v3
execute in superstep 2 and only v2 and v1 execute in super-
step 3, then this problem would be avoided. As we will show
in Section 4.3, serializability provides precisely this solution.
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Figure 2: BSP execution of greedy graph coloring.
Each graph is the state at the end of that superstep.

2.2 AP Model
The asynchronous parallel (AP) model improves on the

BSP model by reducing staleness: instead of delaying all
messages until the next superstep, vertices can immediately
process any received messages (including ones sent in the
same superstep). The AP model retains global barriers to
separate supersteps, so messages that arrive too late to be
seen by a vertex in superstep i (because the vertex was al-
ready executed) will be processed in the next superstep i+1.
We use a more efficient and performant version of the AP
model, described in [20], and its implementation in Giraph,
which we will refer to as Giraph async.

Like BSP, the AP model can also fail to terminate for the
greedy graph coloring algorithm. Consider again the undi-
rected graph (Figure 3) and suppose that workers W1 and
W2 execute their vertices sequentially as v0 then v2 and v1
then v3, respectively. Furthermore, suppose the pairs v0, v1
and v2, v3 are each executed in parallel. Then the algorithm
fails to terminate. Specifically, in superstep 1, v0 and v1
initialize their colors to 0 and broadcast to their neighbors.
Due to the asynchronous nature of AP, v2 and v3 are able
to see this message 0 and select the color 1. Similarly, in
superstep 2, v0 and v1 now see each other’s message 0 (sent
in superstep 1) and also the message 1 from v2 and v3, re-
spectively, so they update their colors to 2. Similarly for v2
and v3, who now update their colors to 0. Ultimately, the
graph’s state at superstep 4 returns to that at superstep 1,
so the vertices are collectively cycling through three graph
states in an infinite loop.

However, if we can force v0 to execute concurrently with
v3 instead of v1 (and v2 with v1), then neighboring vertices
will not simultaneously pick the same color. Furthermore, if
we ensure that v2 and v1 wait for the messages from v3 and
v0 to arrive before they execute, then they will have up-to-
date information on all their neighbors’ colors. With these
two constraints, graph coloring will terminate in just two su-
persteps. In Section 3, we present a theoretical framework
for serializability that formalizes and incorporates these con-
straints as correctness criteria.

2.3 GAS Model
The Gather, Apply, and Scatter (GAS) model is used

by GraphLab for both its synchronous and asynchronous
modes, which we refer to as GraphLab sync and GraphLab
async. These two system modes use the sync GAS and async
GAS models, respectively. In GAS, each vertex pulls infor-
mation from its neighbors in the gather phase, applies the
accumulated data in the apply phase, and updates and ac-
tivates neighboring vertices in the scatter phase.

Like Pregel and Giraph, GraphLab pairs GAS with a
vertex-centric programming model. However, as evidenced
by the Gather phase, GAS is pull-based rather than push-
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Figure 3: AP execution of greedy graph coloring.
Each graph is the state at the end of that superstep.

based. Furthermore, GraphLab partitions graphs by vertex-
cut : for each vertex u, one worker owns the primary copy of
u while all other workers owning a neighbor of u get a local
read-only replica of u.

Sync GAS is similar to BSP: vertices are executed in su-
persteps separated by global barriers and the effects of apply
and scatter of one superstep are visible only to the gather of
the next superstep. Async GAS, however, is different from
AP as it has no notion of supersteps. To execute a vertex
u, each GAS phase individually acquires a write lock on u
and read locks on u’s neighbors to prevent data races [3].
However, this does not provide serializability because GAS
phases of different vertex computations can interleave [18].
To provide serializability, a synchronization technique must
be added on top of async GAS. This technique prevents
neighboring computations from interleaving by performing
distributed locking over all three GAS phases.

Async GAS can similarly fail to terminate for graph col-
oring [18]. For example, for the graph in Figure 3, suppose
both W1 and W2 each have two threads for their two ver-
tices and that all four threads execute in parallel. Then, as
described above, the GAS phases of different vertices will
interleave, which causes vertices to see stale colors and so
the execution is not guaranteed to terminate: it can become
stuck in an infinite loop. In contrast, executing in async
GAS with serializability will always terminate successfully.

3. SERIALIZABILITY
In this section, we present a theoretical framework that

formalizes key conditions under which serializability can be
provided for graph processing systems. Later, we show how
serializability can be enforced efficiently in these systems.

3.1 Preliminaries
Since popular graph processing systems use a vertex-centric

programming model, where developers specify the actions of
a single vertex, we focus on vertex-centric systems. The for-
malisms that we will establish apply to all vertex-centric
systems, irrespective of the computation models they use.

Existing work [18, 33] considers serializability for vertex-
centric algorithms where vertices communicate only with
their direct neighbors, which is the behaviour of the ma-
jority of algorithms that require serializability. For exam-
ple, the GAS model supports only algorithms where vertices
communicate with their direct neighbors [27, 18]. Thus, we
focus on this type of vertex-centric algorithms. Our goal
is to provide serializability transparently within the graph
processing system, independent of the particular algorithm
being executed.

In vertex-centric graph processing systems, there are two
levels of parallelism: (1) between multiple threads within a
single worker machine and (2) between the multiple worker
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machines. Due to the distributed nature of computation,
the input graph must be partitioned across the workers and
so data replication will occur. To better understand this, let
neighbors refer to both in-edge and out-edge neighbors.

Definition 1. A vertex u is a machine boundary vertex,
or m-boundary for short, if at least one of its neighbors v
belongs to a different worker machine from u. Otherwise, u
is a machine internal, or m-internal, vertex.

Definition 2. A replica is local if it belongs to the same
worker machine as its primary copy and remote otherwise.

Systems keep a read-only replica of each vertex on its
owner’s machine and of each m-boundary vertex u on each of
u’s out-edge neighbor’s worker machines. This is a standard
design used, for example, in Pregel, Giraph, and GraphLab.
Remote replicas (of m-boundary vertices) exist due to graph
partitioning: for vertex-cut partitioning, u’s vertex value is
explicitly replicated on every out-edge neighbor v’s worker
machine; for edge-cut, u is implicitly replicated because the
message it sends to v, which is a function of u’s vertex value,
is buffered in the message store of v’s machine. This distinc-
tion is unimportant for our formalism as we care only about
whether replication occurs. Local replicas occur in push-
based systems because message stores also buffer messages
sent between vertices belonging to the same worker. In pull-
based systems, local replicas are required for implementing
synchronous computation models like sync GAS. For asyn-
chronous models, pull-based systems may not always have
local replicas (such as in GraphLab async) but we will con-
sider the more general case in which they do (if they do not,
then reads of such vertices will always trivially see up-to-
date data).

Definition 3. A read of a replica is fresh if the replica
is up-to-date with its primary copy and stale otherwise.

An execution is serializable if it produces the same result
as a serial execution in which all reads are fresh. Formally,
this is one-copy serializability (1SR) [5]. Informally, we will
say a system provides serializability if all executions conform
to 1SR. In terms of traditional transaction terminology, we
define a site as a worker machine, an item as a vertex, and
a transaction as the execution of a single vertex. We detail
such transactions next.

3.2 Transactions
We define a transaction to be the single execution of an

arbitrary vertex u, consisting of a read on u and the replicas
of u’s in-edge neighbors followed by a write to u. The read
acts only on u and its in-edge neighbors because u receives
messages (or pulls data) from only its in-edge neighbors—it
has no dependency on its out-edge neighbors. Denoting the
read set as Nu = {u, u’s in-edge neighbors}, any execution
of u is the transaction Ti = ri[Nu]wi[u], or simply Ti(Nu)
as all transactions are of the same form.

Any v ∈ Nu with v 6= u is also annotated to distinguish
it from the other read-only replicas of v. For example, if u
belongs to worker A, we annotate the read-only replica as
vA ∈ Nu. However, the next two sections will show how we
can drop these annotations.

Our definition relies only on the fact that the system is
vertex-centric and not on the nuances of specific compu-
tation models. For example, although BSP and AP have

a notion of supersteps, the i for a transaction Ti(Nu) has
no relation to the superstep count. The execution of u
in two different supersteps is represented by two different
transactions Ti(Nu) and Tj(Nu). Our definitions also work
when there is no notion of supersteps, such as in async GAS,
or when there are per-worker logical supersteps (supersteps
that are not globally coordinated), such as proposed in [20].
Thus, the notion of a transaction that follows from our above
definition is consistent with the standard notion of a trans-
action [5]: it captures, for graph processing, the atomic unit
of operation that acts on shared data (the graph state).

3.3 Our Approach
In contrast to traditional database systems, graph pro-

cessing systems present unique constraints that need to be
taken into account for providing serializability.

First, Pregel-like graph processing systems such as Giraph
and GraphLab do not natively support transactions: they
are not database systems and thus have no notion of com-
mits or aborts. The naive solution is to implement trans-
action support into all graph processing systems. However,
this requires a fundamental redesign of each system, which
is neither general nor reusable. Moreover, such a solution
fails to be modular: it introduces performance penalties for
graph algorithms that do not require serializability.

Second, an abort in a graph processing system can result
in prohibitively expensive (and possibly cascading) rollbacks
on the distributed graph state: a transaction often involves
sending messages to vertices of different worker machines,
the effects of which are difficult to undo. Consequently, so-
lutions relying on optimistic currency control are a poor fit
for graph processing due to the high cost of aborts.

However, for graph processing systems, a write-all ap-
proach [5] can be used to keep replicas up-to-date because
graph processing systems replicate only for distributed com-
putation and not for availability. When a worker machine
fails, we lose a portion of the input graph and so cannot pro-
ceed with the computation. Indeed, failure recovery requires
all machines to rollback to a previous checkpoint [1, 27, 28],
meaning the problem of pending writes to failed machines
never occurs. In contrast, a write-all approach is very expen-
sive for traditional database systems because they replicate
primarily for better performance and/or availability.

Furthermore, as detailed in Section 3.2, the read and write
sets of each transaction are known a priori (Nv and v, respec-
tively, for a transaction Ti(Nv)), which means pessimistic
concurrency control can be used to avoid costly aborts.

Our approach, at a high level, is to pair graph processing
systems with a synchronization technique, which uses (1) a
write-all approach to avoid data staleness and (2) pessimistic
concurrency control to prevent conflicting transactions from
starting. For the graph processing systems, (1) means ver-
tices will always read from fresh replicas and so the system
need not reason about versioning, while (2) means all trans-
actions that start will commit, so aborts never occur and
hence the system can treat all operations as final without
needing explicit support for commits and aborts. Further-
more, this solution enables us to use transactions to formally
reason about correctness without the burden of fundamen-
tally redesigning each system to support transactions. Since
aborts cannot occur, we also avoid the expensive penalties
of distributed cascading rollbacks.

Using the definitions introduced in Section 3.2, we can
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formalize our requirements into the following two conditions:

Condition C1. Before any transaction Ti(Nu) executes,
all replicas v ∈ Nu are up-to-date.

Condition C2. No transaction Ti(Nu) is concurrent with
any transaction Tj(Nv) for all copies of v ∈ Nu, v 6= u.

Next, we will prove that 1SR can be provided by enforcing
these two conditions.

3.4 Correctness
We first prove, in Lemma 1, that enforcing condition C1

simplifies the problem of providing 1SR to that of providing
standard serializability on a single logical copy of each vertex
(i.e., without data replication).

Lemma 1. If condition C1 is true, then it suffices to use
standard serializability theory where operations are performed
on a single logical copy of each vertex.

Proof. Condition C1 ensures that before every transac-
tion Ti(Nu) executes, the replicas v ∈ Nu are all up-to-date.
Then all reads ri[Nu] see up-to-date replicas and are thus
the same as reading from the primary copy of each v ∈ Nu.
Hence, there is effectively only a single logical copy of each
vertex, so we can apply standard serializability theory.

Theorem 1 then establishes the relationship between 1SR
and conditions C1 and C2.

Theorem 1. All executions are serializable for all input
graphs if and only if conditions C1 and C2 are both true.

Proof Sketch. Due to space constraints, we will briefly
sketch only the key ideas of the proof. The full proof is
provided in [21].

(If) Since condition C1 is true, by Lemma 1 we can apply
standard serializability theory [5]. It can then be shown
that, for all input graphs, if condition C2 is true then it
is impossible for the read and write sets of two arbitrary
transactions to overlap. Thus, transactions never conflict
and so the serialization graph [5] is always acyclic.

(Only if) We prove the inverse (if either condition is false
then there exists a non-serializable execution for some input
graph) by considering an input graph with two vertices con-
nected by an undirected edge. When C1 is true and C2 is
false, we can construct a non-serializable history with two
parallel but conflicting transactions. When C2 is true and
C1 is false, replicas are no longer kept up-to-date and so, by
placing each vertex on a different worker, we can construct
a serial history that violates 1SR.

3.5 Enforcing Serializability
The computation models from Section 2 do not enforce

conditions C1 and C2 and therefore, by Theorem 1, do not
provide serializability. Consequently, graph processing sys-
tems that implement these models also do not provide seri-
alizability. Moreover, these models do not guarantee fresh
reads even under serial executions (on a single machine or
under the sequential execution of multiple machines). For
example, BSP effectively updates replicas lazily1 because
messages sent in one superstep, even if received, cannot be

1The “synchronous” in BSP refers to the global communica-
tion barriers, not the method of replica synchronization.

read by the recipient in the same superstep. Thus, both m-
boundary and m-internal vertices (Definition 1) suffer stale
reads under a serial execution. While AP reduces this stal-
eness and can update local replicas eagerly, it propagates
messages to remote replicas lazily without the guarantees
of condition C1 and so stale reads can again occur under a
serial execution of multiple machines.

As mentioned in Section 3.3, to provide serializability, we
enforce conditions C1 and C2 by adding a synchronization
technique (Sections 4 and 5) to the systems that implement
the above computation models. These synchronization tech-
niques implement a write-all approach for updating replicas,
which is required for enforcing condition C1. They also en-
sure that a vertex u does not execute concurrently with any
of its in-edge and out-edge neighbors. At first glance, this
appears to be stronger than what condition C2 requires.
However, suppose v is an out-edge neighbor of u and v is
currently executing. Then if u does not synchronize with its
out-edge neighbors, it will erroneously execute concurrently
with v, violating condition C2 for v. Alternatively, if v is an
out-edge neighbor of u then u is an in-edge neighbor of v,
so they must not execute concurrently.

4. EXISTING SYNCHRONIZATION
TECHNIQUES

Token passing and distributed locking are the two general
approaches for implementing synchronization techniques that
enforce conditions C1 and C2. In this section, we review two
existing synchronization techniques: single-layer token pass-
ing and vertex-based distributed locking.

4.1 Preliminaries
How a synchronization technique implements a write-all

approach (Section 3.3) depends on whether the computation
model is synchronous or asynchronous.

In asynchronous computation models (AP and async GAS),
replicas immediately apply received updates. Thus, local
replicas can be updated eagerly, since there is no network
communication (Section 6). Remote replicas, however, are
updated lazily in a just-in-time fashion to provide commu-
nication batching. This lazy update is possible because all
vertices are coordinated by a synchronization technique: any
vertex v must first acquire a shared resource (e.g., a token
or a fork) from its neighbor u before it can execute. Con-
sequently, for an m-boundary vertex u with a replica on its
neighbor v’s worker, u’s worker can buffer remote replica
updates until v wants to execute (i.e., requests the shared
resource)—at which point u’s machine will flush all pend-
ing remote replica updates (and ensure their receipt) before
handing over the shared resource that allows v to proceed.

In contrast, synchronous computation models (BSP and
sync GAS) hide updates from replicas until the next super-
step. That is, replicas can be updated only after a global
barrier. This means systems with synchronous models are
limited to specialized synchronization techniques that keep
replicas up-to-date by dividing each superstep into multiple
sub-supersteps. This is significantly less performant than
synchronization techniques for systems with asynchronous
computation models, as detailed further in Section 6.

4.2 Single-Layer Token Passing
Single-layer token passing, considered in [33], is a simple

technique that passes an exclusive global token in a round-
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robin fashion between workers arranged in a logical ring.
Each worker machine must execute with only one thread.

The worker machine holding the global token can execute
both its m-internal and m-boundary vertices (Definition 1),
while workers without the token can execute only their m-
internal vertices. This prevents neighboring vertices from
executing concurrently since each m-internal vertex and its
neighbors are executed by a single thread, so there is no
parallelism, while an m-boundary vertex can execute only
when its worker machine holds the exclusive token.

To enforce condition C1, local replicas must be updated
eagerly, while remote replicas of a worker’s m-boundary ver-
tices can be updated in batch before a worker passes along
the global token (as updates will arrive before the token).
Per Section 4.1, this is possible with asynchronous compu-
tation models. Thus, for asynchronous models, single-layer
token enforces conditions C1 and C2 and, by Theorem 1,
provides serializability. However, this technique does not
provide serializability for synchronous computation models
as they cannot update local replicas eagerly.

4.3 Vertex-based Distributed Locking
Vertex-based distributed locking, unlike token passing,

pairs threads with individual vertices to allow all vertices
to attempt to execute in parallel. As motivated in Section
2.1, the key idea is to coordinate these vertices such that
neighboring vertices do not execute concurrently, while also
addressing issues such as deadlock and fairness.

This coordination is achieved using the Chandy-Misra al-
gorithm [13], which solves the hygienic dining philosophers
problem, a generalization of the dining philosophers prob-
lem. In this problem, each philosopher is either thinking,
hungry, or eating and must acquire a shared fork from each
of its neighbors to eat. Philosophers can communicate with
their neighbors by exchanging forks and request tokens for
forks. The “dining table” is effectively an undirected graph
where each vertex is a philosopher and each edge is asso-
ciated with a shared fork: a philosopher u must acquire
deg(u) forks to eat. The Chandy-Misra algorithm ensures
no neighbors eat at the same time, guarantees fairness (no
philosopher can hog its forks), and prevents deadlocks and
starvation [13]. Hence, condition C2 is enforced.

To enforce condition C1, local replicas are updated ea-
gerly and, for remote replicas, each worker flushes its pend-
ing remote replica updates before any m-boundary vertex
relinquishes a fork to a vertex of another worker. Then, per
Section 4.1, vertex-based distributed locking provides serial-
izability for asynchronous computation models. As we men-
tioned in Section 4.1, this solution is incompatible with syn-
chronous models (BSP and sync GAS) because these models
do not allow local replicas to be updated eagerly. However,
applying the theory developed in Section 3, Proposition 1
shows that a constrained vertex-based locking solution can
provide serializability for systems with synchronous models.
We omit the proof due to space constraints. It can be found
in the longer version of this paper [21].

Proposition 1. Vertex-based distributed locking enforces
conditions C1 and C2 for synchronous computation models
when the following two properties hold: (i) all vertices act
as philosophers and (ii) fork and token exchanges occur only
during global barriers.

5. PARTITION AWARE TECHNIQUES
In this section, we show how partition aware synchroniza-

tion techniques can address severe limitations of existing
techniques. We then present our partition-based solution to
demonstrate its significant performance advantages.

5.1 Preliminaries
Existing graph processing systems provide parallelism at

each worker machine by pairing computation threads with
either graph partitions or individual vertices.

For example, both Giraph and Giraph async (Section 2.2)
assign multiple graph partitions to each worker machine and
pair threads, each roughly equivalent to a CPU core, with
available partitions. This allows multiple partitions to exe-
cute in parallel, while vertices in each partition are executed
sequentially. We call such systems partition aware.

In contrast, GraphLab async uses over-threading to pair
lightweight threads (called fibers) with individual vertices.
Thus, it has no notion of partitions. The large number of
fibers provides a high degree of parallelism and ensures that
CPU cores are kept busy even when some fibers are blocked
on communication.

Systems like GraphLab async are well-suited for very fine-
grained synchronization techniques such as vertex-based dis-
tributed locking (Section 4.3). Partition aware systems like
Giraph async are able to support partition aware techniques
that, as we will show, take advantage of partitions to signif-
icantly improve performance. Since GraphLab async is not
partition aware, it is unable to support such techniques.

Lastly, as we will show in the following sections, it is im-
portant for synchronization techniques implemented in par-
tition aware systems to distinguish between p-internal and
p-boundary vertices, defined as follows.

Definition 4. A vertex u is a partition boundary vertex,
or p-boundary for short, if at least one of its neighbors v
belongs to a different partition from u. Otherwise, u is a
partition internal, or p-internal, vertex.

5.2 Motivation
The two existing synchronization techniques described in

Section 4 suffer from several major performance issues.
Token passing has minimal communication overheads but

very limited parallelism (Figure 1): only one worker machine
can execute its m-boundary vertices at any time. Having
only one global token also results in poor scalability, be-
cause the size of the token ring increases with the num-
ber of workers, which leads to longer wait times. Moreover,
the token ring is fixed: workers that are finished must still
receive and pass along the token, which adds unnecessary
overheads. This is especially evident in algorithms such as
SSSP, where workers may dynamically halt or become active
depending on the state of their constituent vertices. Thus,
as we show in Section 7.3, single-layer token passing is too
coarse-grained, which negatively impacts performance.

On the other hand, vertex-based distributed locking maxi-
mizes parallelism, by allowing all vertices to execute in paral-
lel, but suffers significant communication overheads. Vertex-
based locking requires, in the worst case, O(|E|) forks, where
|E| is the number of edges in the graph ignoring directions
(i.e., counting undirected edges once). This leads to signif-
icant communication overheads due to the forks and corre-
sponding request tokens that must be sent between individ-
ual vertices. Furthermore, it is difficult to form large batches
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Worker 1 Worker 2
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T

L L

Figure 4: Dual-layer token passing, with the global
token T at worker 1 and the local tokens L at par-
titions 0 and 2.

of messages (remote replica updates) as messages must be
flushed very frequently, whenever an m-boundary vertex re-
leases its forks. Although systems such as GraphLab async
can use fibers to try to mask communication latency with
additional vertex computations, it does not fully mitigate
the communication overheads, which results in poor perfor-
mance and scalability as we demonstrate in Section 7.3.

A key deficiency of these techniques is that they are not
partition aware: given a partition aware system, they are
unable to exploit partitions to improve performance. For
example, single-layer token passing would pass the global
token between the partitions rather than workers, with p-
boundary vertices requiring the token to execute (Definition
4). This increases the size of the token ring and does not
solve the existing performance problems. Similarly, vertex-
based distributed locking (for asynchronous models) would
require only p-boundary vertices to act as philosophers, since
p-internal vertices are executed sequentially. However, al-
though this reduces the number of forks, the heavy-weight
threads will block an entire CPU whenever a vertex blocks
on communication. Consequently, it is unable to mask com-
munication latency and performs worse than GraphLab async’s
pairing of fibers with individual vertices (Section 5.1).

We address these performance deficiencies by considering
partition aware synchronization techniques. Adding parti-
tion awareness enables us to devise either a more fine-grained
token passing technique to increase parallelism, or a more
coarse-grained distributed locking technique to reduce com-
munication overheads. We present these approaches next.

5.3 Dual-Layer Token Passing
We propose dual-layer token passing, which, unlike single

layer token passing, supports multithreading by being parti-
tion aware. This enables more vertices to execute in parallel
while ensuring condition C2 is enforced.

Dual-layer token passing uses two layers of tokens and
a more fine-grained categorization of vertices. Let u be a
vertex of partition Pu of worker Wu. Then an m-internal
vertex u is now either a p-internal vertex, if all its neighbors
belong to Pu, or a local boundary vertex otherwise. An m-
boundary vertex u is either remote boundary, if its neighbors
are only on partitions of other workers, or mixed boundary
otherwise (i.e., its neighbors belong to partitions of both
Wu and other workers). For example, in Figure 4, v6 is a
p-internal vertex, v0 and v4 are local boundary vertices, v2
is a remote boundary vertex, and v1, v3, and v5 are mixed
boundary vertices.

A global token is passed in a round-robin fashion between

Worker 1 Worker 2

v0 v1

v2

v3 v4

v5 v6

P0 P1 P2 P3

Figure 5: Partition-based distributed locking.

the workers. Each worker also has its own local token passed
between its partitions in a round-robin fashion (Figure 4).
A p-internal vertex can execute without tokens, while a lo-
cal boundary vertex requires its partition to hold the local
token. A global boundary vertex requires its worker to hold
the global token and a mixed boundary vertex requires both
tokens to be held. To ensure that every mixed boundary
vertex gets a chance to execute, each worker must hold the
global token for a number of iterations equal to the number
of partitions it owns. Like single-layer token passing, local
replicas are updated eagerly while remote replicas are up-
dated before a worker relinquishes the global token. Hence,
dual-layer token passing enforces conditions C1 and C2 for
asynchronous computation models. Then, by Theorem 1, it
provides serializability for asynchronous models.

Although dual-layer token passing improves parallelism by
adding support for multithreading, it still suffers from the
same performance issues as single-layer token passing. It
again uses only one global token, has a fixed token ring, and
scales poorly when the number of workers and/or partitions
are increased. Having only one local token per worker also
means local boundary vertices cannot execute in parallel.

While these problems may be solved via more sophisti-
cated schemes, such as using multiple global tokens for more
parallelism or tracking additional state to support a dynamic
ring, it becomes much harder to guarantee correctness (no
deadlocks and no starvation) while also ensuring fairness.
Thus, rather than make token passing even more complex
and fine-grained, we propose an inherently partition-based,
coarse-grained distributed locking approach next.

5.4 Partition-based Distributed Locking
We propose partition-based distributed locking by build-

ing on the Chandy-Misra algorithm and treating partitions
as the philosophers. Two partitions share a fork if an edge
connects their constituent vertices. For example, in Figure
5, partitions P0 and P1 share a fork due to the edge between
their vertices v0 and v1, respectively. Alternatively, forks are
associated with the virtual partition edges (in green), cre-
ated based on the edges between each partition’s vertices.

Condition C2 is enforced for p-boundary vertices because
neighboring partitions never execute concurrently, while p-
internal vertices do not need coordination as each partition
is executed sequentially. As an optimization, we can avoid
unnecessary fork acquisitions by skipping the partitions for
which all vertices are halted and have no more messages. To
enforce condition C1, local replicas are updated eagerly and,
for remote replicas, each worker flushes its pending remote
replica updates before any partition (with an m-boundary
vertex) relinquishes a fork to a partition of another worker.
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Since both conditions are enforced, Proposition 2 follows
immediately.

Proposition 2. Partition-based distributed locking enforces
conditions C1 and C2 for asynchronous computation models.

Hence, by Theorem 1, partition-based distributed locking
provides serializability for asynchronous computation mod-
els. Synchronous models are not supported as they cannot
update local replicas eagerly (Section 4.1), which is required
due to the sequential execution of p-internal vertices.

Partition-based distributed locking needs at most O(|P |2)
forks, where |P | is the total number of partitions. By con-
trolling the number of partitions, we can control the gran-
ularity of parallelism. On one extreme, |P | = |V | can give
vertex-based distributed locking (Section 4.3). On the other
extreme, we can have exactly one partition per worker. This
latter extreme still provides better parallelism than single-
layer token passing because any pair of non-neighboring work-
ers can execute in parallel, with a negligible increase in com-
munication. In general, |P | is set such that each worker can
use multithreading to execute multiple partitions in parallel.

Due to this flexibility, partition-based locking is both more
general and more performant than vertex-based locking: any
choice of |P | � |V | significantly reduces the number of forks
and hence communication overheads. Moreover, partition-
based locking enables messages (remote replica updates) of
an entire partition of vertices to be batched, substantially re-
ducing communication overheads. Compared to token pass-
ing, partition-based locking enables more parallelism: forks
are required only between partitions that cannot execute in
parallel, removing the need for a token ring, and halted par-
titions do not need their forks and will not perform unnec-
essary communication with their neighbors. These factors
result in partition-based locking’s superior performance and
scalability over both vertex-based distributed locking and
token passing.

Hence, partition-based distributed locking leverages the
best of both worlds: the increased parallelism of distributed
locking and the minimal communication overheads of token
passing. It scales better than vertex-based locking and to-
ken passing, due to its lower communication overheads and
the absence of a token ring, and offers flexibility in the num-
ber of partitions to allow for a tunable trade-off between
parallelism and communication overheads.

6. IMPLEMENTATION
We now describe our implementations for dual-layer token

passing and partition-based distributed locking in Giraph,
an open source graph processing system. Each technique is
an option that can be enabled and paired with Giraph async
to provide serializability. We show in Section 6.5 that pro-
viding serializability for AP does not impact usability. We
do not consider the constrained vertex-based locking for BSP
(Proposition 1) as it further exacerbates BSP’s already ex-
pensive communication and synchronization overheads [20].

We use Giraph because it is a popular and performant
system used, for example, by Facebook [14]. It is parti-
tion aware and thus can support partition aware synchro-
nization techniques. We do not implement token passing
and partition-based distributed locking in GraphLab async
because, as described in Section 5.1, GraphLab async is
optimized for vertex-based distributed locking and is not

partition aware. Adding partitions would require substan-
tial changes to the architecture, design, and functionality of
GraphLab async, which is not the focus of this paper.

6.1 Giraph Background
As described in Section 5.1, Giraph assigns multiple graph

partitions to each worker. During each superstep, each worker
creates a pool of compute threads and pairs available threads
with uncomputed partitions. Each worker maintains a mes-
sage store to hold all incoming messages, while each compute
thread uses a message buffer cache to batch outgoing mes-
sages to more efficiently utilize network resources. These
buffer caches are automatically flushed when full but can
also be flushed manually. In Giraph async, messages be-
tween vertices of the same worker skip this cache and go
directly to the message store so that they are immediately
available for their recipients to process.

Since Giraph is implemented in Java, it avoids garbage
collection overheads (due to millions or billions of objects)
by serializing vertex, edge, and message objects when not in
use and deserializing them on demand. For each vertex u,
Giraph stores only u’s out-edges in u’s vertex object. Thus,
in-edges are not explicitly stored within Giraph.

6.2 Dual-Layer Token Passing
For dual-layer token passing, each worker uses three sets

to track the vertex ids of local boundary, remote boundary,
and mixed boundary vertices that it owns. p-internal ver-
tices are determined by their absence from the three sets.
We keep this type information separate from the vertex ob-
jects so that token passing is a modular option. Moreover,
augmenting each vertex object with its type adds undesir-
able overheads since vertex objects must be serialized and
deserialized many times throughout the computation. Hav-
ing the type information in one place also allows us to update
a vertex’s type without deserializing its object.

To populate the sets, we intercept vertices during input
loading and scan the partition ids of its out-edge neighbors
to determine its type. This is sufficient for undirected graphs
but not for directed graphs: a vertex u has no information
about its in-edge neighbors. Thus, we have each vertex v
send a message to its out-edge neighbors u that belong to
a different partition. Then u can correct its type based on
messages received from its in-edge neighbors. This all occurs
during input loading and thus does not impact computation
time. We also batch all dependency messages to minimize
network overheads and input loading times.

As per Section 5.3, the global and local tokens are passed
in a round-robin fashion. Each local token is passed among
its worker’s partitions at the end of each superstep. Since
local messages (between vertices of the same worker) are
not cached, local replicas are updated eagerly. For remote
replicas, workers flush and await delivery confirmations for
their remote messages before passing along the global token.

6.3 Partition-based Distributed Locking
For partition-based distributed locking, each worker tracks

fork and token states for its partitions in a dual-layer hash
map. For each pair of neighboring partitions Pi and Pj , we
map Pi’s partition id i to the id j to a byte whose bits in-
dicate whether Pi has the fork, whether the fork is clean or
dirty, and whether Pi holds the request token. Since parti-
tion ids are integers in Giraph, we use hash maps optimized
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for integer keys to minimize memory footprint.
In the Chandy-Misra algorithm, forks and tokens must

be placed such that the precedence graph, whose edge di-
rections determine which philosopher has priority for each
shared fork, is initially acyclic [13]. A simple way to en-
sure this is to assign each philosopher an id and, for each
pair of neighbors, give the token to the philosopher with the
smaller id and the dirty fork to the one with the larger id.
This guarantees that philosophers with smaller ids initially
have precedence over all neighbors with larger ids, because a
philosopher must give up a dirty fork upon request (except
while it is eating). Partition ids naturally serve as philoso-
pher ids, allowing us to use this initialization strategy.

For directed graphs, two neighboring partitions may be
connected by only a directed edge, due to their constituent
vertices. Since partitions must be aware of both its in-edge
and out-edge dependencies, workers exchange dependency
information for their partitions during input loading. Like
in token passing, dependency messages can be batched to
ensure a minimal impact on input loading times.

Partitions acquire their forks synchronously by blocking
until all forks arrive. This is because even if all forks are
available, it takes time for them to arrive over the network,
so immediately returning is wasteful and may prevent other
partitions from executing (a partition cannot give up clean
forks: it must first execute and dirty them). Finally, per
Section 5.4, each worker flushes its remote messages before
a partition sends a shared fork to another worker’s partition.

Using the insights from our implementation of partition-
based distributed locking, we can also implement vertex-
based distributed locking, which is the special case where
|P | = |V | (Section 5.4). Each worker tracks fork and to-
ken states for its p-boundary vertices and uses vertex ids as
the keys for its dual-layer hash map. Keeping this data in a
central per-worker data structure, rather than at each vertex
object, is even more important than in token passing: forks
and tokens are constantly exchanged so their states must be
readily available to modify. Storing this data at each ver-
tex object would incur significant deserialization overheads.
Fork and token access patterns are also fairly random, which
would further incur an expensive traversal of a byte array
to locate the desired vertex.

Like the partition-based approach, for directed graphs,
each vertex v broadcasts to its out-edge neighbors u so that u
can record the in-edge dependency into the per-worker hash
map. This occurs during input loading and all messages are
batched. Vertices acquire their forks synchronously and each
worker flushes its remote messages before any m-boundary
vertex forfeits a fork to a vertex of another worker. However,
as we show in Section 7, these batches of remote messages are
far too small to avoid significant communication overheads.

6.4 Fault Tolerance
For fault tolerance, we use the existing checkpointing mech-

anism of Giraph. In addition to the data that Giraph al-
ready writes to disk at each synchronous checkpoint, we
change Giraph to also record the relevant data structures
(hash sets or hash maps) that are used by the synchroniza-
tion techniques. For dual-layer token passing, each worker
also records whether they have the global token and the id
of the partition holding the local token. Checkpoints occur
after a global barrier and thus capture a consistent state:
there are no vertices executing and no in-flight messages.

Thus, neither token passing’s global token nor distributed
locking’s fork and request tokens are in transit.

6.5 Algorithmic Compatibility and Usability
A system can provide one computation model for algo-

rithm developers to code with and use a different compu-
tation model to execute user algorithms. For example, Gi-
raph async allows algorithm developers to code for the BSP
model and transparently execute with an asynchronous com-
putation model to maximize performance [20]. Thus, with
respect to BSP, the more efficient AP model implemented
by Giraph async does not negatively impact usability.

When we pair Giraph async with partition-based or vertex-
based distributed locking, it remains backwards compatible
with (i.e., can still execute) algorithms written for the BSP
model. To take advantage of serializability, algorithm de-
velopers can now code for a serializable computation model.
Specifically, this is the AP model with the additional guar-
antee that conditions C1 and C2 hold. For example, our
graph coloring algorithm is written for this serializable AP
model rather than for BSP (Section 7.2.1).

However, not all synchronization techniques provide this
clean abstraction. Token passing fails in this regard because
only a subset of vertices execute in each superstep. That is,
token passing cannot provide the guarantee that all vertices
will execute some code in superstep i, because only a subset
of the vertices will execute at superstep i. The same issue
arises for the constrained vertex-based distributed locking
solution for BSP and sync GAS (Proposition 1), because it
relies on global barriers for the exchange of forks and to-
kens. In contrast, our implementations of partition-based
and vertex-based locking ensure that all vertices are exe-
cuted exactly once in each superstep and thus provide supe-
rior compatibility and usability.

7. EXPERIMENTAL EVALUATION
We compare dual-layer token passing and partition-based

distributed locking using Giraph async and vertex-based dis-
tributed locking using GraphLab async. We exclude Giraph
async for vertex-based locking because it is much slower than
GraphLab async, up to 44× slower on OR (Table 1). As dis-
cussed in Section 5.1, this is because GraphLab async is
specifically tailored for the vertex-based technique whereas
Giraph async is not. On the other hand, unlike Giraph
async, GraphLab async is not partition aware and thus can-
not support token passing or partition-based distributed lock-
ing. Hence, our evaluation focuses on the most performant
combinations of systems and synchronization techniques.

7.1 Experimental Setup
To evaluate the different synchronization techniques, we

use 16 and 32 EC2 r3.xlarge instances, each with four vC-
PUs and 30.5GB of memory. All machines run Ubuntu
12.04.1 with Linux kernel 3.2.0-70-virtual, Hadoop 1.0.4,
and jdk1.7.0 65. We implement our modifications in Gi-
raph 1.1.0-RC0 and compare against GraphLab 2.2, which
is the latest version that provides serializability.

We use large real-world datasets2,3[8, 7, 6], which are
stored on HDFS as text files and loaded into each system us-
ing the default random hash partitioning. We use hash par-

2
http://snap.stanford.edu/data/

3
http://law.di.unimi.it/datasets.php
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Table 1: Directed datasets. Parentheses give values
for the undirected versions used by graph coloring.

Graph |V | |E| Max Degree

com-Orkut (OR) 3.0M 117M (234M) 33K (33K)
arabic-2005 (AR) 22.7M 639M (1.11B) 575K (575K)
twitter-2010 (TW) 41.6M 1.46B (2.40B) 2.9M (2.9M)
uk-2007-05 (UK) 105M 3.73B (6.62B) 975K (975K)

titioning as it is the fastest method of partitioning datasets
across workers and, importantly, does not favour any par-
ticular synchronization technique. Alternative partitioning
algorithms such as METIS [24] are impractical as they can
take several hours to partition large datasets [22, 30].

Table 1 lists the four graphs we use: OR and TW are social
network graphs while AR and UK are web graphs. |V | and
|E| of Table 1 denote the number of vertices and directed
edges for each graph, while the maximum degree gives a
sense of how skewed the graph’s degree distribution is. All
graphs have large maximum degrees because they follow a
power-law degree distribution.

For partition-based distributed locking, we use Giraph’s
default setting of |W | partitions per worker, where |W | is
the number of workers. Increasing the number of partitions
beyond this does not improve performance: more edges be-
come cut, which increases inter-partition dependencies and
hence leads to more forks and tokens. Smaller partitions also
mean smaller message batches and thus greater communica-
tion overheads. However, using too few partitions restricts
parallelism for both compute threads and communication
threads: the message store at each worker is indexed by
separate hash maps for each partition, so more partitions
enables more parallel modifications to the store while fewer
partitions restricts parallelism and degrades performance.

7.2 Algorithms
We use graph coloring, PageRank, SSSP, and WCC as

our algorithms. Our choice is driven by the requirements
exhibited by graph processing algorithms that need serial-
izability. As described in Section 1, many machine learning
algorithms require serializability for correctness and conver-
gence. SSSP is a key component in reinforcement learning
while WCC is used in structured learning [29, 10]. Both
algorithms are used with extensive parallelism, making con-
vergence a crucial criterion that serializability can provide.
Similarly, as established in Section 2, graph coloring falls
into yet another class of algorithms where serializability en-
sures successful termination. Finally, PageRank is a good
comparison algorithm for two reasons: first, existing systems
that have considered serializability also implement PageR-
ank [33, 18] and second, the simple computation and com-
munication patterns of PageRank are identical to other more
complex algorithms [4], which allows us to better understand
the performance of the synchronization techniques without
being hindered by algorithmic complexity.

7.2.1 Graph Coloring
We use a greedy graph coloring algorithm (Algorithm 1)

that requires serializability and an undirected input graph.
Each vertex u initializes its value/color as no color. Then,
based on messages received from its (in-edge) neighbors, u
selects the smallest non-conflicting color as its new color and
broadcasts it to its (out-edge) neighbors.

Algorithm 1 Graph coloring pseudocode.

1 procedure compute(vertex, incoming messages)
2 if superstep == 0 then
3 vertex.setValue(no color)
4 return
5 if vertex.getValue() == no color then
6 cmin ← smallest non-conflicting color
7 vertex.setValue(cmin)
8 Send cmin to vertex’s out-edge neighbors
9 voteToHalt()

In theory, the algorithm requires only one iteration since
serializability prevents conflicting colors. In practice, be-
cause Giraph async is push-based, it requires three itera-
tions: initialization, color selection, and handling extrane-
ous messages. The extraneous messages occur because ver-
tices indiscriminately broadcast their current color, even to
neighbors who are already complete. This wakes up ver-
tices, leading to an additional iteration. GraphLab async,
which is pull-based, has each vertex gather its neighbors’
colors rather than broadcast its own and thus completes in
a single iteration.

7.2.2 PageRank
PageRank is an algorithm that ranks webpages based on

the idea that more important pages receive more links from
other pages. Each vertex u starts with a value of 1.0. At
each superstep, u updates its value to pr(u) = 0.15 + 0.85x,
where x is the sum of values received from u’s in-edge neigh-
bors, and sends pr(u)/ deg+(u) along its out-edges. The al-
gorithm terminates after the PageRank value of every vertex
u changes by less than a user-specific threshold between two
consecutive execution of u. The output pr(u) gives the ex-
pectation value for a vertex u, which can be divided by the
number of vertices to obtain the probability value.

We use a threshold of 0.01 for OR and AR and 0.1 for TW

and UK so that experiments complete in a reasonable amount
of time. Using the same threshold ensures that all systems
perform the same amount of work for each graph.

7.2.3 SSSP
Single-source shortest path (SSSP) finds the shortest path

between a source vertex and all other vertices in its con-
nected component. We use the parallel variant of the Bellman-
Ford algorithm [15]. Each vertex initializes its distance (ver-
tex value) to∞, while the source vertex sets its distance to 0.
Vertices update their distance using the minimum distance
received from their neighbors and propagate any newly dis-
covered minimum distance to all neighbors. We use unit
edge weights and the same source vertex to ensure that all
systems perform the same amount of work.

7.2.4 WCC
Weakly connected components (WCC) is an algorithm

that finds the maximal weakly connected components of a
graph. A component is weakly connected if all constituent
vertices are mutually reachable when ignoring edge direc-
tions. We use the HCC algorithm [23], which starts with
all vertices initially active. Each vertex initializes its com-
ponent ID (vertex value) to its vertex ID. When a smaller
component ID is received, the vertex updates its vertex value
to that ID and propagates the ID to its neighbors.
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(a) Graph coloring
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(b) PageRank
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(c) SSSP
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Figure 6: Computation times for graph coloring,
PageRank, SSSP, and WCC. Missing bars are la-
belled with ‘F’ for unsuccessful runs.

7.3 Results
For our results, we report computation time, which is the

total time of running an algorithm minus the input loading
and output writing times. This also captures any commu-
nication overheads that the synchronization techniques may
have: poor use of network resources translates to longer com-
putation times. For each experiment, we report the mean
and 95% confidence intervals of five runs (three runs for ex-
periments taking over 3 hours). Due to space constraints, we
exclude the results for AR. They can be found in [21].

For graph coloring, partition-based locking is up to 2.3×
faster than vertex-based locking for TW with 32 machines
(Figure 6a). This is despite the fact that Giraph async per-
forms an additional iteration compared to GraphLab async
(Section 7.2.1). Similarly, partition-based locking is up to
2.2× faster than token passing for UK on 32 machines. Vertex-
based locking fails for UK on 16 machines because GraphLab
async runs out of memory.

As detailed in Section 5.4, these performance gains arise
from significantly reducing the communication overheads,
which is achieved by sharing fewer forks between larger par-
titions instead of millions or billions of forks between in-
dividual vertices. Moreover, unlike vertex-based locking,
partition-based locking is able to support message batching,
which further reduces communication overheads.

For PageRank, partition-based distributed locking again
outperforms the other techniques: up to 18× faster than
vertex-based locking on OR with 16 machines (Figure 6b).
Vertex-based locking again fails for UK on 16 machines due to
GraphLab async exhausting system memory. Token passing
takes over 12 hours (720 mins) for UK on 32 machines due to
its limited parallelism (Section 5.3), making partition-based
locking over 14× faster than token passing.

For SSSP and WCC on UK, token passing takes over 7
hours (420 mins) for 16 machines and 9 hours (540 mins) for
32 machines, while GraphLab async fails on 16 machines due
to running out of memory (Figures 6c and 6d). For SSSP,

partition-based locking is up to 13× faster than vertex-based
locking for OR on 16 machines and over 10× faster than to-
ken passing for UK with 32 machines. For WCC, partition-
based locking is up to 26× faster than vertex-based locking
for OR on 16 machines and over 8× faster than token pass-
ing for UK with 32 machines. These performance gains are
larger because these algorithms, like many machine learning
algorithms, require multiple iterations to complete: the per-
iteration performance gains, described earlier, are further
multiplied by the number of iterations executed.

Partition-based distributed locking also scales better when
going from 16 to 32 machines. For example, partition-based
locking achieves a speedup with graph coloring on UK, whereas
token passing suffers a slowdown (Figure 6a). In the cases
where partition based-locking also experiences slowdown,
which occurs because serializability trades off performance
for stronger guarantees, its performance does not degrade
as quickly as token passing and vertex-based locking and its
computation time remains the shortest.

Lastly, Giraphx implements its synchronization techniques
only for graph coloring, so we can compare against only
this algorithm. As discussed previously, Giraphx imple-
ments its techniques as part of user algorithms rather than
within the system, resulting in poor usability as they must
be re-implemented in every user algorithm. A key advantage
of our techniques is that, because they are implemented at
the system level, serializability is automatically provided for
all user algorithms. For graph coloring on OR with 16 ma-
chines, Giraphx with single-layer token passing is 30× and
41× slower than Giraph async with dual-layer token passing
and partition-based distributed locking, respectively. With
vertex-based locking, Giraphx is 55× slower than GraphLab
async with vertex-based locking and 103× slower than Gi-
raph async with partition-based locking. On TW and UK,
Giraphx fails to run due to exhausting system memory. Gi-
raphx’s poor performance is due to its less efficient tech-
niques, the fact that it uses a much older and less perfor-
mant version of Giraph and, unlike Giraph async, does not
implement the more performant version of the AP model.

8. RELATED WORK
To the best of our knowledge, this paper is the first to

formulate the important notion of serializability for graph
processing systems and to incorporate it into a foundational
framework that has been implemented in a real system to de-
liver an end-to-end solution. Only Giraphx [33] and GraphLab
[27, 18] provide serializability but, as we showed in this pa-
per, our techniques significantly outperform their designs.
Moreover, neither of their proposals provide a formal frame-
work for reasoning about serializability nor do they show
correctness for their synchronization techniques. Giraphx
considers single-layer token passing and vertex-based dis-
tributed locking but its implementations are a part of user
algorithms rather than within the system: each technique
must be re-implemented in every user algorithm, which neg-
atively impacts performance and usability. GraphLab async
uses vertex-based distributed locking and is tailored for this
synchronization technique. However, it is not partition aware
and thus cannot support the more efficient partition-based
distributed locking technique.

We mention several other vertex-centric graph processing
systems next, however, they neither consider nor provide se-
rializability. Apache Hama [2] is a general BSP system that,
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unlike Giraph, is not optimized for graph processing. GPS
[31] and Mizan [25] are BSP systems that consider dynamic
workload balancing, but not serializability, while GRACE
[35] is a single-machine shared memory system that imple-
ments the AP model. GraphX [36] is a system built on the
data parallel engine Spark [37], and considers graphs stored
as tabular data and graph operations as distributed joins.
GraphX’s primary goal is to provide efficient graph process-
ing for end-to-end data analytic pipelines implemented in
Spark. Pregelix [12] is a BSP graph processing system im-
plemented in Hyracks [9], a shared-nothing dataflow engine.
Pregelix stores graphs and messages as data tuples and uses
joins to implement message passing. GraphChi [26] is a
single-machine disk-based graph processing system for pro-
cessing graphs that do not fit in memory.

9. CONCLUSION
We presented a formalization of serializability for graph

processing systems and proved that two key conditions must
hold to provide serializability. We then showed the need for
partition aware synchronization techniques to provide seri-
alizability more efficiently. In particular, we introduced a
novel partition-based distributed locking technique that, in
addition to being correct, is more efficient than existing tech-
niques. We implemented all techniques in Giraph to provide
serializability as a configurable option that is completely
transparent to algorithm developers. Our experimental eval-
uation demonstrated that our partition-based technique is
up to 26× faster than existing techniques that are imple-
mented by graph processing systems such as GraphLab.
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